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Abstract. In this paper, we propose a general method for testing inequality restrictions
on nonparametric functions. Our framework includes many nonparametric testing problems
in a unified framework, with a number of possible applications in auction models, game
theoretic models, wage inequality, and revealed preferences. Our test involves a one-sided
version of Lp functionals of kernel-type estimators (1 ≤ p < ∞) and is easy to implement
in general, mainly due to its recourse to the bootstrap method. The bootstrap procedure
is based on nonparametric bootstrap applied to kernel-based test statistics, with estimated
“contact sets.” We provide regularity conditions under which the bootstrap test is asymptot-
ically valid uniformly over a large class of distributions, including the cases that the limiting
distribution of the test statistic is degenerate. Our bootstrap test is shown to exhibit good
power properties in Monte Carlo experiments, and we provide a general form of the local
power function. As an illustration, we consider testing implications from auction theory,
provide primitive conditions for our test, and demonstrate its usefulness by applying our
test to real data. We supplement this example with the second empirical illustration in the
context of wage inequality.
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1. Introduction

In this paper, we propose a general method for testing inequality restrictions on nonpara-

metric functions. To describe our testing problem, let vτ,1, . . . , vτ,J denote nonparametric

real-valued functions on Rd for each index τ ∈ T , where T is a subset of a finite dimen-

sional space. We focus on testing

H0 : max{vτ,1(x), · · ·, vτ,J(x)} ≤ 0 for all (x, τ) ∈ X × T , against

H1 : max{vτ,1(x), · · ·, vτ,J(x)} > 0 for some (x, τ) ∈ X × T ,
(1.1)

where X×T is a domain of interest. We propose a one-sided Lp integrated test statistic based

on nonparametric estimators of vτ,1, . . . , vτ,J . We provide general asymptotic theory for the

test statistic and suggest a bootstrap procedure to compute critical values. We establish

that our test has correct uniform asymptotic size and is not conservative. We also determine

the asymptotic power of our test under fixed alternatives and some local alternatives.

We allow for a general class of nonparametric functions, including, as special cases, condi-

tional mean, quantile, hazard, and distribution functions and their derivatives. For example,

vτ,j(x) = P (Yj ≤ τ |X = x) can be the conditional distribution function of Yj given X = x,

or vτ,j(x) can be the τ -th quantile of Yj conditional on X = x. We can also allow for

transformations of these functions satisfying some regularity conditions. The nonparametric

estimators we consider are mainly kernel-type estimators but can be allowed to be more

general, provided that they satisfy certain Bahadur-type linear expansions.

Inequality restrictions on nonparametric functions arise often as testable implications from

economic theory. For example, in first-price auctions, Guerre, Perrigne, and Vuong (2009,

GPV hereafter) show that the quantiles of the observed equilibrium bid distributions with

different numbers of bidders should satisfy a set of inequality restrictions (Equation (5) of

GPV). If the auctions are heterogeneous so that the private values are affected by observed

characteristics, we may consider conditionally exogenous participation with a conditional

version of the restrictions (see Section 3.2 of GPV). Such restrictions are in the form of

multiple inequalities for linear combinations of nonparametric conditional quantile functions.

Our test then can be used to test whether the restrictions hold jointly uniformly over quantiles

and observed characteristics in a certain range. In this paper, we use this auction example

to illustrate the usefulness of our general framework. To the best of our knowledge, there

does not exist an alternative test available in the literature for this kind of examples.

In addition to GPV, a large number of auction models are associated with some forms of

functional inequalities. See, for example, Haile and Tamer (2003), Haile, Hong, and Shum

(2003), Aradillas-López, Gandhi, and Quint (2013a), Aradillas-López, Gandhi, and Quint
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(2013b), and Krasnokutskaya, Song, and Tang (2013), among others. Our method can be

used to make inference in their setups, while allowing for continuous covariates.

Econometric models of games belong to a related but distinct branch of the literature,

compared to the auction models. In this literature, inference on many game theoretic models

are recently based on partial identification or functional inequalities. For example, see Tamer

(2003), Andrews, Berry, and Jia (2004), Berry and Tamer (2007), Aradillas-López and Tamer

(2008), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), Galichon

and Henry (2011), Chesher and Rosen (2012), and Aradillas-López and Rosen (2013), among

others. See de Paula (2013) and references therein for a broad recent development in this

literature. Our general method provides researchers in this field a new inference tool when

they have continuous covariates.

Inequality restrictions also arise in testing revealed preferences. Blundell, Browning, and

Crawford (2008) used revealed preference inequalities to provide the nonparametric bounds

on average consumer responses to price changes. In addition, Blundell, Kristensen, and

Matzkin (2014) used the same inequalities to bound quantile demand functions. It would

be possible to use our framework to test revealed preference inequalities either in average

demand functions or in quantile demand functions. See also Hoderlein and Stoye (2013) and

Kitamura and Stoye (2013) for related issues of testing revealed preference inequalities.

In addition to the literature mentioned above, many results on partial identification can

be written as functional inequalities (see, e.g., Imbens and Manski (2004), Manski (2003),

Manski (2007), Manski and Pepper (2000), Tamer (2010), and references therein). In Section

3, we provide a couple of motivating examples of partially identified econometric models (one

from Chesher and Rosen (2014) and the other from Khan, Ponomareva, and Tamer (2013))

for which our testing approach can be used to construct confidence regions but to which

none of the currently available methods can be applied.

Our framework has several distinctive merits. First, our proposal is easy to implement in

general, mainly due to its recourse to the bootstrap method. The bootstrap procedure is

based on nonparametric bootstrap applied to kernel-based test statistics. We establish the

general asymptotic (uniform) validity of the bootstrap procedure under high level conditions

and provide low level conditions for an empirical example based on GPV.

Second, our proposed test is shown to exhibit good power properties both in finite and

large samples. Good power properties can be achieved by the use of critical values that adapt

to the binding restrictions of functional inequalities. This could be done in various ways; in

this paper, we follow the “contact set” approach of Linton, Song, and Whang (2010) and

propose bootstrap critical values. As is shown in this paper, the bootstrap critical values

yield significant power improvements. Furthermore, we find through our local power analysis

that this class of tests exhibit dual convergence rates depending on Pitman directions, and
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in many cases, the faster of the two rates achieves a parametric rate of
√
n, despite the use

of kernel-type test statistics.

Third, we establish the asymptotic validity of the proposed test uniformly over a large class

of distributions, without imposing restrictions on the covariance structure among nonpara-

metric estimates of vτ,j(·), thereby allowing for degenerate cases. Such a uniformity result is

crucial for ensuring good finite sample properties for tests whose (pointwise) limiting distri-

bution under the null hypothesis exhibits various forms of discontinuity. The discontinuity

in the context of this paper is highly complex, as the null hypothesis involves inequality

restrictions on a multiple number of (or even a continuum of) nonparametric functions. We

establish the uniform validity of the test in a way that covers these various incidences of

discontinuity. Our new uniform asymptotics may be of independent interest in many other

contexts.

Much of the recent literature on testing inequality restrictions focuses on conditional mo-

ment inequalities.1 Researches on conditional moment inequalities include Andrews and

Shi (2013), Andrews and Shi (2014), Armstrong (2011a), Armstrong (2011b), Armstrong

and Chan (2013), Chernozhukov, Lee, and Rosen (2013), Chetverikov (2011), Fan and Park

(2014), Khan and Tamer (2009), Kim (2009), Lee, Song, and Whang (2013), Menzel (2009),

Ponomareva (2010), among others. In contrast, this paper’s approach naturally covers a wide

class of inequality restrictions among nonparametric functions that the moment inequality

framework does not (or at least is cumbersome to) apply. Such examples include testing

multiple inequalities that are defined by differences in conditional quantile functions uni-

formly over covariates and quantiles.2 If we restrict our attention to the conditional moment

inequalities, then our approach is mostly comparable to the moment selection approach of

Andrews and Shi (2013). Our general framework is also related to testing qualitative non-

parametric hypotheses such as monotonicity in mean regression. See, for example, Baraud,

Huet, and Laurent (2005), Chetverikov (2012), Dümbgen and Spokoiny (2001), and Ghosal,

Sen, and van der Vaart (2000) among many others. See also Lee, Linton, and Whang (2009)

and Delgado and Escanciano (2012) for testing stochastic monotonicity.

