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Abstract

We build a model economy in which a shortage of safe assets can

create conditions for intrinsically useless ‘safe’ bubble assets to circulate

at a positive price. Our environment features infinitely lived individu-

als who are not subject to credit constraints but who face uninsurable

idiosyncratic production risk. Bubbly equilibria exist when safe assets

offer real returns below the growth rate of the economy. Bubble assets

circulate at a positive price only if they offer returns which are safe rel-

ative to production returns. These ‘safe’ bubbles reduce consumption

volatility but exert a contractionary effect on the economy.
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1 Introduction

The structural shortage of safe assets has become a major policy concern over

the past several years. Excessive creation of ‘quasi-safe’ assets was blamed

for the build-up to the Subprime crisis. Since the Great Recession and the

European Sovereign Debt crisis, many private and public assets have lost their

‘ultra-safe’ status worsening the structural shortage of safe assets. As a result,

world-wide risk-free interest rates have fallen and the remaining asset classes

which are perceived to be safe (ranging from US Treasuries to London real

estate) have appreciated in price to record high levels, prompting discussions

of whether new bubbles are popping up to replace the old ones.

In this paper we offer a rational bubble-based theory to explain the econ-

omy’s tendency to overvalue financial assets which are perceived to be safe.

In our framework risk averse individuals want to hold safe assets in order to

smooth consumption across states of nature. They are willing to pay a large

premium over riskier assets when such riskless securities are in short supply.

When this drives the interest rate on risk-free assets below the growth rate

of the economy, non-fundamental asset valuations become possible in equilib-

rium. Intrinsically worthless assets which are believed to be safe can deliver

capital gains that match the very low safe rate of return without violating

feasibility constraints.

When such ‘safe bubbles’ appear in equilibrium, they reduce economic

growth. This is because they crowd out investment in productive assets, and in

our endogenous (AK) growth framework, this slows down the rate of economic

expansion.

Nevertheless, despite their negative impact on economic growth, bubbles

are unambiguously welfare improving in our model because they help to cor-
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rect the distortion caused by missing insurance markets. The bubble provides

the economy with a safe asset which improves the ability of households to

smooth their consumption in the face of large idiosyncratic and uninsurable

productivity shocks. Safe bubbly securities circulate through the economy

as those households who experience bad idiosyncratic productivity realisations

sell bubbles to those who experience good productivity realisations. The result

is lower wealth and consumption volatility at the individual level.

In addition to the consumption smoothing benefits, the bubble has a large

wealth effect which increases the level of consumption in the short run and,

due to discounting, this helps to offset to some extent the cost of lower con-

sumption growth on welfare. In total, whenever bubbles exist in our model,

their consumption smoothing benefits and their positive wealth effect always

dominate the reduction in long run growth, raising aggregate welfare.

This is not to say that bubbles are a costless solution to missing insurance

markets in our model. They improve consumption smoothing only at the

cost of diverting funds away from capital investment which is dynamically

efficient according to the definition of Abel et al. (1989). This is why the

bubbly equilibrium in our model does not implement the first best: it delivers

welfare which is lower than under complete markets.

There are a number of other papers that have studied the issue of the impact

of bubbles on long run economic growth and welfare. Grossman and Yanagawa

(1993) show in a model with capital externalities that bubbles on intrinsically

useless assets may exist due to a wedge between the private and social return

on capital. When bubbles exist, they divert resources from capital accumu-

lation and retard economic growth. Since growth is already too low due to

the presence of capital externalities, bubbles reduce welfare. Olivier (2000)

has shown that when the bubble is attached to capital goods, it can actually
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increase economic growth.

More recent papers have also examined the importance of borrowing con-

straints for the relationship between bubbles, growth and welfare. Miao and Wang

(2014) qualify the result of Olivier (2000) by showing that only bubbles at-

tached to sectors that generate significant aggregate externalities increase

growth and welfare. Those bubbles attached to non-externality generating ac-

tivities are detrimental to welfare even though all bubbles help to relax credit

constraints in Miao and Wang (2014).

Unlike Grossman and Yanagawa (1993) and Miao and Wang (2014), our

model features no externalities and private and social optima coincide. There-

fore, whenever bubbles exist they increase welfare. In contrast, the existence of

capital externalities in Grossman and Yanagawa (1993) and Miao and Wang

(2014) may lead to a situation in which bubbles crowd out investment in a

way that is privately optimal but socially detrimental.

Similarly to our paper, Hirano and Yanagawa (2010) abstract from capi-

tal externalities and use an AK growth model. They assume heterogeneous

entrepreneurs and credit constraints and show that bubbles may increase or

retard economic growth depending on the tightness of collateral constraints.

However, bubbles are always welfare improving in their model because they

help to provide savers with higher yielding assets. This reduces the difference

in the portfolio rates of return of heterogeneous entrepreneurs and helps to im-

prove consumption smoothing over time. Our model abstracts from borrowing

constraints and consumption smoothing over time is not distorted. We instead

focus on missing markets for insurance against idiosyncratic production risk

and the safe bubble asset increases welfare in our framework because it allows

improved consumption smoothing across states of nature.

Our paper also offers a contribution to our understanding of the conditions
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for bubble existence. We generate an asset price bubble in an environment

with infinitely lived consumer-producers who face uninsurable idiosyncratic

production risk but are not subject to borrowing constraints. Bubbles arise

in our model not because of a shortage of means of saving (as in most other

papers in the rational bubbles literature) but due to a shortage of riskless

assets.

In this regard, our work carries many parallels with the literature on fiat

money as a means of self-insurance against idiosyncratic income risk started

by Bewley (1980, 1986). Recent contributions to this strand of literature in-

clude, for example, Kitagawa (1994, 2001) and Green and Zhou (2005). Our

‘bubble asset’ is indeed very similar to fiat money in Bewley (1980): it is an

intrinsically useless asset which may trade above its fundamental value (which

is zero) because it allows agents to smooth consumption better1. There are

some important difference too. For example, our mechanism does not rely on

restrictions on private credit whereas the existence of fiat money in Bewley

(1980) does. In addition, we consider stochastic bubbles which can lose value

suddenly whereas models on fiat money usually do not consider this possibility.

