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BUHLMANN’'S ECONOMIC PREMIUM PRINCIPLE IN THE PRESENCE OF
TRANSACTION COSTS

MASAAKI KIJIMA AND AKIHISA TAMURA

ABSTRACT. This paper examines thaiBImann’s equilibrium pricing model (1980) in the pres-

ence of transaction cost and derives the (multivariate) Esscher transform within the framework
under some assumptions. The result reveals that the Esscher transform is an appropriate proba-
bility transform for the pricing of insurance risks even in the market with transaction costs.

Keywords: Equilibrium pricing, Equilibrium allocation, Incomplete market, Esscher trans-
form, Transaction cost

1. INTRODUCTION

In the finance literature, the theory of asset pricing has been studied for the long time; the
theory is well-developed for the so-calledmpletemarket while there are still many blanks
for incompletemarkets. When there are transaction costs for trading assets in the market, some
asset may not be duplicated by other assets and so the market is incomplete. The insurance mar-
ket is presumably incomplete; new attempts are necessary for the development of economically
sound pricing methods.

In the actuarial literature, there have been developed many probability transforms for the
pricing of insurance risks. Such methods include the variance loading, the standard deviation
loading, and the exponential principle. Among them, one of the popular pricing methods for
actuaries is th&sscher transforngiven by

E[Ye %]

(1.1) (V) = S

for random variablé” that represents risk, wheéeis a positive constahindE is an expec-
tation operator under the physical probability meadtrés pointed out by Bhimann (1980),
however, the premiums calculated by these methods depend only on the risk, while in econom-
ics premiums are not only depending on the risk but also on market conditions.

Buhlmann (1980) considers a pure risk exchange market in which theré agents. Each
agent is characterized by his/her utility function, initial wealth and potential loss, and is willing
to buy/sell a risk exchange so as to maximize the expected utility. An equilibrium price of the
risk is obtained under the market clearing condition. FollowirdpiBhann (1980), equilibrium
models of insurance risks have been considered by many authors, including Aase (1993, 2002),
Malamud, Trubowitz and \thrich (2008), and Tsanakas and Christofides (2006).
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Buhlmann (1980) demonstrates that the Esscher transform (1.1) can be derived from the
equilibrium price, when exponential utilities are assumed and theYrigk sufficiently small
compared to the whole aggregated risk. Hence, the Esscher transform is not just an exponential
tilting (or exponential change of measure), but has a sound economic interpretation. See also
Wang (2002) and Kijima (2006) for further discussions on the Esscher transform and its eco-
nomic interpretations. In particular, Kijima (2006) extends the Esscher transform (1.1) to the
multivariate setting as

E[Y e~07] al
(12) ﬂ—(Y) - E[efgz] ) Z - ;}Ga
whereY = h(Y1,...,Yy) for some functiom, called themultivariate Esscher transform, and
shows that the transform (1.2) possesses many desirable properties as a pricing?method.

Although not mentioned explicitly, the risk exchange market consideredimnBann (1980)
is complete while actual insurance markets are presumabdpmplete In particular, there
are transaction costs for trading risks (and/or assets) in the market. Recall that a market is
complete if and only if any asset is duplicated by other existing assets in the market (see, e.g.,
Kijima [2013]). In other words, agents can use any asset in order to maximize their expected
utilities in the case of complete markets. The market in the presence of transaction costs is a
typical example of incomplete markets. The aim of this paper is to extendihierann’s result
(1980) to the market with transaction cost, thereby giving a further justification to the Esscher
transform (1.1) and its variants.

In the finance literature, many papers have considered the pricing of derivatives in the pres-
ence of transaction costs for trading the underlying assets. When the market is complete and
there are no transaction costs, any derivative can be duplicated by trading underlying assets
continuously (i.e., the perfect hedge) and the price of derivative is given by the initial cost of
the duplication. When there are transaction costs, this paradigm no longer holds and elaborated
mathematical arguments are required to determine a super-hedging portfolio. See Kabanov and
Safarian (2009) and references therein for detailed discussions on this topic. However, in these
studies, the underlying asset prices are giggagenoushand the asset demand to duplicate
the derivative has no impact on the prices of both the derivative and the underlying assets. In
other words, no attention has been paid to the equilibrium of asset prices in the market with
transaction costs.

In the economics literature, on the other hand, there are many papers that investigate the equi-
librium of asset prices. Recently, Buss, Uppal and Vilkov (2011) and Hara (2013) consider the
problem of asset prices in the general equilibrium with proportional transaction costs . In partic-
ular, Hara (2013) studies a single-period model in which there are multiple agents with general
utility functions and two assets, one riskfree and one risky, and determines the equilibrium asset
prices for each level of transaction costs to show, among others, that an increase in transaction
costs will increase buying prices and decrease selling prices under some conditions. Buss, Up-
pal and Vilkov (2011) investigate a multi-period model in which there are only two agents with
recursive utilities. See these papers and references therein for the general equilibrium of asset
prices with and without transaction costs.

Finally, in the actuarial literature, there are also many papers that consider the effect of trans-
action costs. For example, among others, He and Liang (2009) consider an optimal financing
and dividend control of the insurance company with transaction costs. Hgjgaard and Taksar

2Another popular pricing method for actuaries is the Wang transform developed by Wang (2002), which is
further extended by Kijima (2006) to the multivariate setting, based on @inann’s premium principle (1980).
In particular, Kijima (2006) shows that, when risks are normally distributed, the (multivariate) Esscher transform
is the same as the (multivariate) Wang transform. See Kijima and Muromachi (2008) for further discussions on the
relationship between thelBlmann’s result and the Wang transform.
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(1998) study a similar problem for reinsurance policies with transaction costs. However, as in
the finance literature, the underlying processes are given exogenously and no aspect of equilib-
rium is investigated. In this paper, following Hara (2013), we consider a single-period equilib-
rium model with multiple agents and multiple risky assets. However, because our main goal is
to extend the multivariate Esscher transform (1.2) to the market with transaction costs, we focus
on the case of exponential utilities.