Among aforementioned papers, Chernozhukov, Lee, and Rosen (2013) developed a sup-

norm approach in testing inequality restrictions on nonparametric functions using pointwise

asymptotics, and in principle, could be extended to test general functional inequalities as

1There exists large literature on inference on models with a finite number of unconditional moment inequality
restrictions. Some examples include Andrews and Barwick (2012), Andrews and Guggenberger (2009),
Andrews and Soares (2010), Beresteanu and Molinari (2008), Bugni (2010), Canay (2010), Chernozhukov,
Hong, and Tamer (2007), Galichon and Henry (2009), Romano and Shaikh (2008), Romano and Shaikh
(2010), and Rosen (2008), among others.
2A working paper version (Andrews and Shi 2009) of Andrews and Shi (2013) covers testing moment inequal-
ities indexed by τ ∈ T , but their framework does not appear to be easily extendable to deal with functions
of multiple conditional quantiles such as differences in conditional quantiles.
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in (1.1).3 Example 4 of Chernozhukov, Lee, and Rosen (2013) considered the case of one

inequality with a conditional quantile function at a particular quantile, but it is far from

trivial to extend this example to multiple inequalities of differences in conditional quantile

functions uniformly over a range of quantiles. As this paper demonstrates through empirical

applications, such testing problems arise frequently in the fields of industrial organization

and labor economics (see Sections 3.3 and 3.4).

The uniformity result in this paper is non-standard since our test is based on asymptot-

ically non-tight processes, in contrast to Andrews and Shi (2013) who convert conditional

moment inequalities into an infinite number of unconditional moment inequalities. This pa-

per’s development of asymptotic theory draws on the method of Poissonization (see, e.g.,

Horváth (1991) and Giné, Mason, and Zaitsev (2003)). For applications of this method,

see Anderson, Linton, and Whang (2012) for inference on a polarization measure, Lee and

Whang (2009) for testing for conditional treatment effects, and Lee, Song, and Whang

(2013) for testing inequalities for nonparametric regression functions using the numerator

of the Nadaraya-Watson estimator (based on pointwise asymptotics). Also, see Mason and

Polonik (2009) and Biau, Cadre, Mason, and Pelletier (2009) for support estimation.

The remainder of the paper is as follows. Section 2 gives an informal description of our

general framework by introducing test statistics and critical values and by providing intu-

itions behind our approach. In Section 3, we present four motivating examples that include

two examples of partially identified models and two empirical examples to demonstrate the

usefulness of our test. The first empirical example is based on GPV and the second one

is about testing functional inequalities in the context of wage inequality, inspired by Ace-

moglu and Autor (2011). In Section 4, we establish the uniform asymptotic validity of our

bootstrap test using high-level conditions. We also provide a class of distributions for which

the asymptotic size is exact. In Section 5, we give primitive conditions for the uniform

asymptotic validity of our inference method for the first empirical example in Section 3.

In Section 6, we establish consistency of our test and its local power properties. Section 7

concludes. Appendices consist of two parts. The first part presents results of Monte Carlo

experiments and more examples of testing functional inequalities that include an alternative

statistic for the first empirical example and testing monotonicity with respect to a covariate

3Our test involves a one-sided version of Lp-type functionals of nonparametric estimators (1 ≤ p <∞). We
regard the sup-norm and Lp norm approaches complementary, each with its own strength and weakness.
For example, our test and also the test of Andrews and Shi (2013) have higher power against relatively flat
alternatives, whereas the test of Chernozhukov, Lee, and Rosen (2013) has higher power against sharply-
peaked alternatives. See the results of Monte Carlo experiments reported in Appendix I. See also Andrews
and Shi (2013), Andrews and Shi (2014), and Chernozhukov, Lee, and Rosen (2013) for related discussions
and further Monte Carlo evidence.
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in conditional expectation, cumulative distribution, and quantile functions. The remaining

part provides all the proofs of theorems.

2. General Overview

2.1. Test Statistics. We present a general overview of this paper’s framework by introduc-

ing test statistics and critical values. To ease the exposition, we confine our attention to the

case of J = 2 here. The definitions and formal results for general J are given later in Section

4.

Throughout this paper, we assume that T is a connected compact subset of a Euclidean

space. This does not lose much generality because when T is a finite set, we can redefine our

test statistic by taking T as part of the finite index j indexing the nonparametric functions.

For j = 1, 2, let v̂τ,j(x) be a kernel-based nonparametric estimator of vτ,j(x) and let its

appropriately scaled version be

ûτ,j(x) ≡ rn,j v̂τ,j(x)

σ̂τ,j(x)
,

where rn,j is an appropriate normalizing sequence that diverges to infinity,4 and σ̂τ,j(x) is an

appropriate (possibly data-dependent) scale normalization.5 Then the inference is based on

the following statistic:

θ̂ ≡
∫
T

∫
X

max {ûτ,1(x), ûτ,2(x), 0}p dxdτ(2.1)

≡
∫
X×T

max {ûτ,1(x), ûτ,2(x), 0}p dQ(x, τ),

where Q is Lebesgue measure on X × T . In this overview section, we focus on the case

of using the max function under the integral in (2.1). In addition, we consider the sum∑2
j=1 max {ûτ,j(x), 0}p in one of our empirical examples (see Section 3.3).

2.2. Bootstrap Critical Values. As we shall see later, the asymptotic distribution of the

test statistic exhibits complex ways of discontinuities as one perturbs the data generating

processes. This suggests that the finite sample properties of the asymptotic critical values

may not be stable. Furthermore, the location-scale normalization requires nonparametric

estimation and thus a further choice of tuning parameters. This can worsen the finite sample

properties of the critical values further. To address these issues, this paper develops a

bootstrap procedure.

4Permitting the convergence rate rn,j to differ across j ∈ NJ can be convenient, when the nonparametric
estimators have different convergence rates. For example, this accommodates a situation where one jointly
tests the non-negativity and monotonicity of a nonparametric function.
5While our framework permits the case where σ̂τ,j(x) is simply chosen to be 1, we allow for a more general
case where σ̂τ,j(x) is a consistent estimator for some nonparametric quantity.
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As we shall show formally in a more general form in Lemma 1 in Section 4 below, it is

satisfied that under H0, for each sequence cn →∞ such that
√

log n/cn → 0 as n→∞,

θ̂ =

∫
Bn,{1}(cn)

max {ûτ,1(x), 0}p dQ(x, τ)(2.2)

+

∫
Bn,{2}(cn)

max {ûτ,2(x), 0}p dQ(x, τ)

+

∫
Bn,{1,2}(cn)

max {ûτ,1(x), ûτ,2(x), 0}p dQ(x, τ),

with probability approaching one, where, letting un,τ,j(x) ≡ rn,jvn,τ,j(x)/σn,τ,j(x), i.e., a

population version of ûτ,j(x),6 we define

Bn,{1}(cn) ≡ {(x, τ) ∈ X × T : |un,τ,1(x)| ≤ cn and un,τ,2(x) < −cn} ,

Bn,{2}(cn) ≡ {(x, τ) ∈ X × T : |un,τ,2(x)| ≤ cn and un,τ,1(x) < −cn} and

Bn,{1,2}(cn) ≡ {(x, τ) ∈ X × T : |un,τ,1(x)| ≤ cn and |un,τ,2(x)| ≤ cn} .

