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1. Introduction 

 

List apparentement is the form of coalition formation before elections day. Votes obtained 

by parties of apparentement are united and counted as a single list. List apparentements are 

widely used in the d’Hondt apportionment systems in particular in German States (Bochsler, 

2010, Leutgäb and Pukelsheim, 2009). 

The d’Hondt method (also known as the Jefferson method, the Hagenbach-Bischoff 

system, divisor method with rounding down, and the greatest divisors method) is a seats-

allocation method for proportional representation electoral systems. Today, it is the predominant 

method for parliamentary elections in proportional representation systems around the world and 

is used often for mixed systems for a proportional component (Bormann, Golder, 2013), for local 

elections (Parigi, Bearman, 2008), and for labor elections (Rosenthal, 1974). 

The d’Hondt method arises in different voting systems. Cox (1991) showed that if the 

district magnitude and distribution of voter support among parties are held constant and some 

empirically attainable conditions are met, then the single non-transferable vote system (plurality 

rule) and the d’Hondt method are equivalent. Cumulative voting in corporate board elections 

leads to the d’Hondt apportionment (Glazer et al, 1984; Cooper 2007). Karpov (2011) showed 

that seat distribution obtained by the d’Hondt method is the unique seat distribution obtained as a 

Nash equilibrium in a board election game. Pérez and De la Cruz (2014) achieved full Nash 

implementation of the Jefferson-d’Hondt rule in a committee formation game. 

Empirical studies show that the d’Hondt method is one of the least proportional among the 

proportional representation methods (Benoit, 2000; Lijphart, 1990). Theoretical seat bias 

formulas were discovered by Schuster et al. (2003) and Janson (2014). Probabilities of majority 

and minority violation were obtained by Schwingenschlögl (2007). 

The axiomatic properties of the d’Hondt method were studied by Balinski and Young 

(1978, 1979). They proved that the d’Hondt method is the unique consistent, monotone, stable, 

and balanced method that encourages coalitions. A method is consistent if it treats tied parties 

equally. By monotonicity, the number of seats provided to any state or party will not decrease if 
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the house size increases. A method is stable if the merged party has no more than one additional 

seat and no less than one lost seat. Because the d'Hondt method is stable and encourages 

coalitions, coalesced parties cannot lose the seat. 

Due to the unique properties of the d'Hondt method, coalition formation (vote pooling, 

apparentement) incentives set up a distinct field of research. The 1951 and 1956 elections for the 

French National Assembly utilized the d’Hondt method and permitted the formation of distinct 

formalized coalitions in each of the 95 multimember districts. Examples and game-theoretical 

analysis focusing on these elections were provided in Rosenthal (1975); Lee and Rosenthal 

(1976); and Lee, McKelvey, and Rosenthal (1979). They utilized the von Neumann-Morgenstern 

solution to predict apparentement structure and found some statistical support from the data of 

the 1951 elections. Strategic coalescing in a corporate board election game with equilibrium 

resulting in the d’Hondt distribution of seats was demonstrated in (Glazer et al, 1984). 

Bochsler (2010) estimated apparentements gains assuming that the remaining fractions that 

are rounded off in every seat allocation are randomly distributed between 0 and 1. He argued that 

the sole apparentement wins approximately half a seat, and this gain is allocated within the 

apparentement proportionally to the parties’ vote shares. Janson (2014) shows that two small 

parties that form an apparentement gain at most half a seat. 

The result changes for two or more list apparentements. Some apparentements can lose 

seats. Due to the difficulty of computing precise results, Pukelsheim and Leutgäb (2009) called 

this the lottery effect. They also found that even the total bias of the whole system could 

increase. 

This paper provides example of huge seat deviations in the case of sole apparentement. The 

distinction between multiple and sole apparentements is blurred out, proving the equivalence of 

apparentement-proof conditions for these cases. The apparentement-proof set has a precise 

geometric configuration presented in the paper. 