The present paper is organized as follows. In the next section, we setup the model of asset
prices in the general equilibrium with proportional transaction costs. In Section 3, we first re-
view the Hihlmann'’s result (1980) by solving the equilibrium model for the case of complete
market, and then examine the case of incomplete market without transaction costs. It is shown
that the problem can be solved under some conditions and the multivariate Esscher transform
(1.2) is derived. Section 4 is devoted to the existence of the general equilibrium for the general
problem. Some special case of exponential utilities and normally distributed assets (i.e., the
CARA-normal case) is also considered. In section 5, we investigate the case that the transaction
costs are so small. In particular, when the rates of return of all the assets are normally dis-
tributed, it is shown that the asset prices are given by the multivariate Esscher transform (1.2)
with the mean rates of return being adjusted by transaction costs. Finally, Section 6 concludes
this paper.

2. MODEL SETUP

Consider an agentwith initial risk X; and utility functionu;(z). The risk X; may be a
portfolio of assets traded in the market or other types of nontradable assets. As usual, we
consider a standard probability spaée F,P) and assume that, > 0 andu; < 0. Let us
denote byM the class of traded assets in the market under consideration.

Suppose that there afeagents characterized by the péiX;,v;), i« = 1,2,...,1, in the
market. We want to derive an equilibrium pricéY’), Y € M, satisfying

;= argmax Ely(X;+Y;)], 1=1,2,...,1,
YieM
(2.1) subjectto 7(Y;) +te(Y;) =0, i=1,2,...,1,  (budget constraint)
Zi[:l Y, =0, (market clearing)

wheretc(Y) denotes the transaction cost associated with exch&ngdhe optimalY =
(371,372, . ,}N/I) is called anequilibrium risk exchangand X + Y an equilibrium risk allo-
cation, whereX = (X1, Xs,...,X;). In this paper, for the sake of simplicity, the riskfree
interest rate is assumed to be z&ro.

In order to formulate transaction costs explicitly, we assume that @¥ily- 1) assets are
traded in the market. The time-1 (future) value of agset= 0,1,..., N, is denoted by5;
and its time-0 (present) value iy = 7(.S;). In this setting, any traded portfolio for ageris
written as

N
(2.2) i=>uS;, =121,
j=0

where the quantity}i represents the number of asgataded by agent at time(. Of course,

y; > 0 implies that ageni purchases assét whereaSy;ﬁ = 0 and y; < 0 mean no trade

and a sell of asset, respectively. Throughout this paper, we assume that the holdings are real
numbers.

3Alternatively, we assume that the risks are enumerated by the riskfree money-market account.
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The initial risks X; consist of traded assets and nontradable risks. More specifically, we
assume that the initial risk of agenits given by

N
(23) Xl:Zl’zs]—F&““ 221,2,71,

j=0

where the quantityc§ represents the number of asgételd by agent at time0 ande; ¢ M
denotes the residual risk. The total number of agsetued in the market is denoted by

I
(2.4) A;=>"a, j=01,...,N,

which are assumed to be positive constants.

Asset 0 is the riskfree discount bond (so tlsgt= 1), while the other assets are risky (so
thatS;, 7 > 0, are random variables). Denote bythe transaction cost of buying and selling
one unit of assef. Then, ify§ >0 (y;'. < 0, respectively), agentmust pay the proportional
costcjy;?wj >0 (cj(—yj.)wj > 0). Itis assumed that the transaction costs disappear from the
economy. Throughout this paper, we shall denote

+c; ity >0,
vi(y) = ¢jsgn(y) =< —¢; ify <0,
0 ify=0.
Then, the total trading cost (including the transaction cost) is given by

N

(2.5) 7(V) +te(Y) = ymi(L+75(yy)),

J=0

whereY = Zj,v: o ¥;9;. Note that, in the case of no transaction costs, we hayg = 0 so that
N
7T(Y) + tC(Y) = Zj:(] Y;Tj. A . ‘ ‘
We deal with allocation variablel = =’ + y; instead of exchange variablgsfor all : and

j. Then, from (2.2)—(2.5), the problem (2.1) can be restated as follows: For given transaction
costse; > 0, we want to derive equilibrium prices = 7(S;) satisfying

( ~.
0; = argmax E [ul (5i+2;y:08j5j>} , i=1,2,...,1,
ejER
(2.6) subjectto S (0% — al)mi(1 4+ 4;(00 —2t)) <0, i=1,2,...,1,
(budget constraint)
\ Zle 0, = A, j=12...,N, (market clearing)

whereR denotes the set of real numbers. Note that we relax the budget constraints so as to have
inequality. Also, the market clearing condition does not apply for the riskfree Sgset

3. THE CASE OFNO TRANSACTION COST

Before proceeding, we consider the case of no transaction costs in order to make clear how
the transaction costs affect the results in equilibrium. In this section, we first examine the case
of complete market and then the incomplete case follows. As we shall see soon, even in the
incomplete case, we can obtain similar results to the complete case under some conditions.
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3.1. Complete market. If the market is complete, then it is well know that there exists a state
price densityy > 0 such thatr(Y') = E[nY] andE[n] = 1. Thus, in order to solve the problem
(2.1), we consider the Lagurange equations defined by

The first order condition (FOC for short) of (3.1) with respectta), w € €, is given by
(3.2) wy(Xi(w) + }N/Z(w)) — lin(w) = 0.

)

Let us denote the inverse functionwfby I; = (u})~!. Then, from the FOC (3.2), we have

Summing over and utilizing the market clearing condition in (2.1), we obtain

I 1

(3.4) Z X; = Z Ii(€im).