For example, the set Bn,{1}(cn) is a set of points (x, τ) such that |vn,τ,1(x)/σn,τ,1(x)| is close

to zero, and vn,τ,2(x)/σn,τ,2(x) is negative and away from zero. We call contact sets such sets

as Bn,{1}(cn), Bn,{2}(cn), and Bn,{1,2}(cn).

Now, comparing (2.2) with (2.1) reveals that the limiting distribution of θ̂ under the null

hypothesis will not depend on points outside the union of the contact sets. Thus the main

idea of this paper is to base the bootstrap critical values on the quantity on the right hand

side of (2.2) instead of that on the last integral in (2.1). As we will explain shortly in the next

subsection, this leads to a test that is uniformly valid and exhibits substantial improvement

in power.

To construct bootstrap critical values, we introduce sample versions of the contact sets:

B̂{1}(cn) ≡ {(x, τ) ∈ X × T : |ûτ,1(x)| ≤ cn and ûτ,2(x) < −cn} ,

B̂{2}(cn) ≡ {(x, τ) ∈ X × T : |ûτ,2(x)| ≤ cn and ûτ,1(x) < −cn} and

B̂{1,2}(cn) ≡ {(x, τ) ∈ X × T : |ûτ,1(x)| ≤ cn and |ûτ,2(x)| ≤ cn} .

See Figure 1 for illustration of estimation of contact sets when J = 2.

Given the contact sets, we construct bootstrap critical values as follows. Let v̂∗τ,j(x) and

σ̂∗τ,j(x), j = 1, 2, denote the bootstrap counterparts of v̂τ,j(x) and σ̂τ,j(x), j = 1, 2. Let the

bootstrap counterparts be constructed in the same way as the nonparametric estimators

6It is convenient for general development to let the population quantities vn,τ,j(x) and σn,τ,j(x) depend on
n.
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Figure 1. Contact Set Estimation
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𝒄𝒄𝒏𝒏

−𝒄𝒄𝒏𝒏

Note: This figure illustrates estimated contact sets when J = 2. The
black, red, and green line segments on the x-axis represent estimated
contact sets.

v̂τ,j(x) and σ̂τ,j(x), j = 1, 2, with the bootstrap sample independently drawn with replace-

ment from the empirical distribution of the original sample. We let

(2.3) ŝ∗τ,j(x) ≡
rn,j{v̂∗τ,j(x)− v̂τ,j(x)}

σ̂∗τ,j(x)
, j = 1, 2.

Note that ŝ∗τ,j(x) is a centered and scale normalized version of the bootstrap quantity v̂∗τ,j(x).

We construct a bootstrap version of the right hand side of (2.2) as

θ̂∗ ≡
∫
B̂{1}(ĉn)

max
{
ŝ∗τ,1(x), 0

}p
dQ(x, τ)(2.4)

+

∫
B̂{2}(ĉn)

max
{
ŝ∗τ,2(x), 0

}p
dQ(x, τ)

+

∫
B̂{1,2}(ĉn)

max
{
ŝ∗τ,1(x), ŝ∗τ,2(x), 0

}p
dQ(x, τ),

where ĉn is a data dependent version of cn. We will discuss a way to construct ĉn shortly.

We also define

â∗ ≡ E∗θ̂∗,

where E∗ denotes the expectation under the bootstrap distribution. Let c∗α be the (1−α)-th

quantile from the bootstrap distribution of θ̂∗. Then for a small η > 0 such as η = 10−6, we
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take c∗α,η ≡ max{c∗α, hd/2η + â∗} as the critical value to form the following test:

(2.5) Reject H0 if and only if θ̂ > c∗α,η.

Then it is shown later that the test has asymptotically correct size, i.e.,

(2.6) limsup
n→∞

sup
P∈P0

P{θ̂ > c∗α,η} ≤ α,

where P0 is the collection of potential distributions that satisfy the null hypothesis.

2.3. Obtaining tuning parameters. To construct ĉn, we suggest the following procedure.

First, define

S∗n ≡ max

{
sup

(j,τ,x)

ŝ∗τ,j(x), ε
√

log n

}
,

where ε > 0 is a small number. Then, set

ĉn = Ccs(log log n)q1−αn(S∗n),(2.7)

where q1−αn(S∗n) is the (1 − αn)-th quantile of the bootstrap distribution of S∗n with αn =

0.1/ log n, and Ccs is a “sensitivity” constant that needs to be chosen by a researcher. Al-

though the rule-of-thumb for cn in (2.7) is not completely data-driven, it has the advantage

that the scale of ûτ,j(x) is invariant, due to the term q1−αn(S∗n); see Chernozhukov, Lee, and

Rosen (2013) for a similar idea.7 This data-dependent choice of ĉn is encompassed by the

theoretical framework of this paper, while many other choices are also admitted.8

To implement our bootstrap test, it is necessary to fix three constants: η, ε, and Ccs, in

addition to the bandwidth used in kernel-based nonparametric estimation. Based on our

experiences in Monte Carlo experiments, we suggest the following rule-of-thumb: set η and

ε to be small numbers, say η = ε = 10−6 and check sensitivity with respect to Ccs by varying

it over a certain range. In particular, we recommend taking Ccs = 0.5 and performing

sensitivity check by increasing the value of Ccs up to 1.5.9

Regarding the bandwidth selection, we suggest the following rule. First, choose a band-

width, say h̃, using a readily available bandwidth selection rule that is typically designed

7Note that q1−αn
(S∗n) is the (1 − αn) quantile of the supremum of ŝ∗τ,j(x) over (j, τ, x) for a sufficiently

small ε, provided that ŝ∗τ,j(x) is non-degenerate. Note that (1 − αn) converges to 1 as n gets large. Thus,
this observation leads to the choice of ĉn in (2.7) that is proportional to q1−αn

(S∗n) times a very slowing
growing term such as log log n, to insure that ĉn diverges to infinity but as slowly as possible, while having
the property of scale invariance.
8See Assumption A4(ii) below for sufficient conditions for a data dependent choice of ĉn. It is not hard to
see that the conditions are satisfied, once the uniform convergence rates of v̂τ,j(x) and σ̂τ,j(x) and their
bootstrap versions hold as required in Assumptions A3, A5, and B2 and B3.
9The rationale behind this particular recommendation is that in Monte Carlo experiments reported in Ap-
pendix I, our test performed well with Ccs = 0.5 and we would like to be on the more conservative side when
we check the sensitivity to Ccs.
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for the purpose of optimal estimation (e.g. see Fan and Gijbels (1996) for local polynomial

estimators). When d = 1 and the underlying function is twice continuously differentiable,

the bandwidth has the form h̃ = Cn−1/5 with some constant C. Second, if necessary, modify

h̃ so that it satisfies the regularity conditions imposed in this paper. For example, in case

of estimating conditional quantile functions, Assumption AUC-3 in Section 5 is satisfied by

the choice of h = n−s with the condition 1/4 < s < 1/3 if the local linear estimator is used

with d = 1. Then we can take h = h̃× n1/5 × n−s for some s satisfying 1/4 < s < 1/3.

2.4. Discontinuity, Uniformity, and Power. Many tests of inequality restrictions exhibit

discontinuity in its limiting distribution under the null hypothesis. When the inequality

restrictions involve nonparametric functions, this discontinuity takes a complex form, as

emphasized in Section 5 of Andrews and Shi (2013).