The organization of the paper is as follows. The next section, which begins with an 

example, provides the model and main results. Section 3 presents the inverse problem. Section 4 

utilizes the game-theoretical approach. Section 5 concludes briefly. An Appendix includes all 

proofs. 
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2. Apparentement model 

 

The mathematical model of the proportional representation elections conducted by the 

d’Hondt method is described by a set of parties  nN ,...,1 , the number of votes  nvvv ,...,1 , 





Ni

ivV , and the number of seats assigned by d’Hondt method  nssSs ,...,)( 1 , where 





n

i

isS
1

 is the elected body size. 

The d’Hondt method solution is obtained recursively (Balinski, Young, 1978): 

(i) If 0S  then  0,...,0s ; 

(ii) If  nssTs ,...,)( 1  is the apportionment for ST   and k is some party for which 

1
max

1 


 
i

i

Ni
k

k

s

v

s

v
, then party k achieves subsequent seat 

 nkkk sssssTs ,...,,1,,..,)1( 111   . Step (ii) iterates until Ss
Ni

i 


. 

For any party pair and any S, the following condition holds 

.
1


i

i

j

j

s

v

s

v
                                                        (1) 

Any additional seat decreases the number of votes per seat. If party j receives the last seat 

according to recursive procedure, then the two inequalities hold for any party pair 

1


i

i

j

j

i

i

s

v

s

v

s

v
.                                                        (2) 

All parties but party j have the greater or equal number of votes per seat. It is a reason to 

coalesce. Apparentement NC   is considered as one party with 
Ci

iv  votes. The vote per seat 

ratio of an apparentement can be bigger than party j’s ratio. By the d’Hondt method, an 

apparentement receives the same number of seats or achieves additional seats. An apparentement 

is successful if it wins at least one additional seat. We do not define a particular tie-breaking rule 

and we do not consider ties. An apparentement is deemed successful if it has a greater votes per 

seats ratio in the presence of an additional seat than party j. 
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
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





1
                                                        (3) 

Figure 1 represents the d’Hondt method apportionment with 3n  and 3S . Each point 

of the simplex corresponds to the vote distribution between parties. Point A shows the 

opportunity of successful apparentement (coalescing). At this point, parties 2 and 3 receive zero 

seats. Their apparentement has all votes but the votes of party 1. Geometrically, there is point B 

or C (each triangle side represents a two-party case). The apparentement receives one additional 

seat, and party 1 loses one seat. 

  

Figure 1 

Successful apparentement can gain more than one seat. Consider an example with six 

parties and vote distribution )99,99,99,99,99,179(v . In the case of 29S , we find the 

seat distribution )4,4,4,4,4,9(s . If the last five parties create an apparentement, then the 

new vote distribution is )495,179(ˆ v , and the new seat distribution is )22,7(ˆ s . The biggest 

party loses two seats. 

In the general case, there is no limit to apparentement seat gains, the magnitude of loss, and 

the number of parties that lose seats can be arbitrarily large. 

Proposition 1: The number of additional seats of a successful apparentement is not limited 

from above. 

Proposition 2: The number of parties that lose seats is not bounded from above. 

The proof for propositions 1 and 2 and subsequent propositions are given in the appendix. 

The proofs for propositions 1 and 2 are based on a heuristic example. Approximately every two 
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parties in apparentement can gain one seat. Because the number of parties in apparentement is 

not limited, the number of additional seats of a successful apparentement is not limited from 

above. 

There are arbitrary consequences of a sole apparentement. This result reflects a lottery 

effect investigated by Leutgäb and Pukelsheim (2009). There are 22  nn
 possible 

apparentements with two or more parties. It is hard to check the success of each apparentement. 

By propositions 3 and 4, the success of these apparentements is interconnected. It is necessary 

and sufficient to examine only one apparentement to explore the presence of successful 

apparentements. 

Proposition 3. If there is a successful apparentement NC  , then apparentement 

 jNC \  is also successful, where party j is a party that receives the last seat in an 

apportionment without apparentement. 