DefineZ andi(x) by

I
(3.5) 7 = Z X; I(nC) = Z L(6n)

for someC. Also, denote the inverse function fz) by «/(z).* It follows from (3.3) and (3.4)
thatn = «/(Z)/C. SinceE[n] = 1 so thatC' = E[u/(Z)], we finally obtain the equilibrium
price as

EYv'(Z)],

(3.6) m(Y) = Wa

I
Z=YX; WeM.
=1

The equilibrium risk allocation is given by (3.3). Note that the expressions (3.6) and (3.3) are
not explicit, because they involve the unknown Lagurange multiplieis=1,2,..., 1.

3.1.1. Special case: Exponential utilityWhen all the agents have exponential utility functions,
the above problem can be solved explicitly. Suppose that

1
(3.7) ui(z) = —/\—e’Aiz; A >0, i=1,2,...,1.
Then, since/;(z) = e~**, the FOC (3.3) can be written as
~ -1
(3.8) X;+Y; = (logn + log ¢;), i=1,2,...,1.

Ai
Summing ovet and utilizing the market clearing condition, we have

(3.9) Z = —%(logn+log0)

for someC, where we put
1
1 1
3.10 — = —.
(310 PS5y

“The inverse function exists under the conditigh< 0 for all i. The function.’ () can be seen as the marginal
utility function of arepresentative agerm the market.
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It is readily checked from (3.9) that we havé = E[e~*?| sinceE[n] = 1. Therefore, the
equilibrium price (3.6) is given by

1

(3.11) (V) = %; Z=> X VY € M,

where) is defined by (3.10). The equilibrium pricing formula (3.11) is explicit, becdtisad
A are defined only through the given quantitiésand)\;, respectively.

The equilibrium risk allocation (3.3) can be also obtained explicitly. Namely, we have
(3.12) Xi+}~ﬂ-:)\iZ, i=1,2,...,1I
Note that the allocatioX; + Y; is proportional to the aggregated rigkwith weight\/\; > 0,
wherezj’:1 A/A; = 1, for the exponential utility case.

Finally, note that, whey = Y +¢£ with Y and§ being mutually independent, the equilibrium
price (3.11) coincides with the Esscher transform (1.1) for Fskas claimed by Bhimann
(1980).

3.2. Incomplete market. In this subsection, we consider the problem (2.6) without transaction
costs. Because some asget M may not be duplicated by tradable assgts) = 0,1,..., NV,
the market isSncomplete

Suppose that the budget constraint in (2.6) is given by

(3.13) Y (05 —al)m =0, i=12...1I

J=0

Then, we can assumg = 1 without loss of generality. Consider the Lagurange equations

N

J=0

(3.14) L,=E

N

6> (0, —al)m, =121
j=0

The FOC of (3.14) with respect H; is given by

N
Sju; (61' + Z@ZS}C)] — Eiﬂ'j = 0, VZ, j
k=0

In particular, forj = 0, we have

E

(;=E

N
k=0
sincery = Sp = 1. It follows that

In other words, the equilibrium prices are determined by the system of equations (3.15) by
choosing the optimal aIIocatior@§ so that the right-hand side of (3.15) becomes independent of

i. Note that the prices; depend on the joint distribution 061, ..., Sy, e1, ..., en). Therefore,
the problem (3.15) is much more difficult to solve than the complete case.

(3.15) = . Yi, g
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3.2.1. Special case: Exponential utilityfSuppose that all the agents have exponential utilities
(3.7). Then, from (3.15), we derive the following system of simultaneous equations:

E [Sje#‘i (ei+3080 5};&)]

3.16 T = =
(3.16) 7T g [e_xi(aﬁrz:{f:l egsk)]

. Vi, j>0.

Note that the constant term%sg is canceled out on both numerator and denominator. This
system of equations hdsV + N = N (I + 1) unknowns (i.e.§§. andr;) and/N equations in

(3.16). Together with the market clearing condition, we ha¥%e+ N = N(I + 1) equations.
Hence, we can solve the simultaneous equation (3.16), although the solution may not be unique.

Since the constant term%SO does not matter in (3.16), the budget constraﬂnt is adjusté% by
so as to satisfy (3.13). The equilibrium risk exchanges are determingd-by’ — .
In order to solve the problem, define the moment generating functions (MGFSs)

mi(el, 92, e ,6]\[) =E |:e_)\i(€i+zéy:1 9‘7-,5'.7-)] s 1= 1, 2, Ce ,I,

for which the MGFsm; exist> The equilibrium pricesr; and the solutiongj. are determined
by the following simultaneous equations:

o ~ ~ ~
W]:—logmz(ﬁi,eé,ﬂ?j\z); Vi, 7 > 0.
0b;
If in particular there are no residual risks then we can solve the problem explicitly. Namely,
let

(3.17) m(pl,pg,...,pN):E[e_zé‘vzlpjsj] : 1=1,2,...,1,
and consider the system of simultaneous equations
(3.18) =g, logm(pt, py, -, pN), Vi, j >0,

J

where we pup’ = \0.
But, since the MGFEn does not depend anthe solution$9§ = )\i(mj- + g;i) are also indepen-
dent ofi. That is, we have\;(z’ + 7/;) = p; for somep;. It follows that

i Py .
xj—i-g];:)\—ji, Vi, j >0,

and the market clearing condition together with (2.4) implies that

Ajzzx;:%; %:Z% Vi, j > 0.