To see the discontinuity problem in our context, let {(Yi, Xi)
>}ni=1 be i.i.d. copies from

an observable bivariate random vector, (Y,X)> ∈ R×R, where Xi is a continuous random

variable with density f . We consider a simple testing example:

H0 : E[Y |X = x] ≤ 0 for all x ∈ X vs. H1 : E[Y |X = x] > 0 for some x ∈ X .(2.8)

Here, with the subscript τ suppressed, we set J = 1, rn,1 =
√
nh, p = d = 1, and define

[v]+ ≡ max{v, 0}. Let

v̂1(x) =
1

nh

n∑
i=1

YiK

(
Xi − x
h

)
and σ̂2

1(x) =
1

nh

n∑
i=1

Y 2
i K

2

(
Xi − x
h

)
,(2.9)

where K is a nonnegative, univariate kernel function with compact support and h is a

bandwidth.

Assume that the density of X is strictly positive on X . Then, in this example, vn,1(x) ≡
Ev̂1(x) ≤ 0 for almost every x in X whenever the null hypothesis is true. Define

Zn,1(x) =
√
nh

{
v̂1(x)− vn,1(x)

σ̂1(x)

}
and Bn,1(0) =

{
x ∈ X :

∣∣∣√nhvn,1(x)
∣∣∣ = 0

}
.

We analyze the asymptotic properties of θ̂ as follows. We first write

h−1/2(θ̂ − an,1) = h−1/2

{∫
Bn,1(0)

[Zn,1(x)]+ dx− an,1

}
(2.10)

+h−1/2

∫
X\Bn,1(0)

[
Zn,1(x) +

√
nhvn,1(x)

σ̂1(x)

]
+

dx,

where

an,1 = E

[∫
Bn,1(0)

[Zn,1(x)]+ dx

]
.
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When liminfn→∞Q (Bn,1(0)) > 0 with Q(Bn,1(0)) denoting Lebesgue measure of Bn,1(0), we

can show that the leading term on the right hand side in (2.10) becomes asymptotically

N(0, σ2
0) for some σ2

0 > 0. On the other hand, the second term vanishes in probability as

n→∞ under H0 because for each x ∈ X\Bn,1(0),

0 >
√
nhvn,1(x)→ −∞

as n→∞ under H0. Thus we conclude that when liminfn→∞Q (Bn,1(0)) > 0 under H0,

(2.11) h−1/2(θ̂ − an,1) ≈ h−1/2

{∫
Bn,1(0)

[Zn,1(x)]+ dx− an,1

}
→d N(0, σ2

0).

This asymptotic theory is pointwise in P (with P fixed and letting n→∞), and may not

be adequate for finite sample approximation. There are two sources of discontinuity. First,

the pointwise asymptotic theory essentially regards the drift component
√
nhvn,1(x) as −∞,

whereas in finite samples, the component can be very negative, but not −∞. Second, even

if the nonparametric function
√
nhvn,1(x) changes continuously, the contact set Bn,1(0) may

change discontinuously in response.10 While there is no discontinuity in the finite sample

distribution of the test statistic, there may arise discontinuity in its pointwise asymptotic

distribution. Furthermore, the complexity of the discontinuity makes it harder to trace

its source, when we have J > 2. As a result, the asymptotic validity of the test that is

established pointwise in P is not a good justification of the test. We need to establish the

asymptotic validity that is uniform in P over a reasonable class of probabilities.

Under regularity conditions, bootstrap critical values based on the least favorable config-

uration (LFC) such that

(2.12) θ̂∗LFC ≡
∫
X

[̂s∗(x)]+ dx, where ŝ∗(x) =
√
nh

{
v̂∗1(x)− v̂1(x)

σ̂∗1(x)

}
,

can be shown to yield tests that are asymptotically valid uniformly in P . However, they are

often too conservative in practice. Using a critical value based on

θ̂∗1 ≡
∫
B̂{1}(cn)

[̂s∗(x)]+ dx

also yields an asymptotically valid test, and yet θ̂∗LFC > θ̂∗1 in general. Thus the bootstrap

tests that use the contact set have better power properties than those that do not. The power

10For example, take
√
nhvn,1(x) = −x2/n on X = [−1, 1]. Let v0(x) ≡ 0. Then

√
nhvn,1(x) goes to v0(x)

uniformly in x ∈ X as n→∞. However, for each n, Bn,1(0) = {x ∈ X :
√
nhvn,1(x) = 0} = {0}, which does

not converge in Hausdorff distance to B1(0) ≡ {x ∈ X : v0(x) = 0} = X .
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improvement is substantial in many simulation designs and can be important in real-data

applications.11

Now, let us see how the choice of c∗α,η ≡ max{c∗α, h1/2η + â∗} (with d = 1 here) leads

to bootstrap inference that is valid even when the test statistic becomes degenerate under

the null hypothesis. The degeneracy arises when the inequality restrictions hold with large

slackness, so that the convergence in (2.11) holds with σ2
0 = 0, and hence

h−1/2(θ̂ − an,1) = oP (1).

For the bootstrap counterpart, note that

h−1/2(c∗α,η − an,1) = h−1/2 max{c∗α − an,1, h1/2η + â∗ − an,1}

≥ η + h−1/2(â∗ − an,1),

where it can be shown that h−1/2(â∗ − an,1) = oP (1). Therefore, the bootstrap inference is

designed to be asymptotically valid even when the test statistic becomes degenerate.

Note that for the sake of validity only, one may replace h1/2η by a fixed constant, say η̄ > 0.

However, this choice would render the test asymptotically too conservative. The choice of

h1/2η in this paper makes the test asymptotically exact for a wide class of probabilities, while

preserving the uniform validity in both the cases of degeneracy and nondegeneracy.12 The

precise class of probabilities under which the test becomes asymptotically exact is presented

in Section 4.

There are two remarkable aspects of the local power behavior of our bootstrap test. First,

the test exhibits two different kinds of convergence rates along different directions of Pitman

local alternatives. Second, despite the fact that the test uses the approach of local smoothing

by kernel as in Härdle and Mammen (1993), the faster of the two convergence rates achieves

a parametric rate of
√
n. To see this more closely, let us return to the simple example in

(2.8), and consider the following local alternatives:

(2.13) vn(x) = v0(x) +
δ(x)

bn
,

where v0(x) ≤ 0 for all x ∈ X and δ(x) > 0 for some x ∈ X , and bn → ∞ as n → ∞ such

that vn(x) > 0 for some x ∈ X . The function δ(·) represents a Pitman direction of the local

alternatives. Suppose that the test has nontrivial local power against local alternatives of

11There may exist an alternative approach to improve the power of our test. Romano, Shaikh, and Wolf
(2013) proposed a computationally attractive two-step method for testing a finite number of unconditional
moment inequalities. It is an interesting topic to extend their two-step approach to our setup, but it is
beyond the scope of this paper.
12Our fixed positive constant η plays a role similar to a fixed constant in Andrews and Shi (2013)’s mod-
ification of the sample variance-covariance matrix of unconditional moment conditions, transformed by in-
struments (ε in their notation in equation (3.5) of Andrews and Shi (2013)).
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the form in (2.13), but trivial power whenever bn in (2.13) is replaced by b′n that diverges

faster than bn. In this case, we say that the test has convergence rate equal to bn against

the Pitman direction δ.

As we show later, there exist two types of convergence rates of our test, depending on the

choice of δ(x). Let B0(0) ≡ {x ∈ X : v0(x) = 0} and σ2
1(x) ≡ E[Y 2

i |Xi = x]f(x)
∫
K2(u)du.

When δ(·) is such that ∫
B0(0)

δ(x)

σ1(x)
dx > 0,

the test achieves a parametric rate bn =
√
n. On the other hand, when δ(·) is such that∫

B0(0)

δ(x)

σ1(x)
dx = 0 and

∫
B0(0)

δ2(x)

σ2
1(x)

dx > 0,

the test achieves a slower rate bn =
√
nh1/4. See Section 6.2 for heuristics behind the results.

In Section 6.3, the general form of local power functions is derived.