Apparentement  jN \  is not successful if and only if 

j

j

ji

i

ji

i

s

v

s

v










1
.                                                 (4) 

Having Vv
Ni

i 


 and Ss
Ni

i 


, we obtain 

  j

j

s

v

S

V


1
.                                                 (5) 

There are no successful apparentements if and only if apparentement  jN \  is not 

successful. Inequality (5) is called the apparentement-proof condition. The left side of this 

inequality is the Droop quota. The link between the d’Hondt method and the Droop quota 

method is not unique. De Córdoba and Penadés (2009) proved that the higher threshold functions 

(the maximum share of the votes that cannot be apportioned more than s  seats) for the d’Hondt 

and Droop methods are identical. Equivalently, the apparentement-proof condition is represented 

in the biased form 

  V

v

S

s

SS

jj


1

1
.                                                 (6) 
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The right side is the deviation from the exact proportional case. The apparentement-proof 

condition constrains disproportionality of apportionment. Because party j receives the last seat, it 

is possible, that party j does not have the highest bias among all parties. Other parties can be 

more malapportioned. 

Proposition 3 shows the possibility of successful apparentement enlargement. To find 

minimal successful apparentement, proposition 4 provides the condition of successful 

apparentement reduction. 

Proposition 4. If 4 apparentement  jNC \  is successful then apparentement 

  











i

i

s

v

S

V
CiiCC

1
,|\  is also successful. 

The apparentement-proof condition can be extended to the multiple apparentement case. 

Proposition 5 connects the sole apparentement case with the multiple apparentements case.  

Proposition 5. If the apparentement-proof condition holds, then multiple apparentements 

are not successful. 

Apparentement-proof set is a subset of a vote simplex in which the apparentement-proof 

condition holds. The construction of the apparentement-proof set is shown in figures 2-4. The 

apparentement-proof condition relies on information about the party that receives the last seat. 

The grey zone in figure 2 indicates that party 1 receives the last seat. The satisfaction of the 

apparentement-proof condition for party 1 leads to figure 3. 

 

Figure 2                                     Figure 3 
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Figure 4 

Figure 4 is the union of the grey zones from figure 3 for all parties (the apparentement-

proof set). All borders of this set are obtained only with the apparentement-proof condition. The 

borders separating different seat distributions do not constrain this set. Obviously, exact 

proportional points with 
S

s

V

v ii   marked in figure 4 satisfy the apparentement-proof condition. 

Every exact proportional point corresponds to a grey triangle. Every point in such a triangle 

satisfies the apparentement-proof condition. All white triangles consist of three parts with 

different seat distributions. In each of these triangles, one seat is disputed (it can be assigned to 

one of three parties). For example, in the triangle with point A at the top, one seat is assigned to 

party 2, one seat is assigned to party 3, and one seat is disputed. Parties that do not receive this 

seat form an apparentement and gain an additional seat. In the area including point A, parties 2 

and 3 coalesce. Point B from figure 4 is the result of cooperation. The apparentement is 

successful. It achieves three seats. 

The apparentement-proof set consists of multiple fragments. Every exact proportional 

distribution corresponds to some part of the apparentement-proof set. Proposition 6 provides a 

general representation of this set. 

Proposition 6. The closure of the apparentement-proof set for each seat distribution forms 

a shape in the vote space that is similar to the vote simplex with a scale factor equals to 

  1
1


S . 

Proposition 6 describes the apparentement-proof set for a seat distribution. Having the 

number of all possible seat distributions, proposition 7 provides a precise share of the 

apparentement-proof set in the vote simplex. 
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Proposition 7. The share of the volume of the shape constructed by the unification of all 

apparentement-proof sets in the vote simplex is equal to 

1)1(!)!1(

)!1(
),(






nSSn

Sn
Sn .                                                   (7) 

Corollary. 
)!1(

1
),(lim




 n
Sn

s
 , 0),(lim 


Sn

n
 . 