(2

Therefore, we obtaip; = AA; so that(z} +7})S; = %Aij. Hence, the equilibrium allocation
is given by

N N
~ . . A

(3.19) Xi+Yi=) (¢ +7) S, = 4 Z= S AS;,  i=12,.. 1

j=1 ! j=1
The equilibrium prices are then expressed from (3.16) as

E[S;e ] al ,
(320) szm; Z:ZAij7 j:1,2,...N,

j=1

SWe need to assume that the MGFs exist in order for the equilibrium prices to exist in the exponential utility
case. Note that this excludes the log-normally distributed assets.
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the multivariate Esscher transform$f, see (1.2). Note the resemblance of the solutions (3.11)
and (3.20). However, this does not mean the existence of the state price dendigt is, we
cannot price any asset other thén ;7 = 1,2,..., N. Also, the risk allocations (3.12) and
(3.19) are similar, becau$e | A;S; = S0 X; if af) = 0 for all i,

It should be noted that the equilibrium price (3.20) as well as the equilibrium allocation (3.19)
depends on the initial riskX; only through the aggregated risk However, when there are
transaction costs, the allocation (3.19) is no longer optimal and the equilibrium price certainly
depends on the initial risk&; even in the exponential utility case, as we shall see later.

4. EXISTENCE OFEQUILIBRIUM

In this section, we prove that there exists an equilibrium to the problem (2.6) even in the
presence of proportional transaction costs.

To this end, we first assume that only asisesttraded with proportional transaction costs, for
the sake of simplicity. The other assets are traded with no transaction costs (or may be negligi-
bly small). The treatment of general case is similar with exponential growth of combinations.
Throughout this section, we shall denete: ¢; and~y(y) = csgn(y).

According to Remark 1 in Hara (2013), we can assume without any loss of generality that
mo = 1 and¢y = 0 for the riskfree bond. Hence, the budget constraint in (2.6) is rewritten as

N
(4.2) Z(@; — w4 (0] — 2})my (0] — x7) + (6 — xf) <0, i=1,2,...,1,
j=1
in this setting.
First, we fix the pricesr; and, in order to solve the optimization problem, we ignore the
market clearing condition, which enables us to divide the problem into the following individual
optimization problem:

4.2) max E
%

N
u; (ai + Z 9;15]»)] subject to (4.1) for each ageit
=0
The problem (4.2) satisfies the Slater constraint qualification. That is, the budget constraint is
convex orﬂ;ﬁ for fixed pricesr;, and there exist®,, ¢,, . . ., 0,) satisfying

N
2(9]- - x;)ﬁj + (61 — xi)ﬂl’y(el - 5511) + (96 - 556) <0,

Jj=1

where inequality in (4.1) is replaced by strict inequality. Thus, a feasible sol(tﬁioﬁl, ce 5]\,)
of (4.2) is optimal if and only if there exists a Lagrange multipliesuch that

N
(4.3) >0, 4 (Z(Hj — ay)m; + (61 — 2)my (0 — 1) + (6 — 956)) =0,

J=1

N
(44) E S]U; (51' + Zé;sg)] - giﬁj = 07 ] 7& 1a
=0
/ N 5y Y i
E [S’lul <€i -+ ijo 9]5J>] — El(l -+ C)ﬂ'l = 0, if 91 > Xy,
(4.5) E [Slu; (si + zj.ioéjsj)] 41— )m =0, if 6, < i,

&(1 — C)7T1 S E [Slu; <€i -+ Z;;\/:O @Sjﬂ S &(1 -+ C)’/Tl, if 51 = m?‘l

See Borwein and Levis (2000) for detailed discussions.
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Next, sincery = Sy = 1, we have from (4.4) foj = 0 that

N
u, (Zékskﬂ >0, i=12,....1,
k=0

where the strict inequality follows from the assumptign> 0. Thus, (4.3) implies that the
budget constraint (4.1) must hold with equality.
Let us define

(;,=E

_ E[Sjui(ei + 60 + > ey OkSe)]
Elw)(e; + 0o + ZkN=1 01,Sk)]

for which the functionsy’, exist. Note that, sincg, = 1, we havep; = 1 for all i.
Given a transaction cost> 0, we divide/ agents into three groups:

B.={i:0 >z}, S ={i:0 <z}, N.={i:60 =2z},

(4.6) (60,01, ..., On)

Y vz? j

Where@i is the component for asset 1 of an optimal solution of (4.2) for agerthe presence
of transaction cost.

In this setting, the necessary and sufficient condition (4.3)—(4.5) is written as follows: For
1 € B,, solve

¢;’(90a917"'>9N):Wj7 ]:2,]\/'7

(47) Qﬁ’i(e()?el’"'ue]\/) = <1+C>7T17
Z;.Vzl(ej — &)y + emy (6 — ) + (o — xf) = 0,
to obtain(6i, 6:, ..., 6%,). Similarly, fori € S., solve
925;(00,81,...,0]\/):71']', jZZ,N,
(4.8) ¢1(00,01,...,0n) = (1 —c)m,
SV (0 — at)m; — emy (61 — 23) + (60 — xh) =0,

to obtain(?, 6 , ..., 6%,). Finally, fori € \,, solve

¢§'<007x7i7927"'7(9N):7Tj, ]:2,N,
(4.9) (1 —c)m < ¢i(fo, x1,0a,...,08) < (14 ),

Zj;él(ej - Iﬁ')ﬂj =0,
to obtain(gg,xi,gg, . ,gjv). The equilibrium pricesr; are obtained by the market clearing

condition in (2.6). N

So far, we have shown that the equilibrium priegsas well as equilibrium aIIocation%
in the problem (2.6) with the budget constraint being replaced by (4.1) are obtained by solving
(4.7)—(4.9), if the types of agents are known. Hence, we need to solve the problem (4.7)—(4.9)
for all possible combinations of agent types in order to find the feasible and optimal solution.
The general case can be proved similarly by considering all the possible combinations, although
the number of possible combinations grows exponentially fast. We thus have proved the fol-
lowing.

Theorem 4.1. In the problem (2.6), there exists an equilibrium.