3. Motivating Examples

In this section, we first provide two examples of partially identified econometric models

for which our testing approach can be used to construct confidence regions. One example is

based on generalized instrumental variables models of Chesher and Rosen (2014), and the

other is from a panel data model of Khan, Ponomareva, and Tamer (2013). In addition,

we give two empirical examples. The first empirical example is on testing auction models

following GPV, and the second one is about testing functional inequalities via differences-

in-differences in conditional quantiles, inspired by Acemoglu and Autor (2011). All four

examples given in this section are not covered easily by existing inference methods, when

continuous covariates exist; however, they are all special cases of our general framework.

Appendix II gives more examples of testing problems that can be included in our gen-

eral framework. In particular, these additional examples include new methods for testing

monotonicity with respect to a covariate by constructing one-sided Lp-type functionals in a

suitable fashion in three examples: one in mean regression, another in conditional distribu-

tion function, and the third in quantile regression.

3.1. Generalized Instrumental Variables Models. First, we consider generalized in-

strumental variables models of Chesher and Rosen (2014). Specially, we illustrate usefulness

of our framework using Example 5 of Chesher and Rosen (2014) with the restriction that

the structural error U is independent of the instrument Z. In Example 5 of Chesher and

Rosen (2014), the outcome variable Y1 is fully observed, whereas the endogenous explanatory

variable Y ∗2 is interval censored, that is, Y ∗2 ∈ [Y2l, Y2u].
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One of semiparametric specifications imposed in Chesher and Rosen (2014) is to assume

the linear index for the structural function without any parametric specification of the distri-

bution of U . In this specification, Chesher and Rosen (2014) show that the full independence

between U and Z implies that the identified set for the structural parameter β is given by

the set of b’s that satisfy

G1(b, τ1, τ2, z) ≤ G2(b, τ1, τ2, z)(3.1)

for every z and (τ1, τ2) ∈ T ≡ {(τ1, τ2) ∈ R2 : τ1 ≤ τ2}, where

G1(b, τ1, τ2, z) ≡ P (τ1 + bY2u ≤ Y1 ≤ τ2 + bY2l|Z = z),

G2(b, τ1, τ2, z) ≡ P (τ1 + bY2l ≤ Y1 ≤ τ2 + bY2u|Z = z).

The identified set in (3.1) is a simplified version of the identified set obtained in Section 4

of Chesher and Rosen (2014), without including exogenous explanatory variables. Then, a

confidence region for β can be obtained by inverting pointwise (in b) tests with vτ,b(x) ≡
G1(b, τ1, τ2, x)−G2(b, τ1, τ2, x), where τ = (τ1, τ2).

3.2. Panel Data Models with Endogenous Censoring. Consider a panel data model

of Khan, Ponomareva, and Tamer (2013). In their framework, a researcher only observes

{(Yit, Dit, Xit) : i = 1, . . . , n, t = 1, . . . , T} generated from

Yit = max{Y ∗it , Cit},

Dit = 1{Y ∗it ≥ Cit},

Y ∗it = αi +X ′itβ + Uit,

where αi is the unobserved fixed effect that can be correlated with Xi = (Xi1, . . . , XiT )′ and

Ui = (Ui1, . . . , UiT )′. Khan, Ponomareva, and Tamer (2013) consider endogenous censoring

and obtain bounds under alternative modeling assumptions. To illustrate their approach,

note that

Y L
it ≤ Y ∗it ≤ Yit,

where Y L
it = DitYit + (1−Dit)(−∞).

When αi + Uit has the same distribution as αi + Uis conditional on Xi for t 6= s (which

they call Model 1), they show that the identified set is the set of b’s that satisfy

P (Yit −X ′itb ≤ y|Xi = x) ≤ P (Y L
it −X ′itb ≤ y|Xi = x)
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for every (y, x) and every t = 1, . . . , T . Then, to construct a confidence region for β, we may

take the following route: for each j = 1, . . . , T , we define

vτ,j,b(x) = vτ,j(x; b)

≡ P (Yij −X ′ijb ≤ τ |Xi = x)− P (Y L
ij −X ′ijb ≤ τ |Xi = x),

and carry out our test pointwise in b. Khan, Ponomareva, and Tamer (2013) focus on the

case when covariates have discrete distribution with finite support. Our method provides an

inference method for the case of continuous covariates. Our general framework also applies

to other partially identified panel data models. For example, see Jun, Lee, and Shin (2011),

Li and Oka (2013) and Rosen (2012) among others.

3.3. Empirical Example 1: Testing Functional Inequalities in Auction Models.

In this example, we go back to the auction environment of GPV mentioned earlier. We

first state the testing problem formally, give the form of test statistic, and present empirical

results.

3.3.1. Testing Problem. Suppose that the number I of bidders can take two values, 2 and 3

(that is, I ∈ {2, 3}). For each τ such that 0 < τ < 1, let qk(τ |x) denote the τ -th conditional

quantile (given X = x) of the observed equilibrium bid distribution when the number of

bidders is I = k, where k = 2, 3. A conditional version of Equation (5) of GPV (with I1 = 2

and I2 = 3 in their notation) provides the following testing restrictions:

q2(τ |x)− q3(τ |x) < 0,

b− 2q2(τ |x) + q3(τ |x) < 0
(3.2)

for any τ ∈ (0, 1] and for any x ∈ supp(X), where supp(X) is the (common) support of

X, and b is the left endpoint of the support of the observed bids.13 The restrictions in

(3.2) are based on conditionally exogenous participation for which the latent private value

distribution is independent of the number of bidders conditional on observed characteristics

(X), e.g. appraisal values.

A slightly weaker version of (3.2) can be put into our general testing problem in (1.1).14

That is, we can test the following null hypothesis:

vτ,1(x) ≡ q2(τ |x)− q3(τ |x) ≤ 0,

vτ,2(x) ≡ b− 2q2(τ |x) + q3(τ |x) ≤ 0
(3.3)

for any (τ, x) ∈ T × X ⊂ (0, 1]× supp(X).

13In GPV, it is assumed that for I = k, the support of the observed equilibrium bid distribution is [b, bk] ⊂
[0,∞) with b < bk, where k = 2, 3. Note that b is common across k’s, while bk’s are not.
14If necessary, we may test the strict inequalities (3.1), instead of the weak inequalities (3.2). However, such
test would require a test statistic that is different from ours and needs a separate treatment.
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The example in (3.3) illustrates that in order to test the implications of auction theory,

it is essential to test the null hypothesis uniformly in τ and x. More specifically, testing

for a wide range of τ is important because testable implications are expressed in terms of

conditional stochastic dominance relations. Furthermore, testing the relations uniformly

over x is natural since theoretical predictions given by conditionally exogenous participation

should hold for any realization of observed auction heterogeneity. It also shows that it is

important to go beyond the J = 1 case and to include a general J > 1. In fact, if the number

of bidders can take more than two values, there could be many more functional inequalities

(see Corollary 1 of GPV). Finally, we note that vτ,1(x) and vτ,2(x) are not forms of conditional

moment inequalities and each involves two different conditional quantile functions indexed by

τ . Therefore, tests developed for conditional moment inequalities are not directly applicable

to this empirical example. There exist related but distinct papers regarding this empirical

example. See, e.g., Marmer, Shneyerov, and Xu (2013) who developed a nonparametric

test for selective entry, and Gimenes and Guerre (2013) who proposed augmented quantile

regression for first-price auction models.

3.3.2. Test Statistic. To implement the test, it is necessary to estimate conditional quan-

tile functions. In estimation of qj(τ |x), j = 2, 3, we may use a local polynomial quantile

regression estimator, say q̂j(τ |x). Now write

v̂τ,1(x) = q̂2(τ |x)− q̂3(τ |x),

v̂τ,2(x) = b̂− 2q̂2(τ |x) + q̂3(τ |x),

where b̂ is a consistent estimator of b.15 Then testing (3.3) can be carried out using {v̂τ,j(x) :

j = 1, 2} based on our general framework. In this application, our test statistics take the

following forms:

θ̂sum =

∫
X×T

[rnv̂τ,1(x)]p+ dQ(x, τ) +

∫
T ×X

[rnv̂τ,2(x)]p+ dQ(x, τ), or

θ̂max =

∫
X×T

(
max

{
[rnv̂τ,1(x)]+ , [rnv̂τ,2(x)]+

})p
dQ(x, τ).