The paper is organised as follows. Section 2 outlines the structure of the

model and derives the equilibrium without bubbles. Section 3 describes the

key features of the balanced growth path of our economy with safe bubbles

while section 4 extends the analysis to the case of stochastic bubbles. Section

5 concludes.

1This similarity is also shared in many papers on rational bubble, including the clas-
sic paper by Tirole (1985), and also in recent papers such as Farhi and Tirole (2012),
Grossman and Yanagawa (1993), Hirano and Yanagawa (2010). In Miao and Wang (2014),
however, bubbles are attached to productive capital rather than to intrinsically useless as-
sets.
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2 The benchmark model without bubbles

2.1 The Economic Environment

Our model economy is a stochastic AK model with incomplete markets. In

this section we describe the benchmark model without bubbles. Bubbles are

introduced in the following sections.

The economy consists of a continuum of individuals indexed by i ∈ [0, 1].

They have identical log preferences given by

E0

∞
∑

t=0

βt ln cit,

where β ∈ (0, 1) is the discount factor and cit is the amount of consumption of

individual i in period t.2

Each individual i produces output yit using the following production tech-

nology

yit = θitAk
i
t−1, (1)

which uses capital ki
t as input. Aggregate productivity, A, is constant over

time. Each individual productive project is subject to an idiosyncratic pro-

ductivity shock θit which realizes at the beginning of period t. It is i.i.d. across

individuals and over time, strictly positive, and has unit mean: Et−1[θ
i
t] = 1.

Given the i.i.d. assumption, we sometimes express idiosyncratic shocks as θ

without scripts t or i.

In this benchmark model, we assume that physical capital is the only asset

available to each individual. In particular, there are no insurance markets

2Our argument below can easily be extended to the case with more general preferences
such as Epstein-Zin preferences. Our choice of the logarithmic utility is solely to simplify
the exposition.
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for idiosyncratic productivity shocks θit.
3 We also abstract from borrowing

and lending across individuals, but this is without loss of generality. It is

straightforward to show that they have no incentive to borrow or lend given

our assumption that idiosyncratic shocks θit are i.i.d. across individuals and

over time.4

The budget constraint of each individual is expressed as

cit + ki
t = θitAk

i
t−1, (2)

with the initial condition ki
−1 > 0 for all i5. We impose the natural debt limit:

ki
t ≥ 0 for all i and t.

2.2 Utility Maximization

The first-order condition for utility maximization is, for each t and i,

Et

[

βcit
cit+1

θit+1A

]

= 1. (3)

The transversality condition is

lim
j→∞

Et

[

βjcit
cit+j

ki
t+j

]

= 0. (4)

3Households do have incentive to insure each other against the idiosyncratic shock, but
we assume that it is not possible. This may be, for example, because the realisation of θi is
not verifiable.

4A similar property is discussed in previous studies such as Constantinides and Duffie
(1996), Saito (1998), and Krebs (2003), among others.

5Here, we assume that physical capital fully depreciates in each period. This is again
without loss of generality. Suppose that the depreciation is δ ∈ [0, 1]. Then the right-hand-
side of the budget constraint would become (θi

t
A + 1 − δ)ki

t−1
. Let Ã = A + 1 − δ, and

θ̃i
t
= (θi

t
A + 1 − δ)/Ã. Thus, the model with the depreciation rate δ is isomorphic to our

model with θ̃i
t
and Ã.
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We solve for the utility maximization problem by the ‘guess-and-verify’ method.

Let us guess that the solution to the utility maximization problem is given by

cit = (1− β)θitAk
i
t−1, (5)

ki
t = βθitAk

i
t−1. (6)

Then

cit =
1− β

β
ki
t, (7)

and

cit+1 = (1− β)θit+1Ak
i
t. (8)

It follows that

βcit
cit+1

θit+1A = 1, (9)

Thus, the first-order condition (3) is satisfied. To see the transversality condi-

tion is satisfied, notice that

ki
t+j

cit+j

=
β

1− β
. (10)

It follows that

lim
j→∞

Et

[

βjcit
cit+j

ki
t+j

]

= lim
j→∞

βj β

1− β
cit = 0,

for any given cit. This completes the proof that (5) and (6) provide the solution

to the utility maximization problem of individual i.
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2.3 Aggregation

The competitive equilibrium in the benchmark model is obtained simply by

aggregating the solution to individual utility maximization problems:

Ct = (1− β)AKt−1, (11)

Kt = βAKt−1, (12)

where Ct and Kt are aggregate consumption and capital stock in period t,

respectively. Thus, the competitive equilibrium in the benchmark economy is

a balanced growth path, where aggregate output, consumption, and capital

grow at the same rate. Let Ĝ denote this growth rate:

Ĝ = βA. (13)

It is convenient to define the real interest rate, R̂, for the benchmark economy

under the assumption that there is a risk-free asset with zero net supply. That

is,

R̂t =

(

Et

[

βcit
cit+1

])−1

, (14)

which yields

R̂t = R̂ ≡

(

E

[

1

θA

])

−1

. (15)

Note that a larger risk, that is, a greater variance of θ, reduces the interest

rate R̂. This is a standard property stemming from risk aversion and can be

seen from a second order Taylor expansion of (15):

R̂ ≈
A

1 + var (θ)
. (16)
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3 Safe bubbles

In this section, we show that our model economy allows for bubbles. We

begin with the case where bubbles yield a constant rate of return. Stochastic

bubbles are studied in the next section. Suppose that the economy possesses

a ‘bubble asset’ of aggregate quantity, M , which has no intrinsic value. Let µt

denote its price in period t. In this section we restrict our attention to the case

where {µt}
∞

t=0 is a deterministic sequence. Of course, there always exists an

equilibrium with µt = 0 for all t, which is the one considered in the previous

section. In what follows, we shall assume that µt > 0 for all t, and derive the

necessary and sufficient condition for the existence of equilibria with valued

bubbles.