In the general setup, this is a very difficult problem to solve because of the exponentially
growing combinations, and it seems impossible to investigate the effect of the transaction cost
on the equilibrium allocations and prices. Hence, in the rest of this paper, we shall impose some
additional assumptions either on the utility function or on the joint distribution of risky assets.
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4.1. Exponential Utilities. As in Subsection 3.2.1, suppose that= 0 andu/(z) = e~ for
all 7. In this case, the functiom;l defined in (4.6) is given by

; E[S;e~ "] -
(4.10) ¢i(01,...,0N) :Wa P:jzlejsj-

Letp;i = \;0,, as before, and denote the MGF (moment generating functidig) 06, .. ., Sn)
by (3.17), i.e.,

m(pla P2 .- 7pN) =E |:e_z§\/:1 ijji|
for which the MGF exists. It is easy to verify that

¢5(0o, 01, ..., 0n) = —a—logm(pzl, e Py )

Pij
Hence, it is enough to define the function

0
¢j(p17p27 S 7pN) = _a_logm(p17p27 s 7pN)7
Pj

which makes the exponential case simpler.
Now, the problem (4.7)—(4.9) is reduced to the following: Fer 5., solve

{¢j(plap2>"'apN):7rj, j=2,...N,
d1(p1s p2;- .-, pn) = (1 + o)y
The solution is denoted by (c), j = 1,2, ..., N. Similarly, fori € S, solve

oi(p1,p2,- .-, pPN) = T}, j=2,...N,
{ ¢1(p1;p2s- - pn) = (L — o).
The solution is denoted by; (c), j = 1,2,..., N. Finally, fori € N, solve

b N, pa, .. pn) = T, j=2,...,N,
{ (1 —o)m < g1(Nal, pa, .. pn) < (L4 )
The solution is denoted b@?i(c),j = 2,..., N, which may be dependent énin either cases,
po is obtained by the budget constraint.

Given these solutions, the equilibrium allocation of agestobtained as follows: For asset
1, we have

(4.11)

(4.12)

(4.13)

ﬁT(C)/)‘iu i € B,
0. =< pr(e)/N, i€S.,

xl, i €N,
Summing ovet;, the market clearing condition is obtained as
N 1 1 .
(4.14) A :PT(C)Z)\—Zﬂ'm (C)Z)\—i‘FZ%-
€8, 1€8, €N,

Similarly, for the other asset j; > 2, we have
ﬁj(c)/)\i, 1€ B,
5;- =19 pj(0)/X, i€S,
g3 (c)/ i, 1 €N
Summing ovet, the market clearing condition is obtained as

. 1 1 Py (c) .
(4.15) A=p©) 5 @Y v+ . iz2

i€Be €S, Tt deN.
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Note that we hav8 N + No(N — 1) unknowns f;(c), p; () andm; for j > 1, andp¥'(c) for
i € N.andj > 2) and the same number of equatio$é in (4.11) and (4.12)No(N — 1)
in (4.13), andN in total in (4.14) and (4.15) together), wheky = |N.| denotes the number
of agents in the clas4/.. Hence, in principle, we can solve the simultaneous equations, if the
division of agents were known.
The aIIocations% are determined by the budget constraint as follows.:koi3., we have

N [+ ~t
7 i p; (€) i pi (c) i
(4.16) 0y = x4 — Z ( ]/\i — xj> T — cm ( 1)\1» -7 ).

j=1

Similarly, fori € S,.,

N - ~
~. . .\ C . .
(4.17) b =ah— Y (pJA—() - x;) 7+ em (plA—@ - xa) ,
j:]. 1 1

and fori € N,
N ~0i

(4.18) O =15— (T - :vj) ;.
j=2 ‘

From (4.16)—(4.18) together with (4.14) and (4.15), we obtain the market clearing condition for

asset) as
1 ~
i P (C) i
;90:A0—20W12< 1)\2- —.I'l) SAQ,

€8,

which means that the riskfree asset may be left in the méirket.

Example 4.1. Suppose that the transaction cost sufficiently large, so that no agents want to
trade asset 1, i.e. = S. = (. In this case, the problem (4.13) is only relevant, and we have
0 = p)(1)/ Ny i = 1,2,....1, fpr every asse. Recall that, in general, the quantiiff (1)
depends on. The equilibrium price is given from (4.10) as

E[S;e ?i 1 i a i ;
7j=2

for all 7, where the market clearing condition is given by

I~011
A; = p";), iz

i=1

Note that the prices in (4.19) are affected by the non-traded as®étens; is independent of
the other assets, it is readily shown that the prices are given by (3.20with0.

4.2. Risks Are Normally Distributed. Next, we consider the case thef;, S,,...,Sy) is
normally distributed. In this subsection, we assume that ¢ < 1. The mean vector and
covariance matrix are denoted jpy= (¢;) andX = (o;;), respectively. It is readily obtained
that

N
1
logm(p,...,pn) = — Y _ pittj + B} > oipir-
j=1 3.k

5This does not cause any problem, since the riskfree bond is traded with no transaction costs and does not
contribute to the functiog; for the exponential case.
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Thus, we have

(4.20) ¢i(p1,- .., pN) Z Ok Pk-

For the convenience of description, we use the veetors (7;), a = (4;) andp’ = (p}),
and divide the covariance matr¥ as

&7 021 O22 -+ O2N
o R N
Y= AH 9 o = ) Y= )
o | X
ON1 ON2 *** ONN
wheres " denotes the transpose®f For anN-dimensional vectog = (21, 2, ..., 2x) ", We
denote thg N — 1)-dimensional vectofz,, ..., zy) " by 2. For examplesr = (m,, ..., 7x)"

for 7.
From (4.20), the equations fgr= 2, ..., N of (4.11)-(4.13) are written in matrix form as

fo—pie —3p' =, i=1,2,...,1,

wherepi = )2t if i € N,. SinceX is positive definite (i.e., nonsingular), we have

A -1

(4.21) p=% (p—pio—x), i=1,2,...,1.
The market clearing conditions (4.14) and (4.15) are rewritten as
I
_ P1
(4.22) A = Zl v
and
I .
. 1 . ~-1 (1. R Pl 1.
4.23 = —p'=3 By n_ -
(4.23) a ;M’ <)\M U;)\i >\7T>’
respectively, where = % as in (3.10). It follows from (4.22) and (4.23) that
(4.24) F=fi—A (Al& + 2&) .

Hence, when risks are normally distributed, the priegs; > 2, are not affected from the
transaction costof assetl. Moreover, the prices;, j > 2, are given as the multivariate Esscher
transform (3.20). To see this, we need the following lemma. See Kijima and Muromachi (2001)
for the proof.

Lemma 4.1. Suppose thatX, Z) is normally distributed. Then,
E[f(X)e™*] = E[f(X — Acov(X, Z))|E[e™]
for any f(x) for which the expectations exist, whe®v denotes the covariance operator.

Theorem 4.2. When risks are normally distributed, the prices j > 2, are given by the
multivariate Esscher transform

E[Sje ] ,
W‘j_E[e—’\Z’ Z = ZAkSka J =2,

that are independent of the transaction costf assetl.
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Proof. From (4.24), we have

N
Wj:/Lj_)\ZUjkAka j:2,3,...,N,

k=1
which is just the multivariate Esscher transform (3.20) from Lemma 4.1. O

In contrast, the equilibrium allocation depends on the cost, as we show next. From (4.21) and
(4.24),p' can be represented as a functiorpbfind given by

(4.25) PP = A (Alﬁfl& + a) S S
Under the condition (4.25), (p*) is also a function of} and given by
$1(pr: £ (P1)) = m — B — pyr,
where we define
B=x(467%

Here, note that, since> 0,

must be positive definite.
Recalling thap! = \;(z} + ), we define

vi(y) = 8; — iy, S$i =, — B — /\im‘il,

for eachi = 1,...,I. In order to find equilibrium prices and equilibrium allocations, it is
enough to determing!, v, . .., y! andr; satisfying

vi(yi) = (1 +o)m, yi >0,
(426) Uz(yi) = (1 - C)Trla yi < 07

(1 - C)ﬂ-l S Si S (1 + C)ﬂ-la yi = 07
under the market clearing condition for assgeite.,

I
(4.27) > yi=o0.
=1

Condition (4.26) can be reformulated as
(si — (L+c)m)/rhiy s; > (1+c)my,
(4.28) y1 =R (si— (1 —=c)ym)/rAi, si < (1 —c)m,
0, otherwise
and the partition{B., S., N..) of agents is rewritten as
B. = {i:s;>(1+c¢)m},
S = {i:si<(l—=c)m},
Ne = {i:(1—0)m <s; < (14 ¢)m}.
From (4.28), equation (4.27) is restated as

(4.29) Z )\%(sz —(1+¢om)+ Z /\l(sl —(1=¢)m) =0.

i€Be ieS. !
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We first consider the cagse= 0. From (4.28), we have

S; — M

Hence, we obtain the equilibrium pried for ¢ = 0 as
ﬂ?:[,bl—B—)\TAl :,ul—/\(anAl—l—&Td),

which is given by the multivariate Esscher transform by the proof of Theorem 4.2.
We assume that) > 0 in the sequel. We will show that i) an equilibrium prieé¢ for
¢ € [0,1] exists and it is uniquely determined by (4.29)3f, S. # 0, ii) =f > 0, and iii)
the buying pricg1 + ¢)x¢{ is increasing inc and the selling pricél — ¢)7§ is decreasing if.
Then, from (4.28), the trading volumég | are decreasing as the cegets large and, from the
definition of B, andS,, once some agent stops trading, he/she will never return for trading.
Suppose that with 7§ > 0 (e.g.,c = 0) is given. Ifyl = y? = ... = y! = 0 for thec, then,
forall ¢ € [c,1], 7§ = ¢ satisfies (4.26) and (4.27), and the results i), i) and iii) hold. Hence,
we assume that

(4.30) there existg/i + 0 for c.

Equation (4.29) implies that{ is uniquely determined by

(4.31) - ZieBpUSp i —, _ Z Z —
g + ,\S +c ( pys E) i€B. i€Se

We note that (4.29) and (4.30) guarantee the existengg ahd )\, and that € [0, 1] together
with A\g, A\g > 0 also guarantee%— + - +c (—B — —) = 0. In arange including for which

B. andS, are unchanged: is a contlnuous function af, and hence(l + ¢)7§ and(1 — ¢)n{
are also continuous functions af

For simplicity, we assume thal — ¢)7¢ < s; < (1 + ¢)n§ for all i € N.. In this case,
conversely, we can slightly changepreserving the partitiof3., S., N.). Now, we slightly
increase: to ¢. Then, (4.29) for’ andx¢ holds for the sam#, andsS,. That is,

(4.32) i(l + o)m$ + i(1 — o) = i(l +)rd + i(1 = Y iy
B As AB As , ;
1€EBUS,

Suppose to the contrary th@t + ¢)7f > (1 + ¢ )7r1', which implie37r1 > 7¢', because < ¢
andz$ > 0. From (4.32), we have < (1 — ¢)n¢ < (1 — ¢)n¢’. This is, however, ImpOSSIb|e
becausél —c) > (1 —¢) > 0 andn§ > ¢ Hence we obtail + ¢)r§ < (14 ¢)n¢’, which
implies that(1 — ¢)7$ > (1 — ¢)x¢ andz{ > 0.

If there isi € N, such that(l — ¢)n§{ = s; or s; = (1 + ¢)n§, then we can show the same
results by redefining the partitidi88., S., N.) by

B. = {i:s; > (1+c)ns},
S = {i:s; <(1—o)ns},
N, = {i:(1—-0onf <s; < (1+e)nf}.

By repeating the same argument and modifying the part{f#®ns., V.) until ¢ = 1 or (4.30)
is violated, we can show i), ii) and iii), as desired. We thus have the following results.
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Theorem 4.3. Suppose that all the risky assets are normally distributed. Then, for any eost
[0, 1], an equilibrium pricer{ of assetl exists, and is a unique solution @.29)if B., S, # 0.
The equilibrium allocation is} +1, wherey is given by(4.28) for assetl andz’+7! = ./,
whereﬁ§ are given by(4.25) for assetj, j > 2.

The next seemingly plausible results have been proved in Hara (2013) for the single risky-
asset case with general distribution.

Corollary 4.1. When all the risks are normally distributed, the buying prite+ c)={ is in-
creasing inc, the selling price(1 — ¢)=¢ is decreasing irr, and the trading volumelg/: | are
decreasing irc in equilibrium. Once some agent stops trading, he/she will never return for
trading.

5. THE EQUILIBRIUM WHEN TRANSACTION COSTS AREVERY SMALL

Suppose that the transaction castsare so small that all the assets in the market are traded

by all the agents, i.e@“;i # 0 or 5; — x; # 0. Then, as in the case of no transaction costs, we
can define the Lagurange equations

N

Jj=0

N

EZZG — a})m; (14 ¢jsgn(0) — 7))
7=0

foralli =1,2,...,1,and the FOC with respect Et} is given by

(5.1) E

N
Sju! <gi + Zé’;;skﬂ — (1 + esgn(f — o)) =0, Vi, j.
k=0

This is possible, because we assume 5!;’%13& ' # 0 and the sign functiosgn(y) is differen-
tiable excepy = 0.

5.1. CARA-Normal Case. In this subsection, we consider exponential utilities, i#z) =

e i=1,2,...,1. Then, from (5.1), we derive the following system of simultaneous equa-
tions:
(5 2) E [ - (sH—Zk L 0L Sk) = 7Tj(1 + stgn(éz — x;))E [e—A¢(€i+Zsz1 aisk) 7 i, 7,

because as befofe = E[e—(=+Zi=1%.5)], Recall thatgn(y) = 1if y > 0 andsgn(y) = —1
if y <O.
In the following, we assume that the pricesare strictly positive and denote
S —m; i i — Ti\&;
Rj:J_WJ7 j=1,2,...,N; Rzzg—ﬁ(g)

1,2
Ui 771‘(51')

) I b IR

I

Y

wherer;(g;) represents the (unobservable) pricing functional;ofin this section, we assume
that the random vectdzy, ..., Ry, R;, ..., R5) defined above is normally distributed.
Following the ordinary arguments, we obtain

51+2918 _ZWJQZR + (e R; + mi(e;) +ZQ’7TJ

It follows that the FOC (5.2) can be written as

(5.3) E [(1+Rj)e_’\"rz} — (1+ ¢;5en(7))E [e—W} .Y, g,
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where

N
(5.4) I = mi(a) + U R; + milen) Ry,

j=1
becaus#’ = = + y.. A direct application of Lemma 4.1 to (5.3) yields

pi — dicov(R, I') = ¢jsen(y), ¥ #0,
whereyu; = E[R;] denotes the mean rate of return of agsét follows from the definition (5.4)
of I' that
N

(1 — cjsen(}) = mile)of; + Y mu(ah + Tows, Vi, 4,
k=1

(5.5)

> =

whereo?; = cov(R;, R) ando;; = cov(R;, R;).

Because we have assumed that the equilibrium exchajjgnre all nonzero, Equation (5.5)
holds for alli andj. Summing over in (5.5) and utilizing the market clearing condition in
(2.6), we obtain

(5.6)

> =

N
(15 = &) = &+ 3 _mAionss,  J=1.2,.. N,
k=1

where¢; = > . mi(e;)os;, Ais givenin (3.10), and';(y;) is defined by

ij

| >

I
=1

>

7

with y; = (y;,4%,...,y]). The quantityc;T;(y,) is interpreted as the weighted sum of the
(signed) trading costs of assgin equilibrium. Note that, since-1 < sgn(y) < 1, we obtain

(58) —1<Fj<y]‘><1, 17=12,...,N,

for anyy;. The inequalities in (5.8) are strict, because the market clearing condition cannot
hold otherwise.
When% are all nonzero, equations in (5.6) can be written in matrix form as

1 :

L= T) =& =X diag(4;) m,
wherep = (p;), I' = (¢;T'5(y;)), & = (&) andw = (7;) are N-dimensional vectors, where
3 = (045) iIsanN x N symmetric matrix, and wheréiag(A;) denotes the diagonal matrix of
order N with diagonal elementd ;. Assuming that the covariance matdkis positive definite
(hence, itis invertible), the above equation is solved as

1. L] s~ -
(5.9) m = 1diag(A7)E (B - ), Rm=p-T,

wherep = (1i5), 11; = p; — ¢;1'(y;), denotes the vector @bst-adjustednean rates of return
in equilibrium. Hence, the equilibrium prices are written formally as

1 - ,
(5.10) D v R R N A RS

whereE]j‘1 denotes thgth row vector of the inverse matrix 1.
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In the following, we denote the equilibrium price without transaction costs ¢.es 0 for
all ) by w?T for assety. In this setting, it is readily proved that, even in the presence of residual
riskse;, the equilibrium prices are given by

E[S;e ]

T 1 -1 . _
(511) ﬂ-N __E] (IJ’ /\5)_ E[e_)\z] ’

=1,2...,N
Vi )\AJ j )’ = Y Y

the multivariate Esscher transform 8f, where

I N 1
(5.12) Z="X;=) AiS;+) &
i=1 j=1 i=1

stands for the aggregated risk.

Note that, in the presence of transaction costs, while the mean rates of return are adjusted,
the covariance matrix is unchanged. Hence, comparing (5.10) with (5.11), we conclude the
following.

Theorem 5.1. Suppose that the transaction cosfsare so small that the optimal exchan@gs
are all nonzero. Then, the equilibrium price of asgen the presence of transaction costs is
given by the multivariate Esscher transform%fi.e.,

e . A
(513) T = W’ Z = ZlAJSJ + 251’7
j= i=

whereS; denotes the asset price with the cost-adjusted mean rate of rgtueni; —c;I;(7,).

Note that (5.10) can be written alternatively as

1 1 1
=X - N) - —2 T =n - — 3T i =1,2,...,N.
’/TJ )\A] J (,LL E) )\A] J 7rj )\Aj J ) ] ) <y )
Here, the quantitieB;(y;) can be positive or negative, depending on the optimal risk exchanges
g; which are assumed to be nonzero in Theorem 5.1. Hence, the equilibrium prices in the
presence of transaction costs can be higher or lower than those without transaction costs.
Next, the equations in (5.5) can be written in matrix form as

1 ‘ i : iy i
)\_i(lll - —§&'= Edlag(%’ + yj) ,
wherevy’ = (¢;sgn(yl)) and¢’ = (mi(e;)of;) are N-dimensional vectors. Substitution of the
equilibrium price (5.9) into the above equation yields

1 — ) % . 7 ~q 1 . _ _
3 =" = Nig) = diag(a] + ) Tdiag(A7) 27 (= T = AE).
It follows that the equilibrium allocation is formally given as

o A S (- — Mg
(514) (LUZ- + ijL)SJ = —AJ’SJ' ]_ 5
P ENTS  (u T - )

j=1,2,...,N.

Recall from (3.19) that the pagt A;S; corresponds to the equilibrium allocation when there
are no transaction costs and residual risks.
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5.2. Pricing of derivative securities. Suppose that there are derivative securities (written on
some traded assets) in the market and that the equilibrium pricing formula (5.13) is valid. In this
subsection, we show that the risk-neutral pricing method holds true for the pricing of derivative
securities under some conditions.

Consider, as an example, a call optidrwith strike price/” written on asses;. That is, we
denote the payoff by

Y = (5= K)y = f(Ry),  [flo)=(m(l+z)-K)y,
where(z), = max{z,0} andR; = (S;—n;)/m;. According to the equilibrium pricing formula
(5.13), the price of the call option is given by
E[Ye ]
E[e—’\g]

whereY denotes theost-adjustegbayoff of the call option.
Suppose that” = f(R;) and, instead of (5.15), the call option price is given by

E[f(R)e ]
E[e—*7]

where R; denotes the cost-adjusted rate of returnSef Note that the transaction costs to
trade derivative securities are usually negligible, because agents must pay the option premiums.
However, since the transaction costs of other assets affect the option price in equilibrium, the
formulaY = f(R,) is merely an assumption in our framework. This assumption states that the
transaction costs of other assets do not affect the price of the derivative.

Suppose further that there are so many assets traded in the market, and so the aggregated risk
Z can be approximated by a normally distributed random variaBiace thecost-adjustedate
of return?; is normally distributed by our early assumption, i.e.,

(5.15) (YY) =

)

(5.16) m(Y) =

9

Rj = ,ljj + oWy,
wherew; denotes a standard normal variate, it then follows from (5.16) and Lemma 4.1 that
(5.17) m(Y) = E[f(1; + ojw; — Acov(R;, Z))].
However, in this setting, the price 6§ must be given by
mj = Emi(1 4 11 + ojw; — Acov(R;, Z))];
hence, we havg; = Acov(R;, Z). It follows that the call option price is given by
(5.18) m(Y) = E[(m;(1 + ojuy) — K)4].

This is so, because the risk premiweov(R;, Rz) in (5.16) is already reflected in the price
of the underlying assef; in equilibrium. This result is important for practice, because we do
not need to estimate the unknown (unobservable) parameterdcov(R;, R ) for the pricing
of derivative securities, provided that the above assumptions hold.

Now, recall that” ~ 1 + = for x small in the magnitude. Hence, if the volatility is smalll
enough, the following approximation is justified:

(5.19) 1+ ojw; ~ 7i%/2

where the termrj?/Q is subtracted to have the same mean in both sides. In this case, from (5.18),
we have

7(Y) = E[(me™ /2 — K),].

’See Wang (2003) for the justification of this assumption.
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Finally, it is readily shown that the call option price is given by

_ log(ny/K) 0

Y
O'j 2

the famous Black—Scholes formula (1973) with= 0 andT" = 1.

7(Y)=m;®(d) — K&(d — 0j), d

6. COCLUDING REMARKS

In this paper, we examine theiBImann’s equilibrium pricing model (1980) in the presence
of proportional transaction cost. It is shown that an equilibrium exists under some mild con-
ditions and the multivariate Esscher transform (1.2) is an appropriate probability transform for
the pricing of insurance risks even in the market with transaction costs.

In the simplest case that only asset 1 is traded with transaction cost (the other assets are
traded with no transaction costs), we derive an explicit form of equations to be solved for the
equilibrium. In particular, for the CARA-normal case, it is shown that an equilibrium prjce
of assetl with transaction cost is a unique solution of a linear equation (4.29) and the prices
of the other assets are given by the multivariate Esscher transform. In this case, as the cost
increases, the buying pri¢eé + ¢)={ is increasing, the selling pridé — ¢)=¢ is decreasing, and
the trading volumeg/; | are decreasing in equilibrium.

When the transaction costs are so small, we show that the equilibrium asset prices are given
by the multivariate Esscher transform for the CARA-normal case. In this case, while the mean
rates of return of the assets are adjusted by the transaction costs, the volatilities of the assets are
not affected by them in equilibrium.

When there is a derivative security in the market, we show that the risk-neutral pricing method
is possible under the assumption that the transaction costs of other assets do not affect the price
of the derivative. However, in our framework, the transaction costs of other aksaftect
the option price in equilibrium and, hence, the risk-neutral method may not be applicable in the
presence of transaction costs. It is of great interest to investigate this problem within the general
equilibrium framework as a future research.
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