(3.4)

Note that in (3.4), we set σ̂τ,j(x) ≡ 1.

As a matter of fact, it is possible to develop an alternative test statistic by rewriting (3.3)

in terms of distribution functions. Appendix II.1 illustrates the usefulness and flexibility of

our framework by reconsidering the implications from GPV using a test statistic based on

estimating conditional cumulative distribution functions.

15In our application, we set b̂ to be the observed minimum value.
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3.3.3. Empirical Results. We now present empirical results using the timber auction data

used in Lu and Perrigne (2008).16 They used the timer auction data to estimate bidders’

risk aversion, taking advantage of bidding data from ascending auctions as well as those from

first-price sealed-bid auctions. In our empirical example, we use only the latter auctions with

2 and 3 bidders, and we use the appraisal value as the only covariate Xi (d = 1). Summary

statistics and visual presentation of data are given in Table 1 and Figure 2. It can be seen

from Table 1 that average bids become higher as the number of bidders increases from 2 to

3. The top panel of Figure 2 suggests that this more aggressive bidding seems to be true,

conditional on appraisal values.

Table 1. Summary Statistics for Empirical Example 1

2 bidders 3 bidders
(Sample size = 107) (Sample size = 108)

Standard Standard
Mean Deviation Mean Deviation

Appraisal Value 66.0 47.7 53.3 41.4
Highest bid 96.1 55.6 100.8 56.7
Second highest bid 80.9 49.2 83.1 51.5
Third highest bid 69.4 44.6

Notes: Bids and appraisal values are given in dollars per thousand
board-feet (MBF). Source: Timber auction data are from the Journal
of Applied Econometrics website.

Before estimation, the covariate was transformed to lie between 0 and 1 by studentizing it

and then applying the standard normal CDF transformation. The bottom panel of Figure

2 shows local linear estimates of conditional quantile functions at τ = 0.1, 0.5, 0.9.17 In this

figure, estimates are only shown between the 10% and 90% sample quantiles of the covariate.

On one hand, the 10% conditional quantiles are almost identical between auctions with

two bidders (I = 2) and those with three bidders (I = 3). On the other hand, the 50% and

90% conditional quantiles are higher with three bidders for most values of appraisal values.

There is a crossing of two conditional median curves at the lower end of appraisal values.

To check whether inequalities in (3.3) hold in this empirical example, we plot estimates

of vτ,1(x) and vτ,2(x) in Figure 3. The top panel of the figure shows that 20 estimated

curves of vτ,1(x), each representing a particular conditional quantile, ranging from the 10th

percentile to the 90th percentile. There are strictly positive values of vτ,1(x) at the lower

end of appraisal values. The bottom panel of Figure 3 depicts 20 estimated curves of vτ,2(x),

16The data are available on the Journal of Applied Econometrics website.
17Specifically, the conditional quantile functions q2(τ |x) and q3(τ |x) are estimated via the local linear quantile
regression estimator with the kernel function K(u) = 1.5[1−(2u)2]×1{|u| ≤ 0.5} and the bandwidth h = 0.6.
See Section 5.1 for more details on estimating conditional quantile functions.
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Figure 2. Data for Empirical Illustration for Empirical Example 1

Note: The top panel of the figure shows observations and the bottom
panel depicts local linear quantile regression estimates.

showing that they are all strictly negative. The test based on (3.4) can tell formally whether

positive values of vτ,1(x) at the lower end of appraisal values can be viewed as evidence

against economic restrictions imposed by (3.3).

We considered both the L1 and L2 test statistics described in (3.4). We set T to be the

interval between the 10th and 90th percentiles of the covariate, and also set X = [0.1, 0.9].

The contact set was estimated with ĉn = Ccs log log(n)q1−0.1/ log(n)(S
∗
n) with rn =

√
nh.

We checked the sensitivity to the tuning parameters with Ccs ∈ {0.5, 1, 1.5} and h ∈
{0.3, 0.6, 0.9}. All cases resulted in bootstrap p-values of 1, thereby suggesting that pos-

itive values of vτ,1(x) at the lower end of appraisal values cannot be interpreted as evidence
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Figure 3. Estimates of vτ,1(x) and vτ,2(x) for Empirical Example 1

Note: The top and bottom panels of the figure show estimates of vτ,1(x)
and vτ,2(x), respectively, where v̂τ,1(x) = q̂1(τ |x)− q̂2(τ |x) and v̂τ,2(x) =
b− 2q̂1(τ |x) + q̂2(τ |x).

against the null hypothesis beyond random sampling errors. Therefore, we have not found

any evidence against economic implications imposed by (3.3).

3.4. Empirical Example 2: Testing Functional Inequalities in the Context of Wage

Inequality. We now give an example based on Acemoglu and Autor (2011).

3.4.1. Testing Problem. Figures 9a-9c in Acemoglu and Autor (2011) depict changes in log

hourly wages by percentile relative the median. Specifically, they consider the following

differences-in-differences in quantiles:

∆t,s(τ, x) ≡ [qt(τ |x)− qs(τ |x)]− [qt(0.5|x)− qs(0.5|x)]
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for time periods t and s and for quantiles τ , where qt(τ |x) denotes the τ -quantile of log

hourly wages conditional on X = x in year t. Acemoglu and Autor (2011) consider males

and females together in Figure 9a, males only in Figure 9b, and females only in Figure 9c.

Thus, in their setup, the only covariate X is gender.

Figures 9a-9c in Acemoglu and Autor (2011) suggest that (1) ∆1988,1974(τ, x) ≥ 0 for quan-

tiles above the median, but ∆1988,1974(τ, x) ≤ 0 for quantiles below the median (hence, widen-

ing the wage inequality, while the lower quantiles losing most), and that (2) ∆2008,1988(τ, x) ≥
0 for most of quantiles (hence, ‘polarization’ of wage growth, while middle quantiles losing

most). In this subsection, we consider testing

H0 : ∆t,s(τ, x) ≥ 0 ∀(x, τ) ∈ X × T ,(3.5)

with a continuous covariate, where (t, s) = (1988, 1974) or (t, s) = (2008, 1988).18 Note that

degeneracy of the test statistic could occur if the contact set consists of values of (x, τ) only

around τ = 0.5. Therefore, the uniformity of our test could be potentially important in this

example.

3.4.2. Test Statistic. To implement the test, we again use a local polynomial quantile re-

gression estimator, say q̂t(τ |x). Then ∆t,s(τ, x) can be estimated by

∆̂t,s(τ, x) ≡ [q̂t(τ |x)− q̂s(τ |x)]− [q̂t(0.5|x)− q̂s(0.5|x)].

Then testing (3.5) can be carried out using

θ̂t,s ≡
∫
X×T

[rnv̂τ,t,s(x)]p+ dQ(x, τ),(3.6)

where v̂τ,t,s(x) = −∆̂t,s(τ, x).19 Here, to reflect different sample sizes between two time

periods, we set

rn =

√
(ntht)× (nshs)

(ntht) + (nshs)
,

where nj and hj are the sample size and the bandwidth used for nonparametric estimation

for year j = t, s.