Assuming a uniform distribution of votes on the vote simplex, proposition 7 provides the 

probability of satisfaction of the apparentement-proof condition. The satisfaction of the 

apparentement-proof condition is a rare event. Share ),( Sn  decreases with respect to n  and S , 

and it rapidly converges to very small numbers. Table 1 contains example values. 

Table 1. The values of ),( Sn   

 Number of parties 

Number of seats 3 4 5 6 7 8 

3 0.625 0.313 0.137 0.055 0.021 0.007 

4 0.6 0.28 0.112 0.04 0.013 0.004 

5 0.583 0.259 0.097 0.032 0.01 0.003 

10 0.545 0.215 0.068 0.019 0.005 0.001 

20 0.524 0.191 0.055 0.013 0.003 0 

100 0.505 0.172 0.044 0.009 0.002 0 

 

The data from the 2008 Bavarian local elections
3
 complies with the theoretical proportions 

from proposition 7. Elections are held in 2127 districts (communities). Each of them has its own 

number of seats to allocate and a set of competing parties. The number of parties and number of 

seats vary significantly. Table 2 provides information about the frequency of satisfaction of the 

apparentement-proof condition. Frequencies are close to the theoretical limits from corollary 1. 

Table 2. The apparentement-proof condition 

Number of parties(n) 3 4 5 6 7 8 >=9 

Apparentement-proof condition holds 0.513 0.179 0.038 0.007 0.012 0.000 0.000 

)!1/(1 n  0.500 0.167 0.042 0.008 0.001 0.000 0.000 

Number of seats range 8-24 8-60 8-70 12-70 12-70 12-70 16-80 

 

                                                 
3
 Data is obtained from www.uni-augsburg.de/bazi 

http://www.uni-augsburg.de/bazi
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3. Inverse problem 

 

Proposition 6 provides a description of the apparentement-proof set. Having a vote 

distribution, one can find a set of body sizes (different S) whereby the apparentement-proof 

condition holds. Figure 5 indicates that the minimal number of seats (written inside the figure) 

leads to satisfaction of the apparentement-proof condition for the three-party case. The size of 

the electoral body in the case of a small number of seats is frequently odd. Figure 6 presents that 

the minimal odd number of seats leads to satisfaction of the apparentement-proof condition. 

Figure 7 is a similar figure for even numbers. 

 

Figure 5 

 

Figure 6                                                  Figure 7 
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For the odd number of seats, 1S  is even and, geometrically, these cases are similar. In 

the area of almost equal division of votes between two parties, there are vote distributions for 

which it is impossible to find an odd number of seats that leads to satisfaction of the 

apparentement-proof condition. The violation of the apparentement-proof condition is correlated 

for different S , and for odd numbers, it leads to an impossibility result. 

Proposition 8. For any integer 1K  there exists a vote distribution that violates the 

apparentement-proof condition for all odd KS  . 

 

 

4. Game-theoretical approach 

 

The apparentement problem is a cooperative problem. Let us define an apparentement 

game )(CvA . An apparentement C  corresponds to the number of seats obtained by 

apparentement C  under the d’Hondt method in the new apportionment problem. 

Consider an apparentement gain game 





Ci

iAAG sCvCv )()( ,                                                       (8) 

in which is  is the d’Hondt distribution without apparentement. The seat gain )(CvAG  is always 

nonnegative, and, by proposition 1, it can be unrestrictedly high. If the apparentement is not 

successful then 0)( CvAG . 

Let us define a full apparentement game )(CvFA . All parties are divided on an 

apparentement C  and a counterapparentement C\ . Apparentement C  corresponds to the 

number of seats obtained by apparentement C  under the d’Hondt method in the new 

apportionment problem. 

Consider a full apparentement gain game 





Ci

iFAFAG sCvCv )()( ,                                                       (9) 

in which is  is the d’Hondt seat distribution without apparentements. The seat gain )(CvFAG  can 

be unrestrictedly high, but it can also be unrestrictedly low. It is a zero-sum game 

0)\()(  CvCv FAGFAG .                                                   (10) 
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In the case of equiprobable apparentements, the Shapley value of games AGv  and FAGv  is 

the expected gain in seats. Marginal contribution of party i  to apparentement C  

 )()( CviCv AGAG   is limited from above to 1 but is not limited from below. This follows 

from Proposition 1. 

If the apparentement-proof condition holds, then the marginal contribution is equal to zero 

for all parties and apparentements. If the apparentement-proof condition does not hold, then the 

Shapley value is positive for parties that form successful apparentements. For example, 

apparentement  3,2  from point A in figure 4 is successful. The Shapley values for this example 

are equal to  

)6/1,6/1,3/1()( AGv .                                                       (11) 

)3/1,3/1,3/2()( FAGv .                                                       (12) 

The sum of expected seat gains is always equal to zero. The first party loses on average 

while other parties gain. If parties 2 and 3 coalesce, then they win a seat. Party 1 also has an 

incentive to coalesce. With a two party apparentement, it does not lose a seat. 

In the general case, losses are not bounded. Proposition 8 reinforces propositions 1 and 2. 

Even an expected loss of seats can be unrestrictedly large.  

Proposition 9. The Shapley values )( AGi v  and )( FAGi v  are not bounded from below. 

 

 

Conclusion 

 

This paper shows arbitrary consequences of sole apparentement. One heuristic example 

lays the foundation of the proofs of the unboundedness of one party seat losses, of the number of 

losing parties and even of the average seat losses. The necessary and sufficient condition of the 

lack of sole and multiple successful apparentements discovered in the paper creates a possibility 

to eliminate the lottery effect of multiple apparentements. The configuration of the 

apparentement-proof set is simple. The share of the no-apparentement set in the whole vote 

simplex is very small, even for single-digit-numbers of seats and of parties. Creation of an 

electoral system that satisfies the apparentement proof condition seems to be problematic. 
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Appendix: 

 

Proof of proposition 1. 

Consider an example with 12  xn  parties ( 3x ). xn 21  parties are equal, and each 

has 1 xvi  votes. One party has xxv j 42 2   votes. The total number of votes is equal to 

xxV 24 2  . The total number of seats is equal to 144 2  xxS . Each party obtains one less 

seat than the number of votes. The vote per seat ratios for both types of parties are higher than 

one. Additional seats reduce the vote per seat ratio to one. Therefore it is not assigned. The 

d’Hondt method seat distribution is xsi   and 142 2  xxs j . 

Consider an apparentement of 1n  equal parties. The sufficient condition that the 

apparentement wins at least 2x  additional seats is 

,
2)1(

)1(

1)2( 




 xsn

vn

xs

v

i

i

j

j
                                                 (13) 

22

22

252

42
2

2

2

2










xx

xx

xx

xx
.                                                       (13a) 

It holds if 3x . Taking an unrestrictedly large x , we obtain an unrestrictedly large 

number of additional seats gained by apparentement.  

 

Proof of proposition 2. 

Consider an example with  yxn 12   parties ( 3x 1y ). xyyn 2  parties are 

equal, and each has 1 xvi  votes. y  parties have xxv j 42 2   votes. The total number of 

votes is equal to xyyxV 24 2  . The total number of seats is equal to yxyyxS  44 2 . 

Each party obtains one less seat than the number of votes. The vote per seat ratios of both parties 

are higher than one. Additional seats reduce the vote per seat ratio to one, and therefore, it is not 

assigned. The d’Hondt method seat distribution is xsi   and 142 2  xxs j .  
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Consider apparentement of yn  equal parties. The sufficient condition that apparentement 

wins at least y  seats is 

ysyn

vyn

s

v

i

i

j

j






)(

)(
,                                                 (14) 

yxyx

xxy

xx

xx










2

)1(2

142

42
2

2

.                                          (14a) 

It is true for any 3x  and 1y . There are at least y  parties that lose seats. Taking an 

unrestrictedly large y , we obtain an unrestrictedly large number of parties that lose seats.  

 

Proof of proposition 3. 

Let  nssSs ,...,)( 1  be the d’Hondt’s seats apportionment before coalition formation. 

Apparentement C  is successful, and therefore, it receives at least one extra seat 

j

j

Ci

i

Ci

i

s

v

s

v










1
.                                                          (15) 

If Cj  then 









 

 Ci

i

j

j

Ci

i s
s

v
v 1 .                                                    (16) 

If Cj  then 

   













 

 jCi

i

j

j

jCi

i s
s

v
v

//

1 .                                                    (16a) 

From the d’Hondt method property for all   jCNi  /  we have 

i

j

j

i s
s

v
v  ,                                                              (17) 

     













 

 jCNi

i

j

j

jCNi

i s
s

v
v

//

.                                                   (18) 

Summing (15) or (15a) and (17) we have 



15 

 

   
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 
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v

s

v










\

\

1
.                                                   (20) 

Apparentement  jN \  is successful.  

 

Proof of proposition 4. 

Apparentement C  is successful therefore it receives at least one extra seat  

 
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Having 
 

V

S
vs ii

1
  we obtain 














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
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
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 '''
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



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





11
'

'
.                              (23) 

Apparentement C  is successful.  

 

 

Proof of proposition 5. 

If party j obtains the last seat according to the d’Hondt method then 

Nis
s

v
v i

j

j

i  , .                                                   (24) 

For arbitrary apparentement C , Cj  we have 
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





 .                                                   (25) 

Taking into account the apparentement-proof condition we have 












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




ji

i
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i

j

j
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i
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i
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v

s

v

s

v

1
.                                                   (26) 

Apparentement C  does not change a party that receives the last seat in apportionment. 

Because the party j  receives the last seat, the apparentement-proof condition holds. 

The first apparentement does not change the distribution of seats and the apparentement-

proof condition remains unchanged. Every subsequent apparentement has the same result. The 

existence of multiple apparentements does not change the distribution of seats and satisfaction of 

the apparentement-proof condition remains unchanged.  

 

Proof of proposition 6. 

Because we consider the closure of the apparentement-proof set, the inclusion of the 

inequality borders does not matter. 

On a vote simplex Vv
Ni

i 


, the d’Hondt’s seats apportionment  nsss ,...,1 , 



Ni

isS  

corresponds to a set constrained by inequalities  

1


i

i

jj
s

v
sv .                                                (27) 

Any point from the set leads to the seat distribution s . These sets form the partition of the 

vote simplex. A set in which party j in the d’Hondt’s seats apportionment s  is a party that 

obtains the last seat is a set described by a system of )1(2 n  inequalities 

,
1


i

i

j

j

s

v

s

v
                                                 (28) 

.
j

j

ii
s

v
sv                                                    (29) 

The apparentement-proof condition generates an additional inequality 
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 1


S

V

s

v

j

j
.                                                       (30) 

A set obtained by inequalities (28), (29), (30) is a set )(sA j . The union of these sets forms 

a set )()( sAsA
Nj

j


 . Set )(sA  is an apparentement-proof set for vote distribution s . Inequality 

(29) defines a party that obtains the last seat. Set )(sA  is constrained by inequalities (28) and 

(30). Inequality (29) is not constrained. 

Having 
j

j

j

j

s

v

s

v
  and inequality (30) we have  

1









ji

i

ji

i

j

j

s

v

s

v
.                                                       (31) 

If for some jkNk  ,  we have )1(  k

j

j

k s
s

v
v , then 

1









ji

i

ji

i

j

j

s

v

s

v
. This contradicts 

(31), therefore 

j

j

k

k

s

v

s

v


1
.                                                       (32) 

Inequality (32) coincides with inequality (28). Thus, inequalities (29) and (30) imply 

inequality (28). Set )(sA  is bordered only by inequality (30). 

The apparentement-proof set )(sA  for vote distribution s  is a set defined by n linear 

inequalities (30). Each inequality forms a border that is parallel with a border of the vote 

simplex. Set )(sA  forms a shape that is similar to that of the vote simplex. From inequality (30), 

the scale factor is equal to   1
1


S .  

 

Proof of proposition 7. 

From Proposition 5, the volume of a shape corresponding to the apparentement-proof set 

for arbitrary seat distribution is equal to   )1(
1




n
S  of the volume of vote simplex. The number 
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of different seat distributions is equal to multiset coefficient 
!)!1(

)!1(

Sn

Sn




. The share of the 

volume of the shape constructed by the unification of all apparentement-proof sets in the vote 

simplex is equal to 

1)1(!)!1(

)!1(
),(






nSSn

Sn
Sn .                                                 (33) 

 

Proof of corollary 1. 
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Proof of proposition 8. 

Consider an example with 3n  parties. The first party has 
 





222 K

VV
 and the 

second party has 
 





222 K

VV
 votes, where 0  is sufficiently small. Each of other 2n  

parties has 
  22  nK

V
 votes. The necessary condition to have at least one seat in the 

legislature of the size KS   is 
1


S

V
vi . We have 

  2211 





 nK

V

K

V

S

V
. Each of the 
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other 2n  parties gains no seats. The first party obtains 
2

1S
 seats and the second party 

obtains 
2

1S
 seats. The second party has an incentive to form an apparentement with all parties 

but the first party. This apparentement wins more than 
2

1S
. This vote distribution violates the 

apparentement-proof condition.  

 

Proof of proposition 9. 

Consider an example with 12  xn  parties ( 3x ). xn 21  parties are equal, and each 

has 1 xvi  votes. One party has xxv j 42 2   votes. The total number of votes is equal to 

xxV 24 2  . The total number of seats is equal to 144 2  xxS . Each party obtains one less 

seat than the number of votes. The vote per seat ratios of both parties are higher than one. 

Additional seats reduce the vote per seat ratio to one, and therefore, it is not assigned. The 

d’Hondt method seat distribution is xsi   and 142 2  xxs j . 

Consider an apparentement of k  equal parties ( xk 22  ). The sufficient condition that 

the apparentement wins at least  3/k  additional seats is 

3/13/ kks

kv

ks

v

i

i

j

j





,                                                        (36) 

3/13/142

42
2

2

kkx

kkx

kxx

xx









.                                             (36a) 

If 6x  then it holds for any xk 22  . 

Consider an apparentement of 0k  equal parties and party j. The sufficient condition that 

the apparentement wins no additional seats is  

i

i

ij

ij

s

v

kss

kvv






1
,                                                         (37) 

x

x

kxxx

xkxx 1

1142

)1(42
2

2 





.                                                 (37a) 

It holds if 3x . 
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The marginal contribution of party j  to apparentement C  with k  equal parties 

( xk 22  ) in the apparentement gain game is negative, and it is at most to  3/k . The 

marginal contribution of party j  to apparentement C  with k  equal parties ( 10  k ) in the 

apparentement gain game is equal to zero. The Shapley value of party j is at most to 
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 .                   (38) 

The Shapley value of party j is not bounded from below. 

Consider a full apparentement gain game. Consider an apparentement of k  equal parties 

( xk 22  ). The sufficient condition that the apparentement wins at least  3/k  additional 

seats is 

3/13/)2(
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If 6x , then it holds for any xk 22  . 

Consider an apparentement of 0k  equal parties and party j. The sufficient condition that 

the apparentement wins no additional seats is 
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.                                                 (40a) 

It holds if 3x . The marginal contribution of party j  to apparentement C  with k  equal 

parties ( xk 22  ) in the full apparentement gain game is negative, and it is at most to 

 3/k . The marginal contribution of party j  to apparentement C  with k  equal parties 

( 10  k ) in the full apparentement gain game is equal to zero. The Shapley value of party j is 

at most to 
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The Shapley value of party j is not bounded from below.  
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