3.1 Utility maximization

Let mi
t denote the holding of the bubble asset by individual i in period t. Then

his/her budget in period t is

cit + ki
t + µtm

i
t = θitAk

i
t−1 + µtm

i
t−1, (17)

with non-negative constraints ki
t, m

i
t ≥ 0. The initial asset holdings are given:

ki
−1, m

i
−1 > 0. Let Rt+1 denote the gross rate of return on the bubble asset:

Rt+1 =
µt+1

µt

, (18)

which is well defined and strictly positive under the assumption that µt > 0

for all t. Then the first-order conditions for utility maximization become:

Et

[

βcit
cit+1

θit+1A

]

≤ 1, (with equality if ki
t > 0), (19)
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and

Et

[

βcit
cit+1

Rt+1

]

≤ 1, (with equality if mi
t > 0). (20)

The transversality condition is

lim
j→∞

Et

[

βjcit
cit+j

(ki
t+j + µt+jm

i
t+j)

]

= 0. (21)

The utility maximization problem can be solved using a ‘guess-and-verify’

method as in the previous section. First let us define the share of household

wealth invested in physical capital ηt ∈ [0, 1] by

ηt = argmax
η∈[0,1]

Et

[

log [θAη +Rt+1(1− η)]

]

. (22)

Notice that ηt does not depend on i because of our assumption that id-

iosyncratic shocks are i.i.d.. The first-order condition for an interior solution

ηt ∈ (0, 1) is

Et

[

θA−Rt+1

θAηt +Rt+1(1− ηt)

]

= 0. (23)

The corner solutions are obtained in the following cases:

ηt = 0 if Et

(

θA

Rt+1

)

≤ 1, (24)

ηt = 1 if Et

(

Rt+1

θA

)

≤ 1. (25)

Given {ηt}
∞

t=0, we guess that the solution to the utility maximization prob-

lem is given as follows:

cit = (1− β)(θitAk
i
t−1 + µtm

i
t−1), (26)

ki
t = βηt(θ

i
tAk

i
t−1 + µtm

i
t−1), (27)
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and

µtm
i
t = β(1− ηt)(θ

i
tAk

i
t−1 + µtm

i
t−1). (28)

We now establish that these allocations satisfy the first-order conditions (19)-

(20) and the transversality condition (21).

We use (26)-(28) to obtain

βcit
cit+1

=

[

θAηt +Rt+1(1− ηt)

]

−1

. (29)

Consider any period t and individual i. Suppose first that ηt ∈ (0, 1). Then

our candidate solution is interior in period t: ki
t, m

i
t > 0. It follows from (23)

and (29) that

Et

[

βcit
cit+1

θit+1A

]

= Et

[

βcit
cit+1

Rt+1

]

. (30)

Then note that

1 = Et

[

θAηt +Rt+1(1− ηt)

θAηt +Rt+1(1− ηt)

]

= Et

[

Rt+1

θAηt +Rt+1(1− ηt)

]

= Et

[

βcit
cit+1

Rt+1

]

. (31)

where (23) is used for the second equality, and (29) is used for the the third

one. Therefore we verify that equation (20) holds with equality. A similar

argument verifies that equation (19) holds with equality. Thus, our candidate

solution satisfies the first-order conditions (19) and (20) when ηt ∈ (0, 1).

Next suppose that ηt = 0. Then ki
t = 0, and we need to show that (19)

holds with inequality. When ηt = 0, (29) implies that

Et

[

βcit
cit+1

θA

]

= Et

[

θA

Rt+1

]

< 1 (32)
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where the last inequality follows from (24). This implies that (19) is satisfied

with inequality by our candidate solution. A similar argument can be used to

show that when ηt = 1, mi
t = 0 and (20) holds with inequality.

Finally consider the transversality condition (21). Using (26)-(28), we ob-

tain
ki
t+j + µt+jm

i
t+j

cit+j

=
β

1− β
. (33)

It follows that

lim
j→∞

Et

[

βjcit
cit+j

(ki
t+j + µt+jm

i
t+j)

]

= lim
j→∞

βjcit
β

1− β
= 0. (34)

This completes the proof that our candidate is indeed the solution to the utility

maximization problem of each individual.

3.2 Balanced growth path with bubbles

As in other models of rational bubbles, there exists a continuum of equilibria

with bubbles. Here we study the equilibrium in which the bubble asset yields

a constant return: Rt = R for all t.6 We shall show that such an equilibrium

exhibits the balanced growth property: aggregate output, aggregate capital,

and aggregate bubbles all grow at a constant rate. We normalize the aggregate

amount of the bubble asset to unity: M = 1.

Since Rt is constant, (22) implies that ηt is constant as well. Because our

utility function satisfies the Inada condition, η > 0 in equilibrium. We shall

derive the condition for the existence of equilibrium with η < 1.

Given the solution to the utility maximization problem, the aggregate con-

sumption, Ct, aggregate capital stock, Kt, and the value of bubbles, µt are

6There is also continuum of equilibria in which the bubble is declining as a share of GDP.
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given by

Ct = (1− β)(AKt−1 + µt), (35)

Kt = βη(AKt−1 + µt), (36)

µt = β(1− η)(AKt−1 + µt). (37)

From (36) and (37), we obtain

µt =
β(1− η)

1− β(1− η)
AKt−1. (38)

From equations (36) and (38), bubbles and capital grow at the same constant

rate:

G∗ ≡
Kt+1

Kt

=
βηA

1− β(1− η)
=

µt+1

µt

= R∗. (39)

Balanced growth equilibrium with valued bubbles exists if and only if the

solution η in (22) is interior with Rt+1 = R∗. Let η∗ be the solution to that

problem. First, notice that E(θA/R∗) > 1, so that η∗ > 0 as implied by (24).

Next, (39) implies that

E

(

R

θA

)

= E

(

1

θ

)

βη

1− β(1− η)
, (40)

which is an increasing function of η. Given (25), it follows that η∗ < 1 if and

only if

E

(

β

θ

)

> 1. (41)

The following proposition summarizes the result.

Proposition 1 A balanced growth equilibrium with bubbles exists if and only

if (41) holds.