18Note that H0 in (3.5) includes the case ∆t,s(τ, x) ≡ 0, which does not correspond to the notion of polariza-
tion. In view of this, our null hypothesis in (3.5) can be regarded as a weak form of polarization hypothesis,
whereas a more strict version can be written as the inequality in (3.5) holds strictly for some high and low
quantiles.
19Note that the null hypothesis is written as positivity in (3.5). Hence v̂τ,t,s(x) is defined accordingly.
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Table 2. Summary Statistics for Empirical Example 2

Year 1974 1988 2008
Log Real Hourly Wages 2.780 2.769 2.907
Age in Years 35.918 35.501 39.051
Sample Size 19575 64682 48341

Notes: The sample is restricted to white males, with age between 16
and 64. Entries for log real hourly wages and age show CPS sample
weighted means. Source: May/ORG CPS data extract from David
Autor’s web site.

Figure 4. Changes in Log Hourly Wages by Percentile Relative to the Median

Notes: The figure shows differences-in-differences in quantiles of log
hourly wages, measured by [qt(τ)−qs(τ)]− [qt(0.5)−qs(0.5)]. Triangles
correspond to changes from 1974 to 1988, whereas circles those from
1988 to 2008. All quantiles are computed using CPS sample weight.
Source: May/ORG CPS data extract from David Autor’s web site.

3.4.3. Empirical Results. We used the CPS data extract of Acemoglu and Autor (2011).20

In our empirical example, we use age in years as the only covariate. Summary statistics and

20The data are available on David Autor’s web site. We would like to thank him for posting the data set
on a public domain. They used three-year averages around the year of interest to produce Figures 9a-9c in
Acemoglu and Autor (2011); however, we used just annual data.
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Figure 5. Estimates of v̂τ,t,s(x)

Note: The top and bottom panels of the figure show local linear esti-
mates of −∆1988,1974(τ, x) and −∆2008,1988(τ, x), respectively, where x is
age in years.

visual presentation of data are given in Table 2 and Figure 4. Note that Figure 4 replicates

the basic patterns of Figures 9 of Acemoglu and Autor (2011).

We now turn to the conditional version of Figure 4, using age as a conditioning variable.

As an illustration, let X be an interval of ages between 25 and 60 and let T = [0.1, 0.9].

To check whether inequalities in ∆̂t,s(τ, x) ≥ 0 hold for each value of (x, τ) ∈ X × T , we

plot estimates of v̂τ,t,s(x) = −∆̂t,s(τ, x) in Figure 5. The top panel of the figure shows that

5 estimated curves of v̂τ,1988,1974(x), each representing a particular conditional quantile, and

the bottom panel shows the corresponding graph for period 1988-2008.21 By construction,

the estimated curve is a flat line at zero when τ = 0.5. As consistent with Figure 4, the

21As before, underlying conditional quantile functions are estimated via the local linear quantile regression
estimator with the kernel function K(u) = 1.5[1− (2u)2]× 1{|u| ≤ 0.5}. One important difference from the
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lower quantiles seem to violate the null hypothesis, especially for the period 1974-1988. As

before, our test can tell formally whether positive values of v̂τ,t,s(x) lead to rejection of the

null hypothesis of polarization of wage growth.

We considered both the L1 and L2 test statistics described in (3.6). As before, the contact

set was estimated with ĉn = Ccs log log(n)q1−0.1/ log(n)(S
∗
n) with rn =

√
nh.22 We checked the

sensitivity to the tuning parameters with Ccs ∈ {0.5, 1, 1.5}.
For period 1974-1988, we rejected the null hypothesis at the 1% level across all three values

of Ccs. However, for period 1988-2008, we fail to reject the null hypothesis at the 5% level

for any value of Ccs. Therefore, the changing patterns of the US wage distribution around

1988, reported in Acemoglu and Autor (2011), seem to hold up conditionally on age as well.

4. Uniform Asymptotics under General Conditions

In this section, we establish uniform asymptotic validity of our bootstrap test using high-

level conditions. We also provide a class of distributions for which the asymptotic size is

exact. We first define the set of distributions we consider.

Definition 1. Let P denote the collection of the potential joint distributions of the observed

random vectors that satisfy Assumptions A1-A6, and B1-B4 given below. Let P0 ⊂ P be

the sub-collection of potential distributions that satisfy the null hypothesis.

Let || · || denote the Euclidean norm throughout the paper. For any given sequence of

subcollections Pn ⊂ P , any sequence of real numbers bn > 0, and any sequence of random

vectors Zn, we say that Zn/bn →P 0, Pn-uniformly, or Zn = oP (bn), Pn-uniformly, if for any

a > 0,

limsup
n→∞

sup
P∈Pn

P {||Zn|| > abn} = 0.

Similarly, we say that Zn = OP (bn), Pn-uniformly, if for any a > 0, there exists M > 0 such

that

limsup
n→∞

sup
P∈Pn

P {||Zn|| > Mbn} < a.

We also define their bootstrap counterparts. Let P ∗ denote the probability under the boot-

strap distribution. For any given sequence of subcollections Pn ⊂ P , any sequence of real

numbers bn > 0, and any sequence of random vectors Z∗n, we say that Z∗n/bn →P ∗ 0, Pn-

uniformly, or Z∗n = oP ∗(bn), Pn-uniformly, if for any a > 0,

limsup
n→∞

sup
P∈Pn

P {P ∗ {||Z∗n|| > abn} > a} = 0.

first empirical example is that we used the CPS sample weight, which were incorporated by multiplying it
to the kernel weight for each observation. Finally, the bandwidth was h = 2.5 for all years.
22To accommodate different sample sizes across years, we set n = (n1974 +n1988 +n2008)/3 in computing ĉn.
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Similarly, we say that Z∗n = OP ∗(bn), Pn-uniformly, if for any a > 0, there exists M > 0 such

that

limsup
n→∞

sup
P∈Pn

P {P ∗ {||Z∗n|| > Mbn} > a} < a.

In particular, when we say Zn = oP (bn) or OP (bn), P-uniformly, it means that the conver-

gence holds uniformly over P ∈ P , and when we say Zn = oP (bn) or OP (bn), P0-uniformly,

it means that the convergence holds uniformly over all the probabilities in P that satisfy the

null hypothesis.

4.1. Test Statistics and Critical Values in General Form. First, let us extend the test

statistics and the bootstrap procedure to the general case of J ≥ 1. Let Λp : RJ → [0,∞)

be a nonnegative, increasing function indexed by p ≥ 1. While the theory of this paper can

be extended to various general forms of map Λp, we focus on the following type:

(4.1) Λp(v1, · · ·, vJ) = (max{[v1]+, · · ·, [vJ ]+})p or Λp(v1, · · ·, vJ) =
J∑
j=1

[vj]
p
+,

where for a ∈ R, [a]+ = max{a, 0}. The test statistic is defined as

θ̂ =

∫
X×T

Λp (ûτ,1(x), · · ·, ûτ,J(x)) dQ(x, τ).

To motivate our bootstrap procedure, it is convenient to begin with the following lemma. Let

us introduce some notation. Define NJ ≡ 2NJ\{∅}, i.e., the collection of all the nonempty

subsets of NJ ≡ {1, 2, · · ·, J}. For any A ∈ NJ and v = (v1, · · ·, vJ)> ∈ RJ , we define vA to

be v except that for each j ∈ NJ\A, the j-th entry of vA is zero, and let

(4.2) ΛA,p(v) ≡ Λp(vA).

That is, ΛA,p(v) is a “censoring” of Λp(v) outside the index set A. Now, we define a general

version of contact sets: for A ∈ NJ and for cn,1, cn,2 > 0,

(4.3)

Bn,A(cn,1, cn,2) ≡

{
(x, τ) ∈ X × T :

|rn,jvn,τ,j(x)/σn,τ,j(x)| ≤ cn,1, for all j ∈ A
rn,jvn,τ,j(x)/σn,τ,j(x) < −cn,2, for all j ∈ NJ/A

}
,

where σn,τ,j(x) is a “population” version of σ̂τ,j(x) (see e.g. Assumption A5 below.) When

cn,1 = cn,2 = cn for some cn > 0, we write Bn,A(cn) = Bn,A(cn,1, cn,2).

Lemma 1. Suppose that Assumptions A1-A3 and A4(i) in Section 4.2 hold. Suppose further

that cn,1 > 0 and cn,2 > 0 are sequences such that√
log n{c−1

n,1 + c−1
n,2} → 0,
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as n→∞. Then as n→∞,

inf
P∈P0

P

{
θ̂ =

∑
A∈NJ

∫
Bn,A(cn,1,cn,2)

ΛA,p(ûτ,1(x), · · ·, ûτ,J(x))dQ(x, τ)

}
→ 1,

where P0 is the set of potential distributions of the observed random vector under the null

hypothesis.

The lemma above shows that the test statistic θ̂ is uniformly approximated by the integral

with domain restricted to the contact sets Bn,A(cn,1, cn,2) in large samples. Note that the

asymptotic result is remarkable, in the sense that the approximation error between θ̂ and the

expression on the right-hand side is oP (εn) for any εn → 0. The result of Lemma 1 suggests

that one may consider a bootstrap procedure that mimics the representation of θ̂ in Lemma

1.

We begin by introducing a sample version of the contact sets. For A ∈ NJ ,

B̂A(ĉn) ≡

{
(x, τ) ∈ X × T :

|rn,j v̂τ,j(x)/σ̂τ,j(x)| ≤ ĉn, for all j ∈ A
rn,j v̂τ,j(x)/σ̂τ,j(x) < −ĉn, for all j ∈ NJ\A

}
.

The explicit condition for ĉn is found in Assumption A4 below. Given the bootstrap coun-

terparts, {[v̂∗τ,j(x), σ̂∗τ,j(x)] : j ∈ NJ}, of {[v̂τ,j(x), σ̂τ,j(x)] : j ∈ NJ}, we define our bootstrap

test statistic as follows:

θ̂∗ ≡
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p(ŝ
∗
τ,1(x), · · ·, ŝ∗τ,J(x))dQ(x, τ),

where for j ∈ NJ , ŝ∗τ,j(x) ≡ rn,j(v̂
∗
τ,j(x)− v̂τ,j(x))/σ̂∗τ,j(x). We also define

â∗ ≡
∑
A∈NJ

∫
B̂A(ĉn)

E∗ΛA,p(ŝ
∗
τ,1(x), · · ·, ŝ∗τ,J(x))dQ(x, τ).

Let c∗α be the (1− α)-th quantile from the bootstrap distribution of θ̂∗ and take

c∗α,η = max{c∗α, hd/2η + â∗}

as our critical value, where η > 0 is a small fixed number.

One of the main technical contributions of this paper is to present precise conditions under

which this proposal of bootstrap test works. We present and discuss them in subsequent

sections.

To see the intuition for the bootstrap validity, first note that the uniform convergence of

rn,j{v̂τ,j(x)− vn,τ,j(x)} over (x, τ) implies that

(4.4) Bn,A(cn,L, cn,U) ⊂ B̂A(ĉn) ⊂ Bn,A(cn,U , cn,L)
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with probability approaching one, whenever P {cn,L ≤ ĉn ≤ cn,U} → 1. Therefore, if
√

log n/cn,L →
0, then, (letting ŝτ,j ≡ rn,j(v̂τ,j(x)− vn,τ,j(x))/σ̂τ,j(x)), we have

(4.5) θ̂ ≤
∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (ŝτ,1(x), · · ·, ŝτ,J(x)) dQ(x, τ),

with probability approaching one, by Lemma 1 and the null hypothesis. When the last sum

has a nondegenerate limit, we can approximate its distribution by the bootstrap distribution∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p

(
ŝ∗τ,1(x), · · ·, ŝ∗τ,J(x)

)
dQ(x, τ)

≤
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p

(
ŝ∗τ,1(x), · · ·, ŝ∗τ,J(x)

)
dQ(x, τ) ≡ θ̂∗,

where the inequality follows from (4.4).23 Thus the critical value is read from the bootstrap

distribution of θ̂∗. On the other hand, if the last sum in (4.5) has limiting distribution

degenerate at zero, we simply take a small positive number η to control the size of the test.

This results in our choice of c∗α,η = max{c∗α, hd/2η + â∗}.

4.2. High-Level Regularity Conditions. In this section, we provide high-level conditions

needed to develop general results. We assume that S ≡ X × T is a compact subset of a

Euclidean space. We begin with the following assumption.

Assumption A1. (Asymptotic Linear Representation) For each j ∈ NJ ≡ {1, · · ·, J}, there

exists a nonstochastic function vn,τ,j(·) : Rd → R such that (a) vn,τ,j(x) ≤ 0 for all (x, τ) ∈ S
under the null hypothesis, and (b) as n→∞,

(4.6)

sup
(x,τ)∈S

∣∣∣∣rn,j { v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

}
−
√
nhd{ĝτ,j(x)− Eĝτ,j(x)}

∣∣∣∣ = oP (
√
hd), P-uniformly,

where, with {(Y >i , X>i )}ni=1 being a random sample such that Yi = (Y >i1 , . . . , Y
>
iJ )> ∈ RJL̄,

Yij ∈ RL̄, Xi ∈ Rd, and the distribution of Xi is absolutely continuous with respect to

Lebesgue measure,24 we define

ĝτ,j(x) ≡ 1

nhd

n∑
i=1

βn,x,τ,j

(
Yij,

Xi − x
h

)
,

and βn,x,τ,j : RL̄ ×Rd → R is a function which may depend on n ≥ 1.

23In fact, the main challenge here is to prove the bootstrap approximation using the method of Poissonization
that is uniform in P ∈ P0.
24Throughout the paper, we assume that Xi ∈ Rd is a continuous random vector. It is straightforward to
extend the analysis to the case where Xi has a subvector of discrete random variables.
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Assumption A1 requires that there exist a nonparametric function vn,τ,j(x) around which

the asymptotic linear representation holds uniformly in P ∈ P , and vn,τ,j(x) ≤ 0 under

the null hypothesis. The required rate of convergence in (4.6) is oP (hd/2) instead of oP (1).

We need this stronger convergence rate primarily because θ̂ − an is OP (hd/2) for some non-

stochastic sequence an.25

When v̂τ,j(x) is a sample mean of i.i.d. random quantities involving nonnegative kernels

and σ̂n,τ (x) = 1, we may take vn,τ,j(x) = Ev̂τ,j(x), and then oP (
√
hd) is in fact precisely equal

to 0. If the original nonparametric function vτ,j(·) satisfies some smoothness conditions, we

may take vn,τ,j(x) = vτ,j(x), and handle the bias part Ev̂τ,j(x) − vτ,j(x) using the standard

arguments to deduce the error rate oP (
√
hd). Assumption A1 admits both set-ups. For

instance, consider the simple example in Section 2.4. The asymptotic linear representation

in Assumption 1 can be shown to hold with

βn,x,1 (Yi, (Xi − x)/h) = YiK((Xi − x)/h)/σn,1(x),

where σ2
n,1(x) = E[Y 2

i K
2((Xi − x)/h)]/h, if σ̂n,1(x) is chosen as in (2.9).

The following assumption for βn,x,τ,j essentially defines the scope of this paper’s framework.

Assumption A2. (Kernel-Type Condition) For some compact K0 ⊂ Rd that does not

depend on P ∈ P or n, it is satisfied that βn,x,τ,j(y, u) = 0 for all u ∈ Rd\K0 and all

(x, τ, y) ∈ X × T × Yj and all j ∈ NJ , where Yj denotes the support of Yij.

Assumption A2 can be immediately verified when the asymptotic linear representation in

(4.6) is established. This condition is satisfied in particular when the asymptotic linear rep-

resentation involves a multivariate kernