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Abstract

This paper develops a nonparametric analysis for the sharp regression discontinuity (RD)
design in which the continuous forcing variable may contain measurement error. We show
that if the observable forcing variable contains measurement error, this error causes severe
identification bias for the average treatment effect given the “true” forcing variable at the
discontinuity point. The bias is critical in the sense that even if there is a significant causal
effect, researchers are misled to the incorrect conclusion of no causal effect. Furthermore,
the measurement error leads the conditional probability of the treatment to be continuous
at the threshold. To investigate the average treatment effect using the mismeasured forcing
variable, we propose an approximation using the small error variance approximation (SEVA)
originally developed by Chesher (1991). Based on the SEVA, the average treatment effect is
approximated up to the order of the variance of the measurement error using an identified
parameter when the variance is small. We also develop an estimation procedure for the
parameter that approximates the average treatment effect based on local polynomial regres-
sions and the kernel density estimation. Monte Carlo simulations reveal the severity of the
identification bias caused by the measurement error and demonstrate that our approximate
analysis is successful.
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1 Introduction

This paper develops a nonparametric analysis for the sharp regression discontinuity (RD) design

in which the continuous forcing variable may contain classical measurement error. We show that

the measurement error causes severe bias for identifying the average treatment effect given the

“true” forcing variable at the discontinuity point. We then examine to what extent the average

treatment effect can be studied from observed data containing the measurement error. The

average treatment effect is approximated using an identified parameter based on the small error

variance approximation (SEVA) originally proposed by Chesher (1991). We also develop an

estimation procedure for the approximating parameter based on local polynomial regressions

and the kernel density estimation.

The RD design was first introduced by Thistlethwaite and Campbell (1960) and has been

substantially studied in theoretical econometrics. It is known as a quasi-experimental design,

which is a powerful design for treatment effect analyses and program evaluation. Examples

of theoretical studies include research on identification (Hahn, Todd, and van der Klaauw,

2001; Lee, 2008; Frandsen, Frölich, and Melly, 2012), estimation (Porter, 2003; Imbens and

Kalyanaraman, 2012; Arai and Ichimura, 2014), and inference methods (Lee and Card, 2008;

McCrary, 2008; Calonico, Cattaneo, and Titiunik, 2014). In addition, much of the empirical

literature has developed analyses based on RD designs because of its utility. For example, many

studies have been conducted for education (e.g., Angrist and Lavy, 1999) and health economics

(e.g., Card and Shore-Sheppard, 2004). Useful surveys on the RD literature can be seen in

Imbens and Lemieux (2008) and Lee and Lemieux (2010).

Despite the vast body of RD literature, studies on RD designs with measurement error are

scant (see the paragraph “Related literature” below). In RD designs, a treatment is completely

or partly determined by whether a forcing variable1 is greater than a known threshold. In the

sharp RD design in which the treatment is completely determined by the forcing variable, the

average treatment effect at the threshold is identified by the difference in the means of the

outcome marginally above and below the threshold (Hahn et al., 2001). See Figure 1 for an

intuitive understanding of this. However, if the observed forcing variable contains measurement

error, we cannot observe the “true” forcing variable that determines the treatment. Identifica-

tion analyses for the average treatment effect with the observed mismeasured forcing variable

have not been developed enough.

There are many empirical situations based on RD designs in which the observed forcing

variable may be mismeasured. Empirical studies based on RD designs often use survey data.

For example, Hullegie and Klein (2010) analyze the effect of private insurance coverage on

individual health performance (e.g., the number of doctor visits) using a unique public insurance

system in Germany. In Germany, employees whose income is below a threshold cannot buy

private insurance, so that this unique system provides an RD design. Their forcing variable is

1It is also referred to as the “assignment” or “running” variable in the literature.
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Figure 1: The dots indicate pairs of the observed outcome Yi and the “true” forcing variable
X∗

i . The black solid line is the conditional mean of Yi given X∗
i , which is identified if (Yi, X

∗
i ) is

observed. The upper dotted red and lower dotted blue lines are the conditional means for the
treated and untreated, respectively. The length of the dotted vertical line indicates the average
treatment effect at the threshold x0, E(Y1i − Y0i|X∗

i = x0), which is identified by the difference
in the conditional means of Yi marginally above and below x0.

individual income, which is found using data from the German Socio-Economic Panel. They

also indicate that their forcing variable seems to contain measurement error, because some

people buy private insurance despite that their income is below the threshold (i.e., despite

their supposed ineligibility to buy private insurance). There are many other applied studies

based on RD designs that use survey data to conduct causal analyses, such as Card, Dobkin,

and Maestas (2008), Battistin, Brugiavini, Rettore, and Weber (2009), Schanzenbach (2009),

and Koch (2013). In such situations, there is always a risk that the forcing variable may be

mismeasured, as in other literature in econometrics (see Bound, Brown, and Mathiowetz, 2001

and Schennach, 2013 for surveys on the literature of measurement error in econometrics).

This study first investigates the effect of the forcing variable with classical measurement

error in the sharp RD design. We demonstrate that the difference in the conditional means of

the outcome given the mismeasured forcing variable marginally above and below the threshold

has an identification bias for the average treatment effect given the true forcing variable at

the threshold. The identification bias is critical in the sense that even if there is a significant

treatment effect, the bias misleads the researchers to the incorrect result of no treatment effect.

Furthermore, the measurement error leads the conditional probability of the treatment to be

continuous at the threshold. We derive the specific form of the identification bias caused by the

measurement error.

To examine the average treatment effect using the mismeasured forcing variable, we then
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suggest approximating it based on the SEVA originally developed by Chesher (1991). The

accuracy of the approximation depends on the magnitude of the variance of the measurement

error, σ2. We show that the average treatment effect is approximated up to the order O(σ2)

based on the SEVA when σ is small. In other words, the smaller standard deviation of the

measurement error implies a more precise approximation for the average treatment effect. We

thus consider that our approximate analysis is appropriate for empirical studies based on survey

data in which the forcing variable may contain measurement error caused from incorrect entry

or a memory lapse. Such measurement error can be classical and the variance can be small.

Importantly, while σ2 is generally unknown, σ2 can be extrapolated or forecast. Additional

data for the true forcing variable, such as public data or census data, allow us to conduct an

extrapolation under the classical measurement error assumption. Importantly, our approach

does not require additional variables such as instruments or repeated measurements, which are

often unavailable in empirical situations.

We also provide a nonparametric estimation procedure for the parameter that approximates

the average treatment effect based on local polynomial regressions and the kernel density esti-

mation. We derive the consistency and asymptotic normality of the nonparametric estimator.

Combining the asymptotic properties with our approximate analysis, the average treatment

effect is approximately estimated up to the order O(σ2).

We conduct Monte Carlo simulations to investigate the practical effects of the measurement

error on identification for the average treatment effect. The simulations also demonstrate the

performance of our approximate analysis. We find that the measurement error critically affects

identification of the average treatment effect in our simulation designs. The results of the Monte

Carlo simulations also corroborate that our approximate analysis can function even when the

magnitude of σ2 accounts for 20 percent of the variance of a mismeasured forcing variable.

Related literature: As a study in RD literature, this paper is closely related to Battistin

et al. (2009), Hullegie and Klein (2010), and Yu (2012).

Battistin et al. (2009) develop a fuzzy RD analysis in which the forcing variable contains

measurement error. Their analysis is based on the non-differential measurement error and

certain smoothness conditions on the joint distribution of the true and mismeasured forcing

variables. They show that under these conditions, the average treatment effect on the treated is

identified based on the mismeasured forcing variable using the fuzzy RD estimand, that is, the

Wald estimand. However, their analysis does not function under continuous measurement error,

because the conditional probability of the treatment given the mismeasured forcing variable is

not discontinuous owing to the continuous measurement error (see Remark 3). Indeed, our

Monte Carlo simulations demonstrate that the Wald estimator is highly unstable, because the

measurement error leads the conditional probability of the treatment to be continuous.

Hullegie and Klein (2010) develop a fuzzy RD analysis with a continuous mismeasured

forcing variable. Their analysis is based on the linear functional-form specifications and the
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normally distributed measurement error independent of the observable forcing variable (such

measurement error is not classical). They use the parametric specifications to identify and

estimate a local average treatment effect in an RD design. In contrast, the present study

focuses on a sharp RD design with classical measurement error in a nonparametric manner.

Yu (2012) studies RD designs with an observable continuous forcing variable containing

classical measurement error. Although the model studied in the present paper is similar to that

in his paper,2 the approaches developed in both papers differ. He focuses on the conditions

under which the average treatment effect at the threshold can be consistently estimated based

on the difference in the mean outcomes given the mismeasured forcing variable and treatment at

the threshold (see Remark 4). He shows that if the measurement error shrinks to zero depending

on the sample size under some rate conditions, a local polynomial estimator for the difference

is consistent for the average treatment effect. By contrast, this paper first approximates the

average treatment effect in the population, which is based on the SEVA, and then develops

an estimation for the approximating parameter. As a result, the identification and estimation

approaches in both papers differ. For a better understanding, we compare the performance of

the analyses developed in both papers using our Monte Carlo simulations, which reveal that

our approximate analysis is more successful.

The present paper is also related to Pei (2011) and Dong (2014), but the objectives in

those studies differ from that in our paper. Pei (2011) studies a model in which both a true

forcing variable and measurement error are discretely distributed with bounded support. He

develops an identification analysis for the average treatment effect utilizing the discreteness

of the forcing variable. Dong (2014) studies RD designs in which a true unobservable forcing

variable is continuous but the observed forcing variable is discretized or rounded, such as age in

years. She provides modified identification and estimation procedures for the average treatment

effect based on parametric polynomial modeling. As she mentions, such a rounding error cannot

be classical. In contrast, the present paper develops a nonparametric analysis for the problem

of classical measurement error in a sharp RD design with a continuous forcing variable.

As a study in the literature of measurement error, the present paper is related to Chesher

(1991), Chesher and Schluter (2002), and Battistin and Chesher (2014). These papers use the

SEVA to investigate the effects of measurement error in separate settings. However, to our

knowledge, no study applies the SEVA to the problem of measurement error in RD designs.

Our study builds on the literature by showing the conditions under which the average treatment

effect in the RD design is approximated based on the SEVA.

Organization of rest of the paper: Section 2 introduces our setting and the parameter

of interest. Section 3 examines the effect of the measurement error for identifying the average

treatment effect. Section 4 develops our approximate analysis based on the SEVA. Section 5

2More specifically, the setting considered in the present paper is almost the same as “Case 2” in Yu (2012).
He also considers other settings in which the treatment is determined using the mismeasured forcing variable
and/or in which the treatment is unobservable.
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develops an estimation method for the approximating parameter. Section 6 describes the Monte

Carlo simulations. Section 7 concludes. All proofs are provided in the Appendix.

Notations: For generic random variables Zi and Wi, we denote the conditional density (dis-

tribution function) of Zi given Wi = w as fZ|W (·|w) (FZ|W (·|w)). We denote the support of

Zi as supp(Z). For a generic function g(·), we denote the left and right limits of g(x) at x0 as

g(x0−) := lime↑0 g(x0 + e) and g(x0+) := lime↓0 g(x0 + e), respectively. For s ∈ N, we denote

the s-th order (partial) derivative of g(x) with respect to x as g(s)(x). The indicator function

1(E) is 1 if the event E is true and 0 otherwise. We denote a K × L matrix B with the (k, l)

entry bk,l as B = (bk,l)(k,l) for k = 1, . . . ,K and l = 1, . . . , L.

2 Settings

We observe independent and identically distributed (i.i.d.) random variables {(Yi, Di, Xi)}ni=1,

where Yi ∈ supp(Y ) ⊂ R is an outcome, Di ∈ {0, 1} is a treatment that depends on an

unobservable “true” continuous forcing variable X∗
i ∈ supp(X∗) ⊂ R, and Xi ∈ supp(X) ⊂ R

is the observable continuous forcing variable that may contain measurement error. If unit i is

treated, Di = 1, otherwise, Di = 0. We can write Yi = DiY1i + (1 − Di)Y0i, where Y1i is the

potential outcome when unit i is treated and Y0i is that when untreated. Both Y1i and Y0i

cannot be observed for any unit, because no units can be both treated and untreated. This is

the standard potential outcome notation.

Suppose that Di is completely determined using X∗
i as follows:

Di = 1(X∗
i ≥ x0), (1)

where x0 ∈ supp(X∗) is a known fixed threshold. The relationship is commonly referred as the

sharp RD design in RD literature (see Lee and Lemieux, 2010). Equation (1) means that all

units with X∗
i ≥ x0 are treated and all units with X∗

i < x0 are untreated. Here, E(Di|X∗
i =

x) = 1(x ≥ x0) is the deterministic function of x, and it is discontinuous at x0.

If we can observe the true forcing variable X∗
i , the average treatment effect given X∗

i = x0

is identified under the continuity of E(Y0i|X∗
i = x) (Hahn et al., 2001):

E(Y1i − Y0i|X∗
i = x0) = τ∗, (2)

where

τ∗ := E(Yi|X∗
i = x0+)− E(Yi|X∗

i = x0−) (3)

= E(Yi|X∗
i = x0+, Di = 1)− E(Yi|X∗

i = x0−, Di = 0). (4)

The left-hand side of (2) is the average treatment effect at the threshold, which is the common

parameter of interest in the sharp RD design. τ∗ is the difference in the conditional means of Yi

given X∗
i (and Di) at the threshold. The right-hand side of (3) is equal to that of (4) because
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of (1). If (Yi, X
∗
i ) is observed, the right-hand sides of (3) and (4) are identified, so the average

treatment effect is also identified.

Because of the presence of measurement error, we cannot observe the true forcing variable

X∗
i , so the right-hand sides of (3) and (4) cannot be identified. We instead observe Xi that

contains measurement error, as follows:

Xi = X∗
i + σUi, (5)

where the random variable σUi is continuous measurement error with E(Ui) = 0 and var(Ui) =

1, and σ ≥ 0 indicates the standard deviation. This additive representation is commonly used

in the literature of measurement error (see, e.g., Schennach, 2013). We assume x0 ∈ supp(X).

We introduce the following assumptions for the measurement error.

Assumption 1. (i) Ui is independent of (Y1i, Y0i, Di, X
∗
i ). (ii) fU (·) is continuous on bounded

support. (iii) E(Ui) = 0, var(Ui) = 1, E|Ui|3 < ∞.

Assumption 1 (i) is the classical measurement error assumption (see Bound et al., 2001 and

Schennach, 2013 for the interpretation). This assumption requires joint independence between

the measurement error and the other variables. Assumption 1 (i) is identical to the independence

between Ui and (Y1i, Y0i, X
∗
i ) in the sharp RD design, because Di is the deterministic function

of X∗
i . Assumption 1 (ii) ensures the continuity of Ui with bounded support. The bounded

support is required to guarantee the establishment of the approximation developed in Section

4. This condition may be restrictive in the theoretical view, but it can be satisfied in many

empirical situations. Assumption 1 (iii) is a mild moment condition. The existence of the

third-order moment is unrestrictive under the bounded support of Ui.

Remark 1. We can allow the outcome to contain measurement error. In other words, we can

allow a situation in which we observe not the “true” outcome Y ∗
i but the mismeasured outcome

Yi. The analysis in this paper remains unchanged if the measurement error contained in Yi is

independent of (Y1i, Y0i, Di, X
∗
i , Ui) and has mean zero. Thus, we do not explicitly consider that

the outcome is mismeasured in this paper.

Remark 2. We do not allow a situation in which Di is also mismeasured, which would require

other approaches to analyze the problem caused by the measurement error.

3 Identification bias caused by measurement error

This section investigates the effect of the measurement error for identifying the average treat-

ment effect at the threshold. We show that the measurement error leads the difference in the

mean outcomes just above and below the threshold and the discontinuity of the conditional

probability of the treatment to vanish. We then discuss possible approaches to examine the

average treatment effect using the mismeasured forcing variable.
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Although the parameter of interest in the RD design is the average treatment effect at the

threshold, we focus on studying the effect of the measurement error for identifying τ∗. This is

because τ∗ equals the average treatment effect under the continuity of E(Y0i|X∗
i ), as discussed

in the previous section.

Observing (Yi, Di, Xi), it is not uncommon to consider the following parameters:

τX := E(Yi|Xi = x0+)− E(Yi|Xi = x0−),

τXD := E(Yi|Xi = x0+, Di = 1)− E(Yi|Xi = x0−, Di = 0).

τX replaces the true forcing variable X∗
i in (3) with the mismeasured forcing variable Xi.

Similarly, τXD replaces X∗
i in (4) with Xi. τX and τXD are identified using the observable data.

Importantly, τX and τXD generally differ, because Di is not generally a deterministic function

of Xi, that is, Di ̸= 1(Xi ≥ x0).

We can guess that τX has a severe identification bias for τ∗ and that τX is close to zero. We

observe that E(Yi|Xi = x0+) is computed based on a subset of units with Xi ≥ x0 (i.e., the right

half of Figure 2). Units with Xi ≥ x0 but X∗
i < x0 may lead E(Yi|Xi = x0+) to substantially

differ from E(Yi|X∗
i = x0+), because the conditional distribution of Yi can be discontinuous

at X∗
i = x0 owing to the RD structure, that is, because the realization of Yi for X∗

i < x0 can

differ from those for X∗
i ≥ x0 (see Figure 1). Similarly, E(Yi|Xi = x0−) is computed based on

a subset with the remaining units (i.e., the left half of Figure 2) and it can substantially differ

from E(Yi|X∗
i = x0−) by the influence of the units with Xi < x0 but X∗

i ≥ x0. As a result, τX

could have a severe bias for identifying τ∗. As demonstrated in a later theorem, τX is equal to

zero because of the bias.

In contrast, we can guess that τXD does not substantially differ from τ∗. We observe that

E(Yi|Xi = x0+, Di = 1) is computed based on a subset of units with Xi ≥ x0 and X∗
i ≥ x0

(i.e., the upper right in Figure 2). Because E(Yi|Xi = x0+, Di = 1) is the conditional mean

for a subset of units with X∗
i ≥ x0, unlike E(Yi|Xi = x0+), it is not affected by the units with

Xi ≥ x0 and X∗
i < x0. Similarly, E(Yi|Xi = x0−, Di = 0) is computed based on a subset of

units with Xi < x0 and X∗
i < x0 (i.e., the lower left in Figure 2). Thus, E(Yi|Xi = x0+, Di = 1)

and E(Yi|Xi = x0−, Di = 0) may not substantially differ from E(Yi|X∗
i = x0+) and E(Yi|X∗

i =

x0−), respectively. Then, the identification bias of τXD may be smaller than that of τX for τ∗.

Nonetheless, both τX and τXD have an identification bias for τ∗ because of the measurement

error. To evaluate the identification biases, we introduce the following assumption, which

ensures the existence of limits and the use of the dominated convergence theorem. Let m(x∗) :=

E(Y0i|X∗
i = x∗) + 1(x∗ ≥ x0)(E(Y1i − Y0i|X∗

i = x∗)− τ∗).

Assumption 2. (i) E(Yi|X∗
i = x0+), E(Yi|X∗

i = x0−), E(Yi|Xi = x0+), E(Yi|Xi = x0−),

E(Yi|Xi = x0+, Di = 1), and E(Yi|Xi = x0−, Di = 0) exist. (ii) fX∗|X(x∗|x0+) and fX∗|X(x∗|x0−)

exist for any x∗ ∈ R. (iii) 1− FX∗|X(x0|x0+) and FX∗|X(x0|x0−) exist and are non-zero. (iv)

E(Y1i|X∗
i = x∗)fX∗|X(x∗|x), E(Y0i|X∗

i = x∗)fX∗|X(x∗|x), and m(x∗)fX∗|X(x∗|x) are dominated

by some integrable functions in x∗ ∈ R for x near x0.
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Figure 2: The dots are the pairs of (Xi, X
∗
i ) generated using the data-generating process in

Monte Carlo simulations (Section 6). The horizontal and vertical axes are Xi and X∗
i , respec-

tively. The dotted lines indicate the discontinuity point. E(Yi|Xi = x0+) and E(Yi|Xi = x0−)
are based on the units in the right and left halves of the graph, respectively. By contrast,
E(Yi|Xi = x0+, Di = 1) and E(Yi|Xi = x0−, Di = 0) are based on the units in the upper right
and lower left, respectively. The units in the upper left and lower right (the red dots) severely
affect identification for the average treatment effect.

The following theorem shows the specific form of the identification biases of τX and τXD for

τ∗. The result (ii) in the theorem is shown in Yu (2012).

Theorem 1. Suppose that Assumptions 1 and 2 hold and σ > 0.

(i) It holds that

τX =

∫ ∞

x0

E(Y1i|X∗
i = x∗)

(
fX∗|X(x∗|x0+)− fX∗|X(x∗|x0−)

)
dx∗

+

∫ x0

−∞
E(Y0i|X∗

i = x∗)
(
fX∗|X(x∗|x0+)− fX∗|X(x∗|x0−)

)
dx∗

= 0.

(6)

(ii) (Yu, 2012) It holds that

τXD = τ∗ +

(∫∞
x0

m(x∗)fX∗|X(x∗|x0+)dx∗

1− FX∗|X(x0|x0+)
−
∫ x0

−∞m(x∗)fX∗|X(x∗|x0−)dx∗

FX∗|X(x0|x0−)

)
. (7)

The theorem demonstrates that τX and τXD have identification biases for τ∗ and the average

treatment effect at the threshold. As a result, we cannot precisely evaluate the causal effect of

interest based on τX or τXD.

Importantly, the right-hand side of (6) vanishes because of the continuity of fX∗|X(x∗|x) at
x = x0, which is implied by the continuity of fU (·) as shown in the proof of the theorem. In
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other words, τX becomes zero because of the effect of the continuous measurement error. This

result is remarkable, because this implies that even if there is a substantial causal effect, τX

misleads researchers into the incorrect conclusion in which there is no causal effect. Indeed, our

Monte Carlo simulations demonstrate that an estimator for τX is significantly close to zero.

The second term on the right-hand side of (7) is the identification bias of τXD for τ∗. The

identification bias does not vanish in general. For example, this identification bias does not

vanish even when the treatment effect is constant, that is, when Y1i − Y0i = b for any i and a

constant b. In addition, the bias cannot be nonparametrically identified, because it relates the

joint distribution of (Y1i, Y0i, X
∗
i , Xi) including unobservables (Y1i, Y0i, X

∗
i ).

Remark 3. Battistin et al. (2009) show that in the fuzzy RD design with a mismeasured forcing

variable, the average treatment effect for the treated is identified using the Wald estimand:

E(Yi|Xi = x0+)− E(Yi|Xi = x0−)

E(Di|Xi = x0+)− E(Di|Xi = x0−)
. (8)

under the non-differential measurement error assumption and certain smoothness conditions on

the joint distribution of (X∗
i , Xi). However, in a sharp RD design with continuous measurement

error, their analysis could not work. To understand this, we observe the conditional mean of

Di (without the classical assumption):

E(Di|Xi = x) = E(1(X∗
i ≥ x0)|Xi = x) =

∫ ∞

x0

fX∗|X(x∗|x)dx∗.

Hence, the difference in the conditional means is

E(Di|Xi = x0+)−E(Di|Xi = x0−) =

∫ ∞

x0

(
fX∗|X(x∗|x0+)− fX∗|X(x∗|x0−)

)
dx∗.

This difference vanishes under the continuity of fX∗|X(x∗|x) at x = x0. That is, the discontinuity

of the conditional probability is smoothed out because of the continuous measurement error:

E(Di|Xi = x) is not discontinuous at x0 despite the discontinuity of E(Di|X∗
i = x). As a result,

we cannot identify the average treatment effect using (8) under the continuous measurement

error. Indeed, our Monte Carlo simulations demonstrate this problem. Hence, we do not

recommend focusing on (8) in empirical situations in which the researchers are aware of the

measurement error and in which they are confident of the discontinuous rule but E(Di|Xi) is

not apparently discontinuous at the threshold.

Remark 4. Yu (2012) focuses on a local polynomial estimator for τXD to study the average

treatment effect at the threshold in a sharp RD design with a continuous forcing variable that

contains classical measurement error. He first shows that τXD has identification bias for τ∗

that is identical to equation (7). He then shows that the local polynomial estimator for τXD

is consistent for τ∗ if the measurement error tends to zero depending on the sample size under

some rate conditions. We stress that the approaches in his paper and the present paper differ,

as we state in the Introduction.
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There may be at least three possible approaches to examine τ∗ using the mismeasured forcing

variable following the literature of measurement error (see Schennach, 2013). First, we could use

parameteric specifications, as in Hullegie and Klein (2010). By correcting the identification bias

based on the parametric specifications, we can identify τ∗. However, this approach is sensitive

to the validity of the parametric specifications: if the parametric specifications are invalid, the

identification analysis can be broken.

Second, we may be able to identify τ∗ using instrumental variables or repeated measure-

ments. It is well-known in the literature of measurement error that such additional variables are

powerful tools for establishing identification with the problems of measurement error. However,

valid instrumental variables or repeated measurements are not commonly available in empirical

situations based on the RD designs.

Third, we can learn the average treatment effect through approximation methods. The

present study uses this approach because the advantages of the approximation approach cor-

respond to those of the RD design: they do not require parametric specifications or additional

variables such as instrumental variables. While the approximation approach may not provide

the exact identification for the average treatment effect, it provides meaningful information

without restrictive requirements.

4 The small error variance approximation in the RD design

This section develops an approximation analysis for the average treatment effect at the threshold

based on the small error variance approximation (SEVA) originally proposed by Chesher (1991).

We show that the average treatment effect is approximated using an identified parameter when

the standard deviation of the measurement error σ is small.

We focus on approximating τ∗ = E(Yi|X∗
i = x0+, Di = 1) − E(Yi|X∗

i = x0−, Di = 0) to

learn the average treatment effect. In principle, we can also consider approximating E(Yi|X∗
i =

x0+) − E(Yi|X∗
i = x0−) based on the SEVA, although the precision of this approximation is

worse. This notion comes from the same reason discussed in the previous section, that is, that

E(Yi|Xi = x0+)− E(Yi|Xi = x0−) vanishes because of continuous measurement error.

Before we state our formal result, we outline our approach for approximating τ∗. Extending

the result in Chesher (1991), we show that the conditional density of Yi given X∗
i and Di is

approximated as follows:

fY |X∗D(y|x, d) = fY |XD(y|x, d)− σ2
(
log(1) fX|D(x|d)

)
f
(1)
Y |XD(y|x, d)−

σ2

2
f
(2)
Y |XD(y|x, d) + o(σ2).

for x near x0, y ∈ supp(Y ), and d ∈ {0, 1}.3 The equation shows that the left-hand side is

approximated up to the order O(σ2) by the terms on the right-hand side. Because the terms

on the right-hand side relate the joint distribution of (Yi, Di, Xi) and σ, they are identified by

3As noted in Chesher (1991), while we can allow Yi to be discrete, X∗
i and Xi must be continuous to establish

the approximation. Nonetheless, to avoid complexity, we implicitly assume that Yi is also continuous in this
section.
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the observable data if we extrapolate or forecast σ. Furthermore, this equation leads to

E(Yi|X∗
i = x,Di = d) =E(Yi|Xi = x,Di = d)− σ2

(
log(1) fX|D(x|d)

)
E(1)(Yi|Xi = x,Di = d)

− σ2

2
E(2)(Yi|Xi = x,Di = d) + o(σ2).

The terms on the right-hand side are identified using the data. This indicates that the con-

ditional mean of Yi given X∗
i and Di is approximated up to the order O(σ2) by the identified

parameter. Accordingly, using this approximation, τ∗ and the average treatment effect can be

approximated up to the order O(σ2).

To show the approximation result in a rigorous manner, we require additional assumptions.

Assumption 3. E(Yi|X∗
i = x0+, Di = 1), E(Yi|X∗

i = x0−, Di = 0), E(s)(Yi|Xi = x0+, Di =

1), and E(s)(Yi|Xi = x0−, Di = 0) exist for s = 0, 1, 2.

Assumption 4. (i) f
(s)
Y |X∗D(y|x, d) is bounded in y ∈ supp(Y ) for x near x0, d ∈ {0, 1}, and

s = 0, 1, . . . , 5. (ii) f
(s)
X∗|D(x|d) is bounded in x near x0 for d ∈ {0, 1} and s = 0, 1, . . . , 5. (iii)

f
(s)
X|D(x|d) is continuous at x = x0 and bounded near x0 for d ∈ {0, 1} and s = 0, 1.

Assumption 5.
∫∞
−∞ yf

(s)
Y |XD(y|x, d)dy < ∞ and

∫∞
−∞ yf

(t)
Y |X∗D(y|x, d)dy < ∞ for x near x0,

d ∈ {0, 1}, s = 0, 1, 2, and t = 0, 1, . . . , 5.

The assumptions are regularity conditions for establishing the approximation for τ∗. As-

sumptions 3–5 ensure the existence of the limits, the boundedness of the densities, and the

switching of the orders of integration and differentiation. The assumptions guarantee that the

order of the approximation becomes O(σ2). We stress that we do not require partial differen-

tiability of the conditional density of Yi or X
∗
i at x0. Furthermore, the continuity of fX|D(·|d)

is implied by the continuity of fU (·).
The following theorem presents an approximation for τ∗ based on the SEVA. Let

µ(x, d, σ) := E(Yi|Xi = x,Di = d)

− σ2g(x, d)E(1)(Yi|Xi = x,Di = d)− σ2

2
E(2)(Yi|Xi = x,Di = d),

where g(x, d) := log(1) fX|D(x|d) = f
(1)
X|D(x|d)/fX|D(x|d) and d ∈ {0, 1}.

Theorem 2. Suppose that Assumptions 1 and 3–5 hold. When σ → 0, it holds that

τ∗ = µ(x0+, 1, σ)− µ(x0−, 0, σ) + o(σ2). (9)

Theorem 2 states that τ∗ (and thus the average treatment effect) are approximated up

to the order O(σ2) by the difference on the right-hand side when σ is small. The smaller

standard deviation of the measurement error implies a more precise approximation for the

average treatment effect.

The condition σ → 0 means that σ is “sufficiently small” in the mathematical sense. While

the original SEVA in Chesher (1991) does not require this condition, we need it for the SEVA
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in the RD design. The reason why we require the condition (and the bounded support of Ui)

is because we approximate the one-sided limits of the conditional expectations. The basic idea

behind the SEVA is the convolution of the probability distributions and Taylor’s theorem. In

our setting, we should apply Taylor’s theorem to the conditional densities at every point near

the discontinuity point to approximate the one-sided limits of the conditional means. As a

result, the condition σ → 0 and the bounded support are required to ensure the establishment

of the Taylor polynomials at every point near the discontinuity point. However, the condition

σ → 0 is a mathematical requirement, which does not mean that σ converges in the real

world. In practice, the precision of the approximation depends on the magnitude of σ and the

data-generating process. We demonstrate the approximate precision using our Monte Carlo

simulations, which suggests that our approximation can work even when σ2 accounts for about

20% of var(Xi).

The terms on the right-hand side of (9) are identified by the data (Yi, Di, Xi) except for the

standard deviation σ. In practice, we can extrapolate σ when we have additional public data

or census data on X∗ for the population of interest, because σ2 = var(X) − var(X∗) under

Assumption 1. For example, suppose that we are interested in evaluating a policy program in a

state based on survey data and the forcing variable is income, which may contain measurement

error. In this situation, we can use public data on income in the state to extrapolate σ by

estimating var(X∗). Importantly, this procedure does not require additional variables on the

observations i = 1, . . . , n. Alternatively, we can learn the effect of the measurement error

through (9) by forecasting σ, as in Battistin and Chesher (2014). Because the difference on

the right-hand side of (9) is monotonic in σ, we can calculate the forecast intervals for the

difference by forecasting several values of σ. Hence, Theorem 2 allows us to correct or forecast

the identification bias because of the measurement error up to the order O(σ2).

Remark 5. Our approximate analysis could not be extended to the fuzzy RD design, because

E(Di|Xi) in the fuzzy RD design is not discontinuous at the threshold owing to continuous

measurement error. We consider the same setting in Section 2, except that Di is not a deter-

ministic function of X∗
i . Instead, in the fuzzy RD design, the conditional probability of Di = 1

given X∗
i is discontinuous at the threshold: E(Di|X∗

i = x0+) ̸= E(Di|X∗
i = x0−). The fuzzy

RD estimand is

E(Yi|X∗
i = x0+)− E(Yi|X∗

i = x0−)

E(Di|X∗
i = x0+)− E(Di|X∗

i = x0−)
,

which identifies the average treatment effect under the independence assumption between Y1i−
Y0i and Di. Even without the independence assumption, the parameter identifies a local average

treatment effect (see Hahn et al. (2001) for details). Here, E(Yi|X∗
i ) ̸= E(Yi|X∗

i , Di), because

Di is not a deterministic function of X∗
i in the fuzzy RD design.

It might seem that the fuzzy RD estimand is approximated by approximating each term in

the estimand based on the SEVA, similar to the sharp RD design. That is, it might seem that
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by extending the result in Chesher (1991), the average treatment effect in the fuzzy RD design

is approximated by

µY (x0+, σ)− µY (x0−, σ)

µD(x0+, σ)− µD(x0−, σ)
,

where

µY (x, σ) := E(Yi|Xi = x)− σ2
(
log(1) fX(x)

)
E(1)(Yi|Xi = x)− σ2

2
E(2)(Yi|Xi = x),

µD(x, σ) := E(Di|Xi = x)− σ2
(
log(1) fX(x)

)
E(1)(Di|Xi = x)− σ2

2
E(2)(Di|Xi = x).

However, µD(x0+, σ) − µD(x0−, σ) could vanish under continuous measurement error. Under

the classical measurement error assumption, we observe that

E(Di|Xi = x) = E(E(Di|X∗
i , Xi = x)|Xi = x) =

∫ ∞

−∞
E(Di|X∗

i = x∗)fX∗|X(x∗|x)dx∗.

Hence, the difference in the conditional probabilities is

E(Di|Xi = x0+)− E(Di|Xi = x0−) =

∫ ∞

−∞
E(Di|X∗

i = x∗)(fX∗|X(x∗|x0+)− fX∗|X(x∗|x0−))dx∗.

This difference vanishes under the continuity of fX∗|X(x∗|x) at x = x0, which is implied by the

continuity of fU (·). Hence, µD(x0+, σ) − µD(x0−, σ) could also vanish such that we cannot

approximate the fuzzy RD estimand based on the SEVA.

Accordingly, we require other approaches to evaluate the effect of measurement error in the

fuzzy RD design. This is beyond the scope of this paper.

5 Estimation

This section presents a nonparametric estimation procedure for the parameter that approximates

the average treatment effect, that is, the difference on the right-hand side of (9). We develop

the asymptotic properties of the nonparametric estimator.

Using the approximation analysis developed in the previous section, if we can consistently es-

timate the difference on the right-hand side of (9), the average treatment effect is approximately

estimated up to the order O(σ2). We thus consider estimating

µ(x0+, 1, σ) = E(Yi|Xi = x0+, Di = 1)

− σ2g(x0, 1)E
(1)(Yi|Xi = x0+, Di = 1)− σ2

2
E(2)(Yi|Xi = x0+, Di = 1),

µ(x0−, 0, σ) = E(Yi|Xi = x0−, Di = 0)

− σ2g(x0, 0)E
(1)(Yi|Xi = x0−, Di = 0)− σ2

2
E(2)(Yi|Xi = x0−, Di = 0),

where g(x, d) := f
(1)
X|D(x|d)/fX|D(x|d). In the following, we assume that σ2 is known, because

σ2 can be extrapolated through σ2 = var(X)− var(X∗) or forecast.
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We can consistently estimate g(x0, d) by ĝ(x0, d) based on the kernel density and density

derivative estimators:

ĝ(x0, d) :=
f̂
(1)
X|D(x0|d)

f̂X|D(x0|d)
,

where f̂X|D(x0|d) := (ndh)
−1
∑n

i=1 1(Di = d)Kh(Xi), f̂
(1)
X|D(x0|d) := −(ndh

2)−1
∑n

i=1 1(Di =

d)K
(1)
h (Xi), nd is the number of observations with Di = d, Kh(z) := K((z−x0)/h), K(·) is some

kernel function, and h is a bandwidth tending to zero as n → ∞. f̂X|D(x0|d) and f̂
(1)
X|D(x0|d) are

consistent for fX|D(x0|d) and f
(1)
X|D(x0|d), respectively, under the regularity conditions, similar

to those in Silverman (1978) or Li and Racine (2007, Chapter 3) (see also Fan and Gijbels,

1996, Section 2.7). Accordingly, ĝ(x0, d) is consistent for g(x0, d) under the conditions. We

thus assume the conditions implicitly and omit the details for the asymptotic properties of this

estimator.

We next focus on estimating E(s)(Yi|Xi = x0+, Di = 1) and E(s)(Yi|Xi = x0−, Di = 0) for

s = 0, 1, 2, which are estimated using local polynomial regressions (Fan and Gijbels, 1996). The

estimators for E(s)(Yi|Xi = x0+, Di = 1) are given by the following p-th order local polynomial

regression:

(α̂+, β̂+′
)′ := argmin

(a,b′)′∈Rp+1

n∑
i=1

IiDi (Yi − a− b1(Xi − x0)− · · · − bp(Xi − x0)
p)2Kh(Xi), (10)

where p ≥ 2 is some positive integer and Ii := 1(Xi ≥ x0).
4 Then, α̂+ is the estimator for

E(Yi|Xi = x0+, Di = 1), and β̂+
k is that for (k!)−1E(k)(Yi|Xi = x0+, Di = 1) for k = 1, . . . , p.

Similarly, the estimators for E(s)(Yi|Xi = x0−, Di = 0) for s = 0, 1, 2 are given by the following

p-th order local polynomial regression:

(α̂−, β̂−′
)′ := argmin

(a,b′)′∈Rp+1

n∑
i=1

(1− Ii)(1−Di) (Yi − a− b1(Xi − x0)− · · · − bp(Xi − x0)
p)2Kh(Xi),

Then, α̂− is the estimator for E(Yi|Xi = x0−, Di = 0), and β̂−
k is that for (k!)−1E(k)(Yi|Xi =

x0−, Di = 0) for k = 1, . . . , p.

The parameter approximating the average treatment effect is estimated by

µ̂(x0+, 1, σ)− µ̂(x0−, 0, σ),

where

µ̂(x0+, 1, σ) := α̂+ − σ2ĝ(x0, 1)β̂
+
1 − σ2β̂+

2 ,

µ̂(x0−, 0, σ) := α̂− − σ2ĝ(x0, 0)β̂
−
1 − σ2β̂−

2 ,

which are estimators for µ(x0+, 1, σ) and µ(x0−, 0, σ), respectively.

4In practice, the kernel function and bandwidth used for the local polynomial regressions can differ from those
used to estimate fX|D(x0|d) and f

(1)

X|D(x0|d).
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To develop the asymptotic properties of this estimator, we introduce additional assumptions.

The assumptions are standard regularity conditions for developing asymptotic properties for the

local polynomial estimators, which are analogous to the conditions in Hahn et al. (2001) and

Porter (2003). Let Vi := Yi − E(Yi|Xi, Di).

Assumption 6. K(·) is continuous, symmetric, and non-negative with compact support. For

simplicity, the support is assumed to be [−M,M ] for some finite M > 0.

Assumption 7. fX(·) is bounded, continuous, and bounded away from zero near x0.

Assumption 8. E(Di|Xi = x0+) and E(1−Di|Xi = x0−) exist and are non-zero.

Assumption 9. (i) E(V 2
i |Xi = x,Di = 1) and E(V 2

i |Xi = x,Di = 0) are bounded near x0 and

E(V 2
i |Xi = x0+, Di = 1) and E(V 2

i |Xi = x0−, Di = 0) exist. (ii) E(|Vi|2+ζ |Xi = x) is bounded

near x0 for some ζ > 0.

Assumption 10. (i) E(Yi|Xi = x,Di = d) is p+1-times continuously differentiable for x near

x0 and d ∈ {0, 1}. (ii) E(k)(Yi|Xi = x0+, Di = 1) and E(k)(Yi|Xi = x0−, Di = 0) exist for

k = 1, . . . , p+1. (iii) There exists some M̃ > 0 such that E(p+1)(Yi|Xi = x,Di = 1) is bounded

for x ∈ [x0, x0 + M̃ ] and E(p+1)(Yi|Xi = x,Di = 0) is bounded for x ∈ [x0 − M̃, x0).

To develop asymptotic properties of µ̂(x0+, 1, σ) − µ̂(x0−, 0, σ), we first study asymptotic

properties of the local polynomial estimators.

Lemma 1. Suppose that Assumptions 6–10 hold. When n → ∞, h → 0, nh → ∞, and
√
nhhp+1 → C̃ for some C̃ ∈ [0,∞), it holds that(

α̂+, β̂+′
)′

−
(
α+, β+′

)′ p−→ 0,(
α̂−, β̂−′

)′
−
(
α−, β−′

)′ p−→ 0,

and

√
nhH−1

((
α̂+, β̂+′

)′
−
(
α+, β+′

)′)
; N

(
B+,Ω+

)
, (11)

√
nhH−1

((
α̂−, β̂−′

)′
−
(
α−, β−′

)′)
; N

(
B−,Ω−) , (12)

where

H := diag(1, h−1, . . . , h−p),

B+ := C̃E(p+1)(Yi|Xi = x0+, Di = 1)(Γ+)−1(γp+1, . . . , γ2p+1)
′,

B− := C̃E(p+1)(Yi|Xi = x0−, Di = 0)(Γ−)−1
(
(−1)p+1γp+1, . . . , (−1)2p+1γ2p+1

)′
,

Ω+ :=
E(V 2

i |Xi = x0+, Di = 1)

E(Di|Xi = x0+)fX(x0)
(Γ+)−1∆+(Γ+)−1,

Ω− :=
E(V 2

i |Xi = x0−, Di = 0)

E(1−Di|Xi = x0−)fX(x0)
(Γ−)−1∆−(Γ−)−1,
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Γ+ := (γk+l−2)(k,l), Γ− :=
(
(−1)k+l+1γk+l−2

)
(k,l)

, for k, l = 1, . . . , p+ 1,

∆+ := (δk+l−2)(k,l), ∆− :=
(
(−1)k+l+1δk+l−2

)
(k,l)

, for k, l = 1, . . . , p+ 1,

γq :=

∫ M

0
uqK(u)du, δq :=

∫ M

0
uqK2(u)du, for q = 0, . . . , 2p+ 1.

Lemma 1 shows that the vectors of local polynomial estimators are consistent and asymptot-

ically normal. The asymptotic distributions are not centered at zero because of the presence of

the asymptotic biases. The asymptotic biases of the vectors of the local polynomial estimators

are of order O(Hhp+1) and depend on the one-sided derivatives of E(Yi|Xi, Di).

Lemma 1 states that the convergence rates of the vectors of the local polynomial estimators

are 1/(
√
nhH−1). Specifically, the convergence rates of α̂+ and α̂− are of order 1/

√
nh, those

of β̂+
1 and β̂−

1 are of order 1/(
√
nhh), and those of β̂+

2 and β̂−
2 are of order 1/(

√
nhh2). These

results are consistent with the results in the literature of local polynomial regressions, such as

those in Fan and Gijbels (1992), Ruppert and Wand (1994), and Masry (1996a,b). From these

results, we expect the convergence rate of µ̂(x0+, 1, σ)− µ̂(x0−, 0, σ) to be of order 1/(
√
nhh2).

The asymptotic properties of µ̂(x0+, 1, σ)− µ̂(x0−, 0, σ) are developed in the following the-

orem.

Theorem 3. Suppose that Assumptions 6–10 hold and ĝ(x0, d)
p−→ g(x0, d) for d ∈ {0, 1}.

When n → ∞, h → 0, nh → ∞, and
√
nhhp+1 → C̃ for some C̃ ∈ [0,∞), it holds that

µ̂ (x0+, 1, σ)− µ̂ (x0−, 0, σ)− (µ (x0+, 1, σ)− µ (x0−, 0, σ))
p−→ 0,

and

√
nhh2 (µ̂ (x0+, 1, σ)− µ̂ (x0−, 0, σ)− (µ (x0+, 1, σ)− µ (x0−, 0, σ))) ; N (B,Ω) ,

where B := σ2e′3 (B
− −B+), Ω := σ4e′3 (Ω

+ +Ω−) e3, and e3 := (0, 0, 1, 0, . . . , 0)′ is the p + 1

vector and B+, B−, Ω+, and Ω− are defined in Lemma 1.

Theorem 3 shows that the estimator for the parameter approximating the average treatment

effect is consistent for the parameter and asymptotically normal. The asymptotic distribution

is not centered at zero because of the presence of the asymptotic bias. The convergence speed of

the estimator is of order 1/(
√
nhh2), which is expected by the discussion above: the convergence

rate of the estimator is determined by those of the estimators for E(2)(Yi|Xi = x0+, Di = 1)

and E(2)(Yi|Xi = x0−, Di = 0). This convergence rate is slower than 1/
√
nh, although this

result is standard. This convergence speed is a limitation of the local polynomial estimators,

which cannot be overcome if we use the local polynomial regressions. We can overcome the slow

convergence rate using parametric methods such as parametric polynomial regressions, although

we do not pursue this issue here because this paper focuses on nonparametric methods.

Remark 6. The selection of the kernel functions and bandwidths are practically concerned.

In particular, the precision of the nonparametric estimator µ̂(x0+, 1, σ) − µ̂(x0−, 0, σ) largely
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depends on selecting the bandwidths, as other nonparametric estimators do. We explain the

details of bandwidth selection in our Monte Carlo simulations (Section 6). We note that the

bandwidth selection for RD designs developed in Imbens and Kalyanaraman (2012) and Arai

and Ichimura (2014) cannot directly apply our setting. This is because our estimand, the

difference on the right-hand side of (9), is not typical in the sharp RD design.

6 Monte Carlo simulations

This section presents the results of the Monte Carlo simulations. We first describe the simulation

designs and the implementation of our approximate analysis, and then we report the results.

The simulations are conducted with R 3.1.1 for Windows 7. 1000 replications are used for

the simulation. We set the sample size to n = 2500, which may look somewhat large, although

this is required to execute higher-order local polynomial regressions.

6.1 Designs

We consider two designs for the potential outcomes:

Design A:
Y1i = 1.52 + 0.84X∗

i − 3.0(X∗
i )

2 + 7.99(X∗
i )

3 − 9.01(X∗
i )

4 + 3.56(X∗
i )

5 + ei,

Y0i = 0.48 + 1.27X∗
i + 7.18(X∗

i )
2 + 20.21(X∗

i )
3 + 21.54(X∗

i )
4 + 7.33(X∗

i )
5 + ei,

Design B:
Y1i = 0.5 + 0.84X∗

i − 0.3(X∗
i )

2 − 2.397(X∗
i )

3 − 0.901(X∗
i )

4 + 3.56(X∗
i )

5 + ei,

Y0i = 0 + 1.27X∗
i − 3.59(X∗

i )
2 + 14.147(X∗

i )
3 + 23.694(X∗

i )
4 + 10.995(X∗

i )
5 + ei,

where X∗
i ∼ i.i.d. 2Beta(2, 4)− 0.7 and ei ∼ i.i.d.N(0, 0.12952) in both designs, which implies

E(X∗
i ) = −1/30, var(X∗

i ) = 32/252. The treatment is Di = 1(X∗
i ≥ 0), that is, x0 = 0, in each

design. Design A is similar to Imbens and Kalyanaraman (2012, Lee design), Arai and Ichimura

(2014, Design 1), and Calonico et al. (2014, Model 1), which is motivated by Lee (2008)’s data.

Design B is analogous to Calonico et al. (2014, Model 3). However, the average treatment effects

and E(X∗
i ) are bigger here, which reveal the riskiness of the mismeasured forcing variable. For

illustration, the conditional means are plotted in Figure 3.

The observable mismeasured forcing variable is generated as Xi = X∗
i + σUi, where Ui is

the i.i.d. truncated normally distributed random variable with mean 0 and standard deviation

1, whose support is [−3, 3]. Ui is independent of the other variables. We consider three values

for the standard deviation of the measurement error: σ = 0.12, 0.15, 0.18. Under each σ, the

magnitudes of σ2 account for about 10%, 15%, and 20% of var(Xi), respectively. For illustration,

the densities of X∗
i and Xi for each σ are plotted in Figure 4.

We evaluate the performance of four estimators. The first is the estimator based on the SEVA

developed in Section 5 (we denote it as “ESEVA”): µ̂(x0+, 1, σ)− µ̂(x0−, 0, σ). For the kernel

density estimation, we use the Epanechnikov kernel function K1(u) = 3/4(1−u2)1(|u| ≤ 1) and

the normal-scale rule bandwidth given by hd = 2.34σ̂X,dn
−1/5
d , where σ̂X,d is the square root of

the sample variance of Xi for observations with Di = d for d ∈ {0, 1} and nd is the number of
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Figure 3: The conditional means in each design are plotted. The dotted red and blue lines are
E(Y1i|X∗

i = x) and E(Y0i|X∗
i = x), respectively. The solid black line is E(Yi|X∗

i = x).
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Figure 4: The densities of X∗
i and Xi for each σ are plotted. The black line is the density of

X∗
i , the red one is that of Xi for σ = 0.12, the green one is that for σ = 0.15, and the blue one

is that for σ = 0.18.
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observations with Di = d. For the kernel density derivative estimation, we employ the kernel

function proposed by Jones (1994), K
(1)
2 (u) = u(1− u)21(|u| ≤ 1)/4 and the normal scale rule

bandwidth hd = σ̂X,d(112
√
π/nd)

1/7. We use the local linear regression to estimate the one-

sided limits of the conditional expectation and the second-order local polynomial regressions

to estimate the first and second derivatives. We use separate-order local polynomial regres-

sions because of the different convergence rates of the estimators and the automatic boundary

adaptive property of the local polynomial regressions (Fan and Gijbels, 1996).5 For all local

polynomial regressions, we employ the triangle kernel function K3(u) = (1−|u|)1(|u| ≤ 1). The

bandwidth for the p-th order local polynomial regression required to estimate the ν-th right

derivative is selected by the plug-in method developed in Fan and Gijbels (1996, p.67), that is,

hν,p = Cν,p(K)

(
σ̂2(x0+)

(Ê(p+1)(Yi|Xi = x0+, Di = 1))2f̂X(x0)Ê(Di|Xi = x0+)n+

)1/(2p+3)

,

for (ν, p) = (0, 1), (1, 2), (2, 2). σ̂2(x0+) is the local linear estimator for the conditional variance

of Yi given Di = 1 and Xi = x0+. f̂X(x0) is the kernel density estimator for fX(x0). Ê(Di|Xi =

x0+) is the local linear estimator for E(Di|Xi = x0+). n+ is the number of observations with

Di = 1 and Xi ≥ x0. Cν,p(K) is a constant depending on the kernel function whose definition

is given in Fan and Gijbels (1996, p.67). For the triangle kernel, we set C0,1(K3) = 2.9925,

C1,2(K3) = 3.5218, and C2,2(K3) = 3.1077. To select the bandwidth for the second order

local polynomial regression, we need a pilot estimate for Ê(3)(Yi|Xi = x0+, Di = 1), which is

estimated using the third-order local polynomial regression. Selecting the bandwidths for the

left derivatives is analogous. The variance of the measurement error σ2 is estimated through

the difference in the sample variance of Xi and that of X∗ using artificial additional data on

X∗ whose sample size is 5000.

The second is the estimator for τX , τ̂X := α̃+
Y − α̃−

Y , where

(α̃+
Y , β̃

+
Y )

′ := argmin
(a,b)′∈R2

n∑
i=1

Ii (Yi − a− b1(Xi − x0))
2K

(
Xi − x0

h

)
,

(α̃−
Y , β̃

−
Y )

′ := argmin
(a,b)′∈R2

n∑
i=1

(1− Ii) (Yi − a− b1(Xi − x0))
2K

(
Xi − x0

h

)
.

That is, τ̂X is the estimator based on the local linear regressions. For the estimator, we employ

the triangle kernel function and the plug-in bandwidth discussed in Fan and Gijbels (1996).

The third is the estimator for τXD, τ̂XD := α̂+ − α̂−, based on the local linear regressions

developed in Lemma 1 (i.e., p = 1). For this estimator, we employ the triangle kernel function

and the plug-in bandwidth discussed previously.

5We can also use third-order polynomial regressions to estimate the second derivatives. However, we find
that the performance of these estimators is worse than that of estimators based on the second-order polynomial
regressions. This is because the plug-in bandwidth for the third-order polynomial regressions is of order n−1/9,
which leads to oversmoothing bandwidth under sample size 2500. We require a larger sample size to employ the
plug-in bandwidth of order n−1/9. Hence, we employ the second-order polynomial regressions, which lead to the
plug-in bandwidth of order n−1/7.
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ESEVA τ̂X τ̂XD Fuzzy
σ true bias std bias std bias std bias std

0.12 1.04 0.0710 0.0343 -1.0083 0.1121 0.1028 0.0224 -0.0755 7.5655

0.15 1.04 0.0799 0.0324 -0.9984 0.1080 0.1196 0.0208 0.2164 4.1668

0.18 1.04 0.0920 0.0316 -1.0144 0.1044 0.1367 0.0205 0.8930 19.5753

Table 1: Monte Carlo simulation results with design A

ESEVA τ̂X τ̂XD Fuzzy
σ true bias std bias std bias std bias std

0.12 0.5 0.0853 0.0919 -0.4925 0.0789 0.2539 0.0497 0.4399 20.6762

0.15 0.5 0.1044 0.1031 -0.4916 0.0901 0.3336 0.0562 -1.5143 33.8111

0.18 0.5 0.1586 0.1087 -0.4915 0.0994 0.4236 0.0605 0.1016 8.9724

Table 2: Monte Carlo simulation results with design B

The fourth is the estimator in the fuzzy RD design discussed in Remark 3, that is, the

estimator of (8) (we denote it as “Fuzzy”). Specifically, the estimator is (α̃+
Y − α̃−

Y )/(α̃
+
D − α̃−

D),

where α̃+
D and α̃−

D are obtained by the minimization problems here in which Yi is replaced with

Di. For the estimator, we employ the triangle kernel function and the plug-in bandwidth in

Fan and Gijbels (1996).

6.2 Results

The results of the Monte Carlo simulations with designs A and B are reported in Tables 1

and 2, respectively. The column labeled “true” reports the true average treatment effect at

the threshold. The bias for the average treatment effect and the standard deviation of each

estimator are presented in the tables.

The simulation results demonstrate that the approximate analysis based on the SEVA is

informative for learning the average treatment effect. In both designs, the biases of ESEVA are

moderate for each σ. However, the biases of ESEVA with design B are somewhat larger than

those with design A. Nonetheless, the biases of ESEVA are considerably smaller than those of

the remaining estimators in all cases. The biases of ESEVA increase as σ increases, although

this is expected by our analysis developed in Section 4. Accordingly, the simulation results

corroborate our approximate analysis based on the SEVA.

The standard deviations of ESEVA are moderate in both designs for all σ. However, as

σ becomes larger with design B, the standard deviations increase. This is expected using

our approximation analysis: when σ is large, the effects of the second and third terms in

µ̂(x0+, 1, σ) and µ̂(x0−, 0, σ) on the standard deviation increase. Nonetheless, the standard

deviations become smaller as n increases, because the asymptotic variance of ESEVA is of order

1/(
√
nhh2).

The simulation results reveal that τ̂X has severe bias for identifying the average treatment

effect. The bias of τ̂X is critical even for small σ. As expected by the analysis in Section 3, the

estimates of τ̂X in both designs are close to 0, which leads us to the misleading consequence
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σ mean std

0.12 0.0276 0.0946
0.15 0.0372 0.0929
0.18 0.0231 0.0888

Table 3: Estimates of E(Di|Xi = x0+)− E(Di|Xi = x0−)

in which there is no treatment effect. This result indicates that τ̂X is not consistent for the

average treatment effect because of the identification bias caused by the measurement error.

The biases of τ̂XD are relatively moderate compared with those of τ̂X . However, the biases

of τ̂XD are larger than those of ESEVA in all cases. In particular, the biases of τ̂XD with design

B are about three times as large as those of ESEVA. Furthermore, the mean squared errors of

τ̂XD are bigger than those of ESEVA in all cases. These results suggest that ESEVA functions

better than τ̂XD in all cases.

The performance of Fuzzy is poor. The estimator is unstable and both the bias and the stan-

dard deviation are incoherent in each setting. This is because the measurement error causes the

discontinuity of the conditional mean of Di to vanish, as discussed in Remark 3. The mean and

standard deviation of the estimates of the discontinuity of E(Di|Xi = x) at x0 with design A are

reported in Table 3,6 which reveals that the discontinuity vanishes because of the measurement

error even for small σ. According to the simulation results, we do not recommend using the

fuzzy RD estimand in situations in which the discontinuity size of E(Di|Xi) is apparently small

despite a confident discontinuous rule.

To summarize, the simulation results corroborate our theoretical analysis. The measurement

error leads the difference in the mean outcomes just above and below the threshold and the

discontinuous size of the conditional means of Di to vanish. In addition, the approximate

analysis based on the SEVA works more successfully than the remaining estimators: the biases

and the mean squared errors of ESEVA are smaller than those of τ̂X , τ̂XD, and Fuzzy.

7 Conclusion

This paper presents a nonparametric analysis in the sharp RD design in which the forcing

variable contains measurement error. We show that the average treatment effect given the

“true” forcing variable at the discontinuity point cannot be identified based on the difference

in the mean outcomes given the mismeasured forcing variable. We present the exact form

of the identification bias, which leads us to the misleading consequence in which there is no

treatment effect even if there exists a significant treatment effect. To examine the average

treatment effect using the mismeasured forcing variable, we propose approximating it using

the small error variance approximation originally developed by Chesher (1991). We develop an

estimation method for the parameter that approximates the average treatment effect based on

6Because the data-generating processes of (Di,X
∗
i , Xi) are the same in each design, we have similar results

for the estimates of the discontinuity with each design. We thus report the results only with design A.
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local polynomial regressions and the kernel density estimation. Monte Carlo simulations reveal

that the identification bias caused by the measurement error is critical, and they corroborate

the performance of our approximation analysis.

Future work: While this paper focuses only on the sharp RD design, it is worth investigating

the effect of measurement error in the fuzzy RD design in which the forcing variable may contain

measurement error. The conditional probability of the treatment may vanish because of the

continuous measurement error such that the small error variance approximation cannot be

executed in the fuzzy RD design, as we discuss in Remark 5. Thus, we would need other

approaches to examine the causal effect in the fuzzy RD design with a mismeasured forcing

variable.

A Appendix

This appendix presents proofs of the theorems and lemma in the text.

A.1 Proof of Theorem 1

Proof of (6): First,

Yi = E(Yi|X∗
i ) + Yi − E(Yi|X∗

i )

= E(DiY1i|X∗
i ) + E((1−Di)Y0i|X∗

i ) +Wi

= 1(X∗
i ≥ x0)E(Y1i|X∗

i ) + 1(X∗
i < x0)E(Y0i|X∗

i ) +Wi

where Wi := Yi − E(Yi|X∗
i ). We thus have

E(Yi|Xi = x0+) =

∫ ∞

x0

E(Y1i|X∗
i = x∗)fX∗|X(x∗|x0+)dx∗

+

∫ x0

−∞
E(Y0i|X∗

i = x∗)fX∗|X(x∗|x0+)dx∗ + E(Wi|Xi = x0+), (13)

E(Yi|Xi = x0−) =

∫ ∞

x0

E(Y1i|X∗
i = x∗)fX∗|X(x∗|x0−)dx∗

+

∫ x0

−∞
E(Y0i|X∗

i = x∗)fX∗|X(x∗|x0−)dx∗ + E(Wi|Xi = x0−), (14)

by Assumption 2 and the dominated convergence theorem.

Under Assumption 1, fX∗|X(x∗|x) is continuous at x = x0 for x
∗ ∈ R such that fX∗|X(x∗|x0+) =

fX∗|X(x∗|x0−). This is because

fX∗|X(x∗|x) = fX∗X(x∗, x)

fX(x)

=
fX∗(x∗)fU (

x−x∗

σ )∫∞
−∞ fX∗(x∗)fU (

x−x∗

σ )dx∗
,

by Assumption 1 and the convolution of the probability distributions. Hence, the continuity of

fX∗|X(x∗|·) follows from that of fU (·) and the dominated convergence theorem.
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To show (6), it thus suffices to show that for any x,

E(Wi|Xi = x) = 0. (15)

Because E(Wi|Xi = x) = E(Wi|Xi = x,Di = 1)Pr(Di = 1|Xi = x) + E(Wi|Xi = x,Di =

0)Pr(Di = 0|Xi = x) by the law of iterated expectations, we show E(Wi|Xi = x,Di = d) = 0

for d ∈ {0, 1}. To this end, we first compute fW |XD(w|x, 1):

fW |XD(w|x, 1) =
fXW |D(x,w|1)

fX|D(x|1)

=
σ−1

∫∞
−∞ fX∗W |D(x

∗, w|1)fU |D(
x−x∗

σ |1)dx∗

σ−1
∫∞
−∞ fX∗|D(x∗|1)fU |D(

x−x∗

σ |1)dx∗

=

∫∞
x0

fX∗W (x∗, w)fU (
x−x∗

σ )dx∗/(1− FX∗(x0))∫∞
x0

fX∗(x∗)fU (
x−x∗

σ )dx∗/(1− FX∗(x0))

=

∫∞
x0

fW |X∗(w|x∗)fX∗(x∗)fU (
x−x∗

σ )dx∗∫∞
x0

fX∗(x∗)fU (
x−x∗

σ )dx∗
,

where the second and third equalities follow from Assumption 1 and the convolution of the

probability distributions. Then, we have

E(Wi|Xi = x,Di = 1) =

∫
w
∫∞
x0

fW |X∗(w|x∗)fX∗(x∗)fU (
x−x∗

σ )dx∗dw∫∞
x0

fX∗(x∗)fU (
x−x∗

σ )dx∗

=

∫∞
x0

E(Wi|X∗
i = x∗)fX∗(x∗)fU (

x−x∗

σ )dx∗∫∞
x0

fX∗(x∗)fU (
x−x∗

σ )dx∗

= 0, (16)

where the second equality follows from Fubini’s theorem and the third equality follows from

E(Wi|X∗
i ) = 0. Similarly, we have

E(Wi|Xi = x,Di = 0) = 0. (17)

Therefore, we obtain (15). Consequently, we have (6) by (13), (14), and (15).

Proof of (7): The proof is almost identical to that in Yu (2012). First,

Yi = E(Yi|X∗
i ) + Yi − E(Yi|X∗

i )

= E(Y0i|X∗
i ) + 1(X∗

i ≥ x0){E(Y1i − Y0i|X∗
i )− τ∗}+ 1(X∗

i ≥ x0)τ
∗ +Wi

= m(X∗
i ) + 1(X∗

i ≥ x0)τ
∗ +Wi

= m(X∗
i ) +Diτ

∗ +Wi, (18)

where Wi := Yi − E(Yi|X∗
i ) and m(X∗

i ) := E(Y0i|X∗
i ) + 1(X∗

i ≥ x0)
(
E(Y1i − Y0i|X∗

i )− τ∗
)
.

To show (7), we compute

E(Yi|Xi = x0+, Di = 1)

= E(m(X∗
i )|Xi = x0+, Di = 1) + τ∗ + E(Wi|Xi = x0+, Di = 1),

(19)
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and

E(Yi|Xi = x0−, Di = 0) = E(m(X∗
i )|Xi = x0−, Di = 0) + E(Wi|Xi = x0−, Di = 0). (20)

By (16) and (17), we have E(Wi|Xi = x0+, Di = 1) = E(Wi|Xi = x0−, Di = 0) = 0. To

evaluate E(m(X∗
i )|Xi = x,Di = 1), we compute fX∗|XD(x

∗|x, 1):

fX∗|XD(x
∗|x, 1) =

fX∗X|D(x
∗, x|1)

fX|D(x|1)

=
1(x∗ ≥ x0)fX∗X(x∗, x)/(1− FX∗(x0))

fX|D(x|1)

=
1(x∗ ≥ x0)fX∗|X(x∗|x)fX(x)/(1− FX∗(x0))

fX|D(x|1)

=
1(x∗ ≥ x0)fX∗|X(x∗|x)fX(x)/(1− FX∗(x0))

σ−1
∫∞
x0

fX∗(x∗)fU (
x−x∗

σ )dx∗/(1− FX∗(x0))
,

where the first and third equalities follow from Bayes’ theorem and the fourth equality follows

from Assumption 1 and the convolution of the probability distributions. Then, we have

E(m(X∗
i )|Xi = x,Di = 1) =

∫
m(x∗)1(x∗ ≥ x0)fX∗|X(x∗|x)fX(x)dx∗

σ−1
∫∞
x0

fX∗(x∗)fU (
x−x∗

σ )dx∗

= σ

∫∞
x0

m(x∗)fX∗|X(x∗|x)fX(x)dx∗∫∞
x0

fX∗U (x∗,
x−x∗

σ )dx∗

=

∫∞
x0

m(x∗)fX∗|X(x∗|x)fX(x)dx∗∫∞
x0

fX∗X(x∗, x)dx∗

=

∫∞
x0

m(x∗)fX∗|X(x∗|x)dx∗∫∞
x0

fX∗|X(x∗|x)dx∗
, (21)

by the convolution of the probability distributions. Similarly, we obtain

E(m(X∗
i )|Xi = x,Di = 0) =

∫ x0

−∞m(x∗)fX∗|X(x∗|x)dx∗∫ x0

−∞ fX∗|X(x∗|x)dx∗
. (22)

Consequently, we obtain the desired result by (16), (17), (19), (20), (21), and (22).

2

A.2 Proof of Theorem 2

In this proof, for generic A and B, we write A = B + o(σ2) by A ≈ B for notational simplicity.

We first show that E(Yi|X∗
i = x0+, Di = 1) ≈ µ(x0+, 1, σ). Fix ε > 0. Under Assumptions 3

and 4, there exists some e > 0 such that

|E(Yi|X∗
i = x0+, Di = 1)− E(Yi|X∗

i = x0 + e,Di = 1)| < ε,

|µ(x0+, 1, σ)− µ(x0 + e, 1, σ)| < ε.
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By the triangle inequality, it thus holds that

|E(Yi|X∗
i = x0+, Di = 1)− µ(x0+, 1, σ)|

≤|E(Yi|X∗
i = x0+, Di = 1)− E(Yi|X∗

i = x0 + e,Di = 1)|

+ |E(Yi|X∗
i = x0 + e,Di = 1)− µ(x0 + e, 1, σ)|+ |µ(x0 + e, 1, σ)− µ(x0+, 1, σ)|

<|E(Yi|X∗
i = x0 + e,Di = 1)− µ(x0 + e, 1, σ)|+ 2ε.

Hence, we obtain the desired result if we show

E(Yi|X∗
i = x0 + e,Di = 1) ≈ µ(x0 + e, 1, σ), (23)

for any e > 0, because ε > 0 is arbitrary. The proof of (23) is similar to that in Chesher (1991).

We set x = x0 + e for notational simplicity.

To prove (23), we calculate an approximation for fY |XD(y|x, 1). To this end, we first compute

the approximation for fY X|D(y, x|1). For any y and u, we have

fY XU |D(y, x, u|1) = fY X∗U |D(y, x− σu, u|1)

= fY |X∗UD(y|x− σu, u, 1)fX∗U |D(x− σu, u|1)

= fY |X∗D(y|x− σu, 1)fX∗|D(x− σu|1)fU (u),

where the second equality follows from Bayes’ theorem, and the third equality follows from

Assumption 1. Applying Taylor’s theorem around σ = 0, it holds that for sufficiently small

σ > 0

fY XU |D(y, x, u|1)

≈ fY |X∗D(y|x, 1)fX∗|D(x|1)fU (u)

− σufU (u)
{
f
(1)
Y |X∗D(y|x, 1)fX∗|D(x|1) + fY |X∗D(y|x, 1)f

(1)
X∗|D(x|1)

}
+

1

2
σ2u2fU (u)

{
f
(2)
Y |X∗D(y|x, 1)fX∗|D(x|1) + 2f

(1)
Y |X∗D(y|x, 1)f

(1)
X∗|D(x|1) + fY |X∗D(y|x, 1)f

(2)
X∗|D(x|1)

}
,

under Assumptions 1 and 4. Integrating the both sides with respect to u, we have

fY X|D(y, x|1) ≈fY |X∗D(y|x, 1)fX∗|D(x|1)

+
σ2

2

{
f
(2)
Y |X∗D(y|x, 1)fX∗|D(x|1)

+2f
(1)
Y |X∗D(y|x, 1)f

(1)
X∗|D(x|1) + fY |X∗D(y|x, 1)f

(2)
X∗|D(x|1)

}
,

(24)

by Assumptions 1 and 4.

Similar to Equation (2·5) in Chesher (1991), we have the approximation of 1/fX|D(x|1) for
sufficiently small σ > 0:

1

fX|D(x|1)
≈ 1

fX∗|D(x|1)
− σ2

2

f
(2)
X∗|D(x|1)

(fX∗|D(x|1))2
, (25)

under Assumptions 1 and 4.
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Therefore, multiplying (24) by (25), we have

fY |XD(y|x, 1) ≈ fY |X∗D(y|x, 1) +
σ2

2

{
2f

(1)
Y |X∗D(y|x, 1)

(
log(1) fX∗|D(x|1)

)
+ f

(2)
Y |X∗D(y|x, 1)

}
.

Furthermore, under Assumption 4, this approximation leads to

f
(s)
Y |XD(y|x, 1) = f

(s)
Y |X∗D(y|x, 1) +O(σ2),

for s = 1, 2. We thus have

fY |XD(y|x, 1) ≈ fY |X∗D(y|x, 1) +
σ2

2

{
2f

(1)
Y |XD(y|x, 1)

(
log(1) fX∗|D(x|1)

)
+ f

(2)
Y |XD(y|x, 1)

}
.

This leads to

E(Yi|Xi = x,Di = 1) ≈ E(Yi|X∗
i = x,Di = 1) + σ2

(
log(1) fX∗|D(x|1)

)
E(1)(Yi|Xi = x,Di = 1)

+
σ2

2
E(2)(Yi|Xi = x,Di = 1),

under Assumptions 1 and 3–5. Thus, we have

E(Yi|X∗
i = x,Di = 1) ≈E(Yi|Xi = x,Di = 1)− σ2

(
log(1) fX∗|D(x|1)

)
E(1)(Yi|Xi = x,Di = 1)

− σ2

2
E(2)(Yi|Xi = x,Di = 1),

It holds that

fX∗|D(x|1) = fX|D(x|1) +O(σ2),

f
(1)
X∗|D(x|1) = f

(1)
X|D(x|1) +O(σ2),

under Assumptions 1, 4, and 5 similar to Equation (2·4) in Chesher (1991). Therefore, it holds

that

E(Yi|X∗
i = x,Di = 1) ≈ µ(x, 1, σ).

Accordingly, we obtain (23) and show E(Yi|X∗
i = x0+, Di = 1) ≈ µ(x0+, 1, σ).

Similarly, we can show that

E(Yi|X∗
i = x0−, Di = 0) ≈ µ(x0−, 0, σ).

Consequently, we obtain the desired result.

2

A.3 Proof of Theorem 3

By Lemma 1, the consistency of ĝ(x0, d) for g(x0, d), and Slutsky’s theorem, it holds that

√
nhh2 (µ̂ (x0+, 1, σ)− µ (x0+, 1, σ)) ; N

(
−σ2e′3B

+, σ4e′3Ω
+e3
)
, (26)

√
nhh2 (µ̂ (x0−, 0, σ)− µ (x0−, 0, σ)) ; N

(
−σ2e′3B

−, σ4e′3Ω
−e3
)
. (27)

Because the left-hand sides of (26) and (27) are independent, we obtain the desired result using

the continuous mapping theorem.

2
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A.4 Proof of Lemma 1

In this proof, we denote a generic constant as C. We only provide the proof of (11), because

that of (12) is analogous. The proof is an extension of those of Hahn, Todd, and van der Klaauw

(1999) and Porter (2003). The minimization problem (10) is rewritten as

min
(a,b′)′∈Rp+1

n∑
i=1

IiDi(Y
∗
i − (a− α+)− (b1 − β+

1 )(Xi − x0)− · · · − (bp − β+
p )(Xi − x0)

p)2K

(
Xi − x0

h

)
,

where

Y ∗+
i := Yi − α+ − β+

1 (Xi − x0)− · · · − β+
p (Xi − x0)

p,

α+ := E(Yi|Xi = x0+, Di = 1), β+
k :=

1

k!
E(k)(Yi|Xi = x0+, Di = 1) for k = 1, . . . , p+ 1.

Define

Z̃i := (1, Xi − x0, . . . , (Xi − x0)
p)′, Z̃ := (Z̃1, . . . , Z̃n)

′,

r := (a, b1, . . . , bp)
′, γ+ := (α+, β+

1 , . . . , β
+
p )

′, γ̂+ := (α̂+, β̂+
1 , . . . , β̂

+
p )

′

Y ∗+ := (Y ∗+
1 , . . . , Y ∗+

n )′, A+
h := diag

(
K

(
X1 − x0

h

)
I1D1, . . . ,K

(
Xn − x0

h

)
InDn

)
.

Then, the minimization problem is

argmin
r∈Rp+1

n∑
i=1

IiDi

(
Y ∗+
i − (r − γ+)′Z̃i

)2
K

(
Xi − x0

h

)
= argmin

r∈Rp+1

(
Y ∗+ − Z̃(r − γ+)

)′
A+

h

(
Y ∗+ − Z̃(r − γ+)

)
.

By the first-order condition, we have

γ̂+ − γ+ = (Z̃ ′A+
h Z̃)−1Z̃ ′A+

h Y
∗+

= H(HZ̃ ′A+
h Z̃H)−1HZ̃ ′A+

h Y
∗+

= H(Z ′A+
hZ)−1Z ′A+

h Y
∗+,

where H := diag(1, h−1, . . . , h−p), Z := (Z1, . . . , Zn)
′, and Zi := (1, (Xi − x0)/h, . . . , (Xi −

x0)
p/hp)′. It holds that

H−1(γ̂+ − γ+) = (Z ′A+
hZ)−1Z ′A+

h Y
∗+

=

(
1

nh

n∑
i=1

ZiZ
′
iK

(
Xi − x0

h

)
IiDi

)−1
1

nh

n∑
i=1

ZiY
∗+
i K

(
Xi − x0

h

)
IiDi.
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Therefore, we have the following decomposition:

√
nhH−1(γ̂+ − γ+)

=

(
1

nh

n∑
i=1

ZiZ
′
iKh(Xi)IiDi

)−1

(28)(
1√
nh

n∑
i=1

(
ZiY

∗+
i Kh(Xi)IiDi − E

(
ZiY

∗+
i Kh(Xi)IiDi

∣∣∣Xi, Di

))
(29)

+
1√
nh

n∑
i=1

(
E
(
ZiY

∗+
i Kh(Xi)IiDi

∣∣∣Xi, Di

)
− E

(
ZiY

∗+
i Kh(Xi)IiDi

))
(30)

+
1√
nh

n∑
i=1

E
(
ZiY

∗+
i Kh(Xi)IiDi

)
− B̃+

n (31)

+ B̃+
n

)
, (32)

where B̃+
n :=

√
nhhp+1βp+1fX(x0)E(Di|Xi = x0+)(γp+1, . . . , γ2p+1)

′. In the following, we study

each term separately. Term (28) is shown to converge in probability to some constant. Term

(29) is shown to converge in distribution to the normal distribution. Terms (30) and (31) are

shown to be asymptotically negligible. The multiplication of (28) with (32) converges to B+ as
√
nhhp+1 → C̃ ∈ [0,∞) by the following proof.

Term (28): We show that(
1

nh

n∑
i=1

ZiZ
′
iKh(Xi)IiDi

)−1
p−→ 1

E(Di|Xi = x0+)fX(x0)
(Γ+)−1, (33)

where Γ+ := (γk+l−2)(k,l) for k, l = 1, . . . , p + 1 and γq :=
∫M
0 uqK(u)du for q = 0, . . . , 2p. For

q = 0, . . . , 2p,

E

(
1

nh

n∑
i=1

(
Xi − x0

h

)q

Kh(Xi)IiDi

)

= h−1E

((
Xi − x0

h

)q

Kh(Xi)IiDi

)
= h−1E

((
Xi − x0

h

)q

Kh(Xi)IiE(Di|Xi)

)
= h−1

∫ x0+Mh

x0

(
x− x0

h

)q

K

(
x− x0

h

)
E(Di|Xi = x)fX(x)dx

=

∫ M

0
uqK(u)E(Di|Xi = x0 + uh)fX(x0 + uh)du

= E(Di|Xi = x0+)fX(x0)

∫ M

0
uqK(u)du+ o(1)

= E(Di|Xi = x0+)fX(x0)γq + o(1),

where the first equality follows from the i.i.d. assumption, the second equality follows from the

law of iterated expectations, the third equality follows from the definition of Ii and Assumption
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6, and the fifth equality follows from Assumptions 7 and 8 and the dominated convergence

theorem. We also have

var

(
1

nh

n∑
i=1

(
Xi − x0

h

)q

Kh(Xi)IiDi

)
=

1

nh2
var

((
Xi − x0

h

)q

Kh(Xi)IiDi

)

≤ 1

nh2
E

((
Xi − x0

h

)2q

K2
h(Xi)IiDi

)

≤ 1

nh2
E

((
Xi − x0

h

)2q

K2
h(Xi)Ii

)

=
1

nh

∫ M

0
u2qK2(u)fX(x0 + uh)du

=
1

nh
fX(x0)

∫ M

0
u2qK2(u)du+ o

(
1

nh

)
= o(1),

where the first equality follows from the i.i.d. assumption, the second inequality follows from

Di ≤ 1, the second equality follows from Assumption 6, and the third equality follows from

Assumptions 6 and 7 and from the dominated convergence theorem. Therefore, we have shown

(33) using Markov’s inequality and the continuous mapping theorem.

Term (29): We show that

1√
nh

n∑
i=1

(
ZiY

∗+
i Kh(Xi)IiDi −E

(
ZiY

∗+
i Kh(Xi)IiDi

∣∣∣∣∣Xi, Di

))
; N

(
0, E(V 2

i |Xi = x0+, Di = 1)E(Di|Xi = x0+)fX(x0)∆
+
)
,

(34)

where ∆+ := (δk+l−2)(k,l) with k, l = 1, . . . , p+ 1 and δl :=
∫M
0 ulK2(u)du for l = 0, . . . , 2p. To

this end, we use the Cramer–Wald device. We observe that

1√
nh

n∑
i=1

(
ZiY

∗+
i Kh(Xi)IiDi −E

(
ZiY

∗+
i Kh(Xi)IiDi

∣∣∣∣∣Xi, Di

))

=
1√
nh

n∑
i=1

ZiIiKh(Xi)Di(Y
∗+
i − E(Y ∗+

i |Xi, Di))

=
1√
nh

n∑
i=1

ZiIiKh(Xi)Di(Yi − E(Yi|Xi, Di))

=
1√
nh

n∑
i=1

ZiIiKh(Xi)DiVi,

where Vi := Yi − E(Yi|Di, Xi). Let λ be a nonzero finite vector and

Un,i :=
1√
nh

λ′ZiIiK

(
Xi − x0

h

)
DiVi.
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By the law of iterated expectations, E(Un,i) = 0. For the variance, it holds that for l = 0, . . . , 2p,

E

(
1

nh

(
Xi − x0

h

)l

IiK
2
h(Xi)DiV

2
i

)

=
1

nh
E

((
Xi − x0

h

)l

IiK
2
h(Xi)E(DiV

2
i |Xi)

)

=
1

nh
E

((
Xi − x0

h

)l

IiK
2
h(Xi)E(V 2

i |Xi, Di = 1)E(Di|Xi)

)

=
1

nh

∫ x0+Mh

x0

(
x− x0

h

)l

K2

(
x− x0

h

)
E(V 2

i |Xi = x,Di = 1)E(Di|Xi = x)fX(x)dx

=
1

n

∫ M

0
ulK2(u)E(V 2

i |Xi = x0 + hu,Di = 1)E(Di|Xi = x0 + hu)fX(x0 + hu)du

=
1

n
E(V 2

i |Xi = x0+, Di = 1)E(Di|Xi = x0+)fX(x0)

∫ M

0
ulK2(u)du+ o(n),

=
1

n
E(V 2

i |Xi = x0+, Di = 1)E(Di|Xi = x0+)fX(x0)δl + o(n),

where the first equality follows from the law of iterated expectations and the fifth equality

follows from Assumptions 6–9 and the dominated convergence theorem. Thus, we have

n∑
i=1

var(Un,i) → E(V 2
i |Xi = x0+, Di = 1)E(Di|Xi = x0+)fX(x0)λ

′∆+λ.

We next check Lyapunov’s condition. Considering some ζ > 0, it holds that

n∑
i=1

E|Un,i|2+ζ

=

n∑
i=1

(
1

nh

) ζ
2 1

nh
E

(
|λ′Zi|2+ζ

∣∣∣∣K (Xi − x0
h

)∣∣∣∣2+ζ

IiDi|Vi|2+ζ

)

≤
(

1

nh

) ζ
2 1

h
E

(
|λ′Zi|2+ζ

∣∣∣∣K (Xi − x0
h

)∣∣∣∣2+ζ

Ii|Vi|2+ζ

)

≤ C

(
1

nh

) ζ
2 1

h
E

 p∑
l=0

∣∣∣∣∣λl

(
Xi − x0

h

)l
∣∣∣∣∣
2+ζ ∣∣∣∣K (Xi − x0

h

)∣∣∣∣2+ζ

IiE(|Vi|2+ζ |Xi)


≤ C

(
1

nh

) ζ
2

(
sup

x∈[0,x0+Mh]
E(|Vi|2+ζ |Xi = x)

)∫ M

0
|K(u)|2+ζfX(x0 + uh)

p∑
l=0

|λlu
l|2+ζdu

= O

((
1

nh

) ζ
2

)
= o(1),

where the first inequality follows from Di ≤ 1, the second inequality follows from the law of

iterated expectations and Loéve’s Cr inequality, and the second equality follows from Assump-

tions 6, 7, and 9. Therefore, by Lyapunov CLT and the Cramer–Wald device, we have shown

(34).
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Term (30): We show that

1√
nh

(
n∑

i=1

E
(
ZiY

∗+
i Kh(Xi)IiDi

∣∣∣Xi, Di

)
− E

(
ZiY

∗+
i Kh(Xi)IiDi

))
= Op(h

p+1) = op(1).

(35)

To this end, we first define

µ+
j (x) := E(Yi|Xi = x,Di = 1)−

(
α+ + β+

1 (x− x0) + · · ·+ β+
j (x− x0)

j
)
,

for j ∈ N, and we use

1

hp+1
sup

x∈(x0,x0+Mh]

∣∣∣µ+
p+1(x)

∣∣∣ = o(1), (36)

by Assumption 10 and Taylor’s theorem. It is clear that the expectation of the left-hand side

of (35) is zero by the law of iterated expectations. The variance is

var

(
1√
nh

n∑
i=1

E
(
ZiY

∗+
i Kh(Xi)IiDi

∣∣∣Xi, Di

))
=

1

h
var

(
E
(
ZiY

∗+
i Kh(Xi)IiDi

∣∣∣Xi, Di

))
≤ 1

h
E
(
E
((

ZiY
∗+
i Kh(Xi)IiDi

)2 ∣∣∣Xi, Di

))
≤ 1

h
E
(
Z2
i (Y

∗+
i )2K2

h(Xi)Ii
)
,

where the first equality follows from the i.i.d. assumption and the second inequality follows

from the law of iterated expectations. For the elements, for l = 0, . . . , p, we have

1

h
E

((
Xi − x0

h

)2l

(Y ∗+
i )2K2

h(Xi)Ii

)

=
1

h
E

((
Xi − x0

h

)2l

(µ+
p+1(Xi) + βp+1(Xi − x0)

p+1)2K2
h(Xi)Ii

)

≤C
1

h
E

((
Xi − x0

h

)2l ((
µ+
p+1(Xi)

)2
+ β2

p+1(Xi − x0)
2(p+1)

)
K2

h(Xi)Ii

)

≤C

(
sup

x∈(x0,x0+Mh]

(
µ+
p+1(x)

)2) 1

h
E

((
Xi − x0

h

)2l

K2
h(Xi)Ii

)

+ Cβ2
p+1

1

h
E

((
Xi − x0

h

)2l

(Xi − x0)
2(p+1)K2

h(Xi)Ii

)

=Ch2(p+1)

(
1

hp+1
sup

x∈(x0,x0+Mh]

∣∣∣µ+
p+1(x)

∣∣∣)2
1

h
E

((
Xi − x0

h

)2l

K2
h(Xi)Ii

)

+ Ch2(p+1)β2
p+1

1

h
E

((
Xi − x0

h

)2(l+p+1)

K2
h(Xi)Ii

)
=o
(
h2(p+1)

)
+O

(
h2(p+1)

)
,

where the first inequality follows from Loéve’s Cr inequality and where the last equality follows

from Assumptions 6 and 7 and (36). Therefore, (35) holds by Chebyshev’s inequality.

32



Term (31): We show that

1√
nh

n∑
i=1

E
(
ZiY

∗+
i Kh(Xi)IiDi

)
−

√
nhhp+1β+

p+1fX(x0)E(Di|Xi = x0+)(γp+1, . . . , γ2p+1)
′ = o(1).

(37)

We first observe that

1√
nh

n∑
i=1

E
(
ZiY

∗+
i Kh(Xi)IiDi

)
=

√
n√
h
E
(
ZiKh(Xi)IiE

(
Y ∗+
i Di|Xi, Di

))
=

√
n√
h
E
(
ZiKh(Xi)IiE

(
Y ∗+
i |Xi, Di = 1

)
E(Di|Xi)

)
=

√
n√
h
E
(
ZiKh(Xi)Ii

(
µ+
p+1(Xi) + βp+1(Xi − x0)

p+1
)
E(Di|Xi)

)
,

where the first and second equalities follow from the law of iterated expectations. Then, for

l = 0, . . . , p, we have∣∣∣∣∣ 1√
nh

n∑
i=1

E

((
Xi − x0

h

)l

Y ∗+
i Kh(Xi)IiDi

)
−

√
nhhp+1β+

p+1fX(x0)E(Di|Xi = x0+)γl+p+1

∣∣∣∣∣
=

∣∣∣∣∣
√
n√
h
E

((
Xi − x0

h

)l

Kh(Xi)Ii

(
µ+
p+1(Xi) + β+

p+1(Xi − x0)
p+1
)
E(Di|Xi)

)

−
√
nhhp+1β+

p+1fX(x0)E(Di|Xi = x0+)γl+p+1

∣∣∣∣∣
≤

∣∣∣∣∣
√
n√
h
hp+1β+

p+1E

((
Xi − x0

h

)l+p+1

Kh(Xi)IiE(Di|Xi)

)

−
√
nhhp+1β+

p+1fX(x0)E(Di|Xi = x0+)γl+p+1

∣∣∣∣∣
+

∣∣∣∣∣
√
n√
h
E

((
Xi − x0

h

)l

Kh(Xi)Iiµ
+
p+1(Xi)E(Di|Xi)

)∣∣∣∣∣
≤

∣∣∣∣∣√nhhp+1β+
p+1

(∫ M

0
ul+p+1K(u)E(Di|Xi = x0 + uh)fX(x0 + uh)du

− fX(x0)E(Di|Xi = x0+)γl+p+1

)∣∣∣∣∣
+

∣∣∣∣∣√nhhp+1

(
1

hp+1
sup

x∈(x0,x0+Mh]

∣∣∣µ+
p+1(x)

∣∣∣)∫ M

0
ulK(u)E(Di|Xi = x0 + uh)fX(x0 + uh)du

∣∣∣∣∣
=o(

√
nhhp+1) = o(1),

where the first inequality follows from the triangle inequality and the last equality follows from

Assumptions 6–8 and the dominated convergence theorem. Thus, we obtain (37).

Consequently, we have the desired result by Slutsky’s theorem.
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