Note that condition (41) is likely to be satisfied when the variance of θ
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is large. In this sense, our result implies that bubbles are likely to emerge

when individuals face a large amount of uninsurable risk to their ‘savings’. We

would like to emphasize that our concept of capital, K, can include human

capital, not just physical capital. It is well known that the accumulation of

human capital is subject to a significant amount of risk (see, for example

Palacios-Huerta (2003)), which is largely idiosyncratic and uninsurable.

As in previous models of rational bubbles, our condition for the existence

of bubbles can also be stated in terms of the growth rate, Ĝ, and the interest

rate, R̂, that would prevail in the equilibrium without bubbles. It immedi-

ately follows from equations (13) and (15) that condition (41) is equivalent to

Ĝ > R̂. Note that the average rate of retun of investment is A > 1, so the

economy is dynamically efficient in the sense of Abel et al. (1989). However,

because idiosyncratic risk is uninsurable, the interest rate R̂ is less than the

growth rate of the economy. This mechanism behind the low interest rate is

different from that of the recent literature on rational bubbles that relies on

the existence of credit frictions (Farhi and Tirole (2012), Martin and Ventura

(2012), Aoki and Nikolov (2012), Hirano and Yanagawa (2010)). In those pa-

pers, credit frictions prevent savings from flowing to the most productive use,

depressing equilibrium interest rates. In our model, it is uninsurable idiosyn-

cratic risk that depresses the equilibrium interest rate.

Proposition 2 Let Ĝ and R̂ denote the growth rate and the interest rate in

the equilibrium without bubbles. A balanced growth equilibrium with bubbles

exists if and only if Ĝ > R̂.

If there were no idiosyncratic risk so that θ = 1 almost surely, then the

real interest rate is necessarily larger than the growth rate, R̂ = A > βA = Ĝ,

and there is no room for bubbles. As the variance of θ increases, individuals
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are subject to more risk and the safe real interest rate falls. This can be seen

from a second order Taylor expansion of (15):

R̂ ≈
A

1 + var (θ)
. (42)

When the idiosyncratic risk is sufficiently large, the safe real interest rate

becomes lower than the economic growth rate in the absence of bubbles (βA),

which creates room for rational bubbles:

A

1 + var (θ)
< βA (43)

It can be easily confirmed that condition (43) is exactly what we obtain from

a Taylor expansion of (41). Intuitively, the bubble must be attractive to hold

while being aymptotically stable as a share of output. Since the economy’s

growth rate (βA) is lower than the expected return on production (A), pro-

ductive assets must be held with a substantial risk premium if the safe bubble

can be both attractive and asymptotically non-explosive. Equation (43) states

that the gross risk-premium on production (approximately equal to 1+var (θ))

must be large enough so as to ensure that the return on the safe bubble (the

risk free rate R̂ given by (42)) is lower than the economy’s growth rate.

Proposition 3 The bubble is contractionary. It reduces the economy’s growth

rate.

To see that the bubble is contractionary, it is sufficient to show that G∗

is increasing in η (the share of productive projects in household portfolios).

Hence, as the share of bubbles in wealth grows (and η declines), growth de-
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clines. It is easy to verify that this is the case.

∂G∗

∂η
=

(1− β)βA

1− β(1− η)
> 0. (44)

Ours is a model without credit constraints and consequently the bubble

does not help to expand economic activity by relaxing financial frictions. In-

stead, its impact on growth in our AK-model framework arises due to the way

it affects the investment rate in equilibrium. Our model has an expansionary

wealth effect and a contractionary portfolio crowding out effect. From equation

(36) the bubble increases wealth and this in turn increases total saving, invest-

ment and economic growth. But because bubbles take up a part of household

portfolios (η < 1) they also crowd out investment in productive assets and this

retards economic growth.

Proposition 3 shows that the contractionary effect always dominates when

β < 1. This is because the presence of the bubble raises consumption and

leads to a ‘wealth leakage’. This can be seen from equation (35): the level of

consumption increases at least temporarily when a bubble pops up because the

wealth of each individual increases.7 Because 1− β fraction of the additional

bubble wealth is consumed, the wealth-creating effect of the bubble is always

smaller than its crowding out effect. As a result, the investment rate and

the consumption growth rate decline even if the level of consumption can

temporarily increase due to the wealth effect of the bubble.

We can see this very clearly when we consider the case when β ≈ 1 and

the marginal propensity to consume out of wealth is negligible. Then G∗ ≈ A

and the economy’s growth rate is independent of household portfolios in the

7For example, when the bubble shows up at time 0, the wealth level jumps up from AK−1

to AK−1 + µ0
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bubbly equilibrium. In this case (38) implies that

µt ≈
1− η

η
AKt−1 (45)

and so from (36), the wealth creating effect of the bubble exactly offsets the

contractionary impact of bubble holdings, leaving investment and growth un-

changed. As β declines below unity, consumption out of the bubble wealth

ensures that the contractionary impact of bubbles dominates.

The negative growth impact of the bubble is in contrast to the results in

several recent papers that add credit frictions (for example Martin and Ventura

(2012) and Hirano and Yanagawa (2010)) who find that bubbles may, un-

der certain conditions, increase economic growth. In Hirano and Yanagawa

(2010)), bubbles have both growth enhancing and growth reducing effects.

On the one hand, when the bubble shows up, agents divert part of savings

from physical investment to bubble holdings, similarly to what happens in

our model. This reduces the rate of economic growth. On the other hand,

the bubble increases the net worth of credit-constrained entrepreneurs, allow-

ing them to invest more. This effect increases the rate of economic growth.

Hirano and Yanagawa (2010) show that the second effect dominates when the

borrowing constraint is tight enough.

Our main interest is in the way a shortage of safe assets may affect the

existence conditions for bubbles and, consequently, we assume no borrowing

constraints. Therefore, our result on the economic growth rate is similar to

that of Hirano and Yanagawa (2010) when the borrowing constraint is mild

(so that the growth enhancing effect is smaller).

Miao and Wang (2014) construct a two sector endogenous growth model

to analyse the impact of bubbles on economic growth. They show that when a
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bubble occurs in the sector with positive externalities, it may increase economic

growth. However, when the bubble occurs in the sector with no externality, it

may reduce economic growth. Since our model features no externalities, our

results are in line with Miao and Wang (2014)’s case of bubbles attached to

the sector that generates no growth-inducing spillovers.

3.3 Numerical example: uniform distribution

To help build intuition about the properties of our model, here we consider an

example where θ follows uniform distribution on [1 − ǫ, 1 + ǫ] with 0 < ǫ < 1.

We shall derive an explicit condition on ǫ for the existence of bubbles and then

demonstrate some comparative statics with respect to the extent of production

risk (ǫ).

3.3.1 Bubble existence conditions

When θ follows a uniform distribution on [1−ǫ, 1+ ǫ] with 0 < ǫ < 1, equation

(41) is equivalent to

β

2ǫ
ln

(

1 + ǫ

1− ǫ

)

> 1, (46)

In terms of Ĝ and R̂, (46) is equivalent to

Ĝ = βA >

[

1

A

1

2ǫ
ln

(

1 + ǫ

1− ǫ

)]

−1

= R̂ (47)

To illustrate the model properties we parameterise the model8 and show how

several endogenous variables depend on the riskiness of the production (ǫ).

Figure 1 plots Ĝ and R̂ as a function of ǫ. The figure shows that when ǫ is

large enough (investment is risky enough) then the bubbly equilibrium exists.

8The parameter values we use are β = 0.95, A = 1.1. We vary ǫ in order to generate the
model’s comparative statics. The exercise should be viewed as a numerical illustration of
the model properties rather than as a quantitative application.
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[Figure 1 here]

3.3.2 Comparative statics with respect to ǫ

Figure 2 plots the share of the bubble asset in household portfolios (1− η) as

a function of ǫ.

[Figure 2 here]

Figure 2 shows that as the investment project becomes riskier the individ-

uals invest a greater share of their wealth in the bubble.

Figure 3 shows how the economy’s growth rate changes with ǫ both with

and without bubbles. The figure shows that the bubble is increasingly con-

tractionary at higher levels of idiosyncratic investment risk. This is because

the bubble crowds out investment.

[Figure 3 here]

To get a clear idea of the trade-offs that determine the size of the bubble

we also plot in Figure 4 the consumption growth standard deviation both with

and without bubbles together with the standard deviation of the idiosyncratic

TFP shock.

[Figure 4 here]

The figure shows that in the absence of bubbles, higher shock volatility

translates directly into higher consumption volatility. In the bubbly equilib-

rium of our economy, however, this is not the case. Higher shock volatility

does lead to more volatile consumption growth but the expansion of the bub-

ble moderates this increase at the expense of a reduced economic growth rate.
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3.4 Welfare effect of bubbles

We have seen that bubbles circulate when markets for insuring idiosyncratic

shocks are missing. And we have also seen that bubbles are detrimental to

economic growth. But do bubbles increase welfare? And how does welfare in

the bubbly equilibrium compare to the first best with complete markets?

In this subsection we compare in welfare terms (i) the equilibrium without

bubbles considered in section 2; (ii) the (balanced growth) equilibrium with

bubbles in section 3.2; and (iii) the equilibrium with complete markets. To do

so, we fix the initial wealth distribution {yi0}i∈[0,1], where yi0 = θi0Ak
i
−1 > 0 for

i ∈ [0, 1]. The implied initial aggregate capital stock is K−1 =
∫ 1

0
ki
−1 di.

3.4.1 Welfare comparison between the bubbly and bubbleless equi-

libria

First consider the equilibrium without bubbles. Let V NB(y) denote the lifetime

utility of an individual with initial condition yi0 = y. As shown in equation

(A.9) in Appendix A, in the equilibrium without bubbles, it is given as

V NB(y) =
1

1− β

{

ln (1− β) +
β lnβ

1 − β
+

β

1− β
E[ln(θA)] + ln(y)

}

. (48)

Now consider the balanced growth equilibrium with bubbles. Consider an

arbitrary initial distribution of the bubble asset {mi
−1}i∈[0,1], where mi

−1 ≥ 0

for all i and
∫ 1

0
mi

−1 di = 1. It follows from equation (38) that the price of the

bubble, µ0, in period 0 is

µ0 =
β(1− η∗)

1− β(1− η∗)
AK−1, (49)

where η∗ ∈ (0, 1) is the solution to (23) under the balanced growth path. The

20



initial wealth of individual i ∈ [0, 1] is then equal to wi
0 ≡ yi0+µ0m

i
−1. It follows

from (26)-(28) that, along the balanced growth path, the level of individual

wealth, wi
t = yit + µtm

i
t−1, evolves as

wi
t+1 = βR(θit+1)w

i
t. (50)

Here R(θit+1) is defined as

R(θ) ≡ η∗θA + (1− η∗)R∗ (51)

= η∗A

{

θ +
(1− η∗)β

1− β(1− η∗)

}

,

where the second equality has the fact that, in the bubbly equilibrium, the

growth rate of the bubble (R∗) is equal to the growth rate of output:

R∗ =
βη∗A

1− β(1− η∗)
. (52)

Let V B(w) denote the lifetime utility of an individual with initial wealth

w, which, along the balanced growth equilibrium, is computed as

V B(w) =
1

1− β

{

ln (1− β) +
β ln β

1− β
+

β

1− β
E[ln(R(θ))] + ln(w)

}

. (53)

Given the initial distribution {yi0, m
i
−1}i∈[0,1], we compare the lifetime utility

(48) and (53) for each individual. Note that the definition of η∗ implies that

E[ln(R(θ))] > E[ln(Aθ)]. It follows that

V B(yi0 + µ0m
i
−1)− V NB(yi0) (54)

=
β

(1− β)2

{

E[ln(R(θ))]−E ln(Aθ)
}

+
1

1− β

{

ln(yi0 + µ0m
i
−1)− ln(yi0)

}

> 0.
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Thus bubbles are Pareto improving in our model. The next proposition sum-

marizes the result.

Proposition 4 Assume (41) holds so that the balanced growth equilibrium

with bubbles exists. Given an arbitrary initial distribution of output and the

bubble asset, {yi0, m
i
−1}i∈[0,1], consider balanced growth equilibria with and with-

out bubbles. Then the lifetime utility is greater in the equilibrium with bubbles

for all individuals i ∈ [0, 1]:

V B(yi0 + µ0m
i
−1) ≥ V NB(yi0), ∀i ∈ [0, 1]. (55)

In our model bubbles decrease growth but unambiguously increase welfare.

There are three offsetting effects. Firstly, bubbles help consumption smoothing

across different states of nature when insurance markets are missing. This in-

surance effect increases welfare. Secondly, lower consumption growth reduces

welfare. Thirdly, as discussed in Section 3.2, even though the emergence of

bubbles decreases the rate of consumption growth, it can increase the level

of consumption in the short run because of its wealth effect (see equation

(35)). Due to discounting, the short run increase in the level of consumption

increases welfare. In total, whenever bubbles exist in our model, their con-

sumption smoothing benefits and their positive wealth effect always dominate

the negative impact of the reduction in long run growth, raising aggregate

welfare.

One may wonder whether the benefit of consumption smoothing is large

enough to offset the level effect of slower economic growth. Indeed, Lucas

(1987) shows that the cost of business cycle is small because aggregate con-

sumption is not very volatile. Note that in our model bubbles help to smooth
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consumption in the face of idiosyncratic risk9 which has been shown empiri-

cally to be much larger than aggregate risk10. Since idiosyncratic risk is very

large, the welfare gain from reducing its impact on consumption volatility can

be very sizable.

Our result is in contrast to that of Grossman and Yanagawa (1993) who

show that bubbles can decrease both growth and the welfare of some agents.

The reason for this difference lies in the presence of capital externalities in the

Grossman and Yanagawa (1993) model. Both our model and theirs feature

an aggregate AK technology. In Grossman and Yanagawa (1993), however,

individual firms have decreasing private returns to capital and the aggregate

production function is linear in capital only due to production externalities.

As a result, in their model, a situation may arise in which the interest rate

(which reflects the private return on capital) is lower than the rate of economic

growth even though investment is dynamically efficient from a social point of

view. Then bubbles crowd out efficient capital investment and reduce welfare.

Our framework features a similar cost of bubbles. Since all production

is dynamically efficient in the sense of Abel et al. (1989), the growth reduc-

ing impact of bubbles is a tangible cost. However, because bubbles allow

a smoother consumption profile, they also provide a benefit to the econ-

omy11. In our framework, agents are infinitely lived and there are no ex-

ternalities, and as a result, private and social optimality coincide, in contrast

to Grossman and Yanagawa (1993). Therefore bubbles exist only when the

consumption smoothing benefit outweighs the growth-reduction cost of bub-

bles as shown in Proposition 4. For this reason bubbles are always welfare

9Indeed, aggregate consumption does not fluctuate stochastically in our basic framework
with and without bubbles as long as bubbles are safe.

10See, for example, Meghir and Pistaferri (2004). They show that the variance of the per-
manent shock to individual income is about 0.0313, which means that its standard deviation
is more than 17%.

11There is no such benefit from bubbles in Grossman and Yanagawa (1993).

23



improving in our model.

Our result is more in line with Hirano and Yanagawa (2010). They show

that bubbles reduce the rate of economic growth when the degree of credit

friction is intermediate (but increases the rate of economic growth when credit

frictions are severe enough). However, welfare unambiguously increases in their

model too regardless of what happens to economic growth. This is because

bubbles help consumption smoothing over time by smoothing the rate of return

on wealth earned by different agents12. In our framework, there are no credit

constraints and therefore consumption smoothing over time is not distorted.

Bubbles instead improve consumption smoothing over different states of na-

ture, helping to correct the distortion caused by missing markets for insuring

idiosyncratic risk.

3.4.2 Welfare comparison between the bubbly equilibrium and the

first best

Now consider the equilibrium with complete markets. Suppose that there

exists a complete insurance markets for individual risks θit for all i and t. Here

we allow the social planner to redistribute initial output: let {zi0}i∈[0,1] denote

the distribution of output after the redistribution, that is, zi0 > 0 for all i and
∫ 1

0
zi0 di = AK−1. Then we shall show that given any distribution of the bubble

asset, {mi
−1}i∈[0,1], there exists a redistribution of output, {zi0}i∈[0,1], so that

all individuals are better off in the equilibrium with complete markets than

in the equilibrium with bubbles. Redistribution of output may occur only in

period 0, and no more interventions are made thereafter.

12In their model, agents’ investment productivity switches between high and low levels
stochastically. Bubbles increase the rate of return on wealth of agents with low productivity
because they are the ones who invest in bubbles. In their bubbly equilibrium the rates of
return on savings are smoothed over time and thus consumption becomes smoother.
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It is straightforward to show that in the complete-markets equilibrium

cit = (1− β)(βA)tzi0, (56)

for all i and t. It follows that the lifetime utility of each individual under

complete markets, denoted by V CM(zi0), is

V CM(zi0) =
1

1− β

{

ln (1− β) +
β lnβ

1 − β
+

β

1− β
ln(A) + ln(zi0)

}

. (57)

Consider the bubble equilibrium corresponding to an arbitrary initial dis-

tribution {yi0, m
i
−1}i∈[0,1]. For the complete-markets equilibrium, consider the

redistribution of output as:

zi0 = (1− β + βη∗)(yi0 + µ0m
i
−1), ∀i ∈ [0, 1]. (58)

Such a redistribution is feasible because, given µ0 in (49), we have

∫ 1

0

(yi0 + µ0m
i
−1) di =

1

1− β(1− η∗)
AK−1. (59)

Then, as we show in Appendix B,

V CM(zi0)− V B(yi0 + µ0m
i
−1) > 0. (60)

It follows that given the redistributed output {zi0}i∈[0,1], all individuals are bet-

ter off in the equilibrium with complete markets than in the one with bubbles.

The following proposition summarizes the result.

Proposition 5 Assume (41) holds so that the balanced growth equilibrium

with bubbles exists. For any initial distribution of output and the bubble asset,
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{yi0, m
i
−1}i∈[0,1], there exists a redistribution of output {zi0}i∈[0,1] such that all

individuals have higher lifetime utility in the equilibrium with complete markets

than in the one with bubbles.

V CM(zi0) > V B(yi0 + µ0m
i
−1), ∀i ∈ [0, 1].

In our framework, the first best allocation involves households investing

their entire wealth in productive assets (since these are dynamically efficient

in the sense of Abel et al. (1989)) but pooling idiosyncratic investment risk in

order to achieve a riskless consumption allocation. Growth will be the same as

in the bubbleless equilibrium (βA) but utility will be higher due to the gains

from consumption smoothing.

As we showed in Proposition 4, conditional upon the absence of markets

that can pool idiosyncratic production risk, the bubble is welfare improving

because it helps to smooth consumption. However the crowding out effect from

bubble holdings is a cost associated with the improvement in consumption risk

sharing. Then the result in Proposition 5 intuitively follows: welfare in the

bubbly equilibrium is strictly lower than in the first best.

4 Stochastic bubbles

In this section we consider stochastic bubbles. For simplicity, we restrict our

attention to a particular class of such bubbles that is commonly studied in the

literature. Specifically, we consider the following class of stochastic bubbles:

(i) once it bursts, the bubble asset will never have a positive value again; (ii)

if the bubble asset has a positive value in period t, the gross rate of return of
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the bubble asset between periods t and t+ 1, R̃t+1, is given by

R̃t+1 =











R with probability π,

0 with probability 1− π.

Thus, R̃t+1 is i.i.d., and hence we occasionally omit the time subscript. We

also assume that R̃t+1 is independent of idiosyncratic shocks θis for all s and

i. Let µt denote the value of the bubble asset in period t conditional on the

fact that the bubble has not burst yet: µt = Rtµ0. In what follows, we take

π as a given parameter and determine R as an endogenous variable that is

determined in equilibrium.

The utility maximization problem for each individual can be solved in an

almost identical way as in the previous section. Define η ∈ [0, 1] by

η = argmax
η∈[0,1]

Et

[

ln
[

θAη + R̃t+1(1− η)
]

]

. (61)

Since R̃t+1 is i.i.d., η does not depend on time. Given η thus defined, the

solution to the utility maximization problem remains to be given by (26)-(28).

The first-order condition for the interior solution η ∈ (0, 1) is

E

[

θA− R̃

θAη + R̃(1− η)

]

= πE

[

θA−R

θAη +R(1− η)

]

+ (1− π)
1

η
= 0. (62)

As in the previous section, η > 0 is always satisfied. Given R, the condition

that guarantees η < 1 is now given by

πE

(

R

θA

)

> 1. (63)

By aggregating the solution to the individual utility maximization problem,
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we obtain

R =
µt+1

µt

=
βη

1− β(1− η)
A, (64)

and

G̃ ≡
Kt+1

Kt

=











βη

1−β(1−η)
A with probability π,

βηA with probability 1− π.

Note that G̃ = R̃ when bubbles survive.

It is straightforward to show that the necessary and sufficient condition for

the existence of the type of stochastic bubbles considered here is

πE

(

β

θ

)

> 1. (65)

Clearly, a necessary condition for the existence of stochastic bubbles is that

bubbles are safer than capital, that is, the rate of return on bubbles has smaller

variance than that on capital. To see this, note first that the expected rate of

return of bubbles is smaller than that of capital:

E[R̃] = πR =
πβη

1− β + βη
A < A = E[θA]. (66)

Second, returns on bubbles and capital are independent by construction. It

follows that a risk-averse individual never holds bubbles if their return has

larger variance than that of capital. Equation (65) provides the exact bound

on how risky bubbles can be.

The intuition for (65) can again be obtained from considering the approxi-

mate arbitrage condition for the rate of return on bubbles when bubble holdings

are approximately zero (i.e. when η ≈ 1). In this case, the risk-free rate is
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given by (15) which can be approximated as:

R̂ ≈
A

1 + var (θ)
(67)

When η ≈ 1 consumption is approximately independent of the bubble return

and consequently, the arbitrage condition between bubbles and risk free assets

can be approximated by an equalisation in the expected returns. Then the

return of the bubble conditional upon the bubble surviving is given by:

µt+1

µt

≈
R̂

π
(68)

≈
A

π (1 + var (θ))
.

In equilibrium this return must not exceed the economy’s growth rate if the

bubble is to be sustainable in the long run. In other words

A

π (1 + var (θ))
< βA (69)

It can easily be confirmed that (69) can be obtained from a second order Taylor

expansion of (65).

The bubble existence condition (69) is dominated by two factors. The first

factor is the relative riskiness of the stochastic bubble and the risky productive

project as measured by the 1
π(1+var(θ))

ratio. This is the ratio of the gross excess

return on bubbles conditional upon bubble survival (approximately equal to

1/π13) to the risk premium on production (approximately equal to 1+var (θ)).

13This is not a ‘risk premium’ in the sense of a higher expected return on the bubble.
Equation (68) states that the bubble yields approximately the same expected return as the
risk-free rate. However, even in this approximately risk-neutral world, the bubble must
grow faster conditional on survival when its probability of bursting and becoming worthless
(1− π) is higher.
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When β ≈ 1, condition (69) simplifies to:

1

π
< 1 + var (θ) . (70)

In other words, the risk premium on the bubble must be smaller than the risk

premium on production. This is intuitive since the role of the bubble is to act

as a safe asset and help consumption smoothing. Hence its rate of return must

be safer than the rate of return on production.

The second important factor in condition (69) is the β term which reflects

the impact of consumption on economic growth. When β < 1, the economy’s

growth rate is below the return of the risky technology and this tightens the

condition for bubble condition (since the return on the bubble must be at or

below the economy’s growth rate). This implies that as β declines, bubbles

exist only when they are safer (π is higher) or when production is riskier

(var (θ) is higher).

If θ is uniformly distributed on [1− ǫ, 1 + ǫ], (65) becomes

πβ

2ǫ
ln

(

1 + ǫ

1− ǫ

)

> 1 (71)

It is easy to verify that in this example bubbles exist as long as idiosyncratic

production risk and the bubble’s survival probability (π) are both large enough.

5 Conclusion

We construct a model economy which features bubbly equilibria driven by

a shortage of safe assets. Agents face uninsurable idiosyncratic production

risk which in turn creates considerable idiosyncratic consumption risk. When

production uncertainty is high enough, real interest rates on safe bonds decline
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below the growth rate of the economy, opening the possibility that safe bubbles

can circulate and provide consumers with the safe asset they need in order to

smooth consumption.

When they exist, bubbles are contractionary. They reduce economic growth

by crowding out risky production. Lower growth is the price the economy has

to pay in order to reduce the consumption volatility associated with idiosyn-

cratic production uncertainty.

Despite their contractionary effect, the bubbles we examine are welfare im-

proving because they allow households to smooth consumption. This finding is

very relevant in the current environment where a decline in investor confidence

in bank deposits and Southern European government debt has led to the sharp

appreciation of the prices of other ‘safe’ assets such as prime real estate and

US/German government debt. Our paper suggests that this may be welfare

improving and not a phenomenon which policy should necessarily attempt to

counter.

Our results also show that asset price bubbles are not a perfect substitute

for complete financial markets. Even though the safe bubble in our model

is welfare improving, the value of all bubbles depends on investor sentiment

and therefore can never be completely safe. Hence, one important policy goal

for governments is to promote financial development and, in particular, the

development of markets which allow the hedging of the very high degree of

idiosyncratic risk to which individuals are exposed to. This will remove the

conditions for bubble existence but will be welfare improving in our model

framework. Another policy goal would be to provide enough high-quality safe

assets (government bonds) so that agents can self-insure without relying on

the bubble.
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Appendix A The household value function

In this Appendix we solve for the value function of the household by a ‘guess

and verify’ method. We guess that the value function of a household with

wealth wt is of the following form:

V (wt) = φ0
t + φ1

t lnwt. (A.1)

Setting up the value function in terms of the maximum of current and future

utility we have:

V (wt) = max
ct,ηt

{ln ct + βEtV (wt+1)} (A.2)

where the expectation operator Et is taken with respect to distribution of

the idiosyncratic productivity shocks θ as well as the sunspot shocks which

determine whether the bubble collapses or not. When the household invests

ηt of its savings in production, its wealth evolves as follows:

wt+1 = {θAηt +R (1− ηt)}βwt. (A.3)

Using the fact that, under log utility, consumption is a fixed fraction of

wealth and using our value function guess, we can rewrite (A.2) as:

φ0
t + φ1

t lnwt (A.4)

= ln (1− β) + lnwt + βmax
η
t

Et

[

φ0
t+1 + φ1

t+1 {ln (θAηt +R (1− ηt)) + ln β + lnwt}
]

.

Equating coefficients on the lnwt terms, we get a functional equation for φ1
t :

φ1
t = 1 + βEtφ

1
t+1. (A.5)
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It is easy to see that the slope of the value function (φ1
t ) will actually be

time-invariant and equal to:

φ1
t =

1

1− β
. (A.6)

Equating the intercept terms we get a functional equation in φ0
t :

φ0
t = ln (1− β) +

β ln β

1− β
+

β

1− β
max
η
t

Et [ln (θAηt +R (1− ηt))] + βEtφ
0
t+1.

(A.7)

In general, φ0
t will vary over time in response to shocks. In the paper we focus

on the stochastic steady state: this is the steady state to which the economy

converges after a long time in which the stochastic bubble has not burst. In

the stochastic bubbly steady state, φ0
t will be time invariant and equal to:

φ0
t =

1

1− β

{

ln (1− β) +
β ln β

1− β
+

β

1− β
max

η
Et [ln (θAη +R (1− η))]

}

.

(A.8)

Hence, in the stochastic bubbly steady state, the household value function

becomes:

V ss =
1

1− β

{

ln (1− β) +
β lnβ

1 − β
+

β

1− β
max

η
Et [ln (θAη + R (1− η))] + lnwss

}

(A.9)

Appendix B Welfare gain from complete mar-

kets

We have defined the redistributed output {zi0}i∈[0,1] so as to ensure that the

initial wealth of any agent in the complete markets is proportional to his/her

initial wealth in the bubbly equilibrium. Let V CM be the expected life-time

utility of agent i under complete markets after redistribution, and V B be his
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expected life-time utility in the bubbly equilibrium. Then

V CM(zi0)− V B(yi0 + µ0m
i
−1) (B.10)

=
1

1− β

{

β

1− β
ln(A) + ln(1− β + βη∗)−

β

1− β
E[ln(R(θ))]

}

.

Since E[ln(R(θ))] < ln Aη∗

1−β+βη∗
, it follows from Jensen’s Inequality that

V CM(zi0)− V B(yi0 + µ0m
i
−1) (B.11)

>
1

1− β

{

β

1− β
ln(A) + ln(1− β + βη∗)−

β

1− β
ln

Aη∗

1− β + βη∗

}

=
1

1− β

{

ln(1− β + βη∗)−
β

1− β
ln

η∗

1− β + βη∗

}

=
1

(1− β)2
ln

1− β + βη∗

(η∗)β

> 0.

Here, the last inequality follows from the fact that the function f(η) ≡ η−β(1−

β + βη) defined is monotonically decreasing for η ∈ [0, 1], and takes the mini-

mum f(1) = 1. Therefore, we have proved that all agents are better off in the

equilibrium with complete markets than in the bubbly equilibrium.
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Figure 1. Idiosyncratic production risk and bubble existence 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

investment risk ( ε)

Im
pl

ie
d
 s

af
e 

in
te

re
st

 r
at

e
 a

n
d
 g

ro
w

th
 r

at
e
 w

ith
o
u
t 
b
u
bb

le
s

 

 

R̂
Ĝ



Figure 2: Idiosyncratic production risk and the share of the bubble 

asset in household portfolios 
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Figure 3: Idiosyncratic production risk and output growth with and 
without bubbles 
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Figure 4: Idiosyncratic production risk and consumption growth 

volatility with and without bubbles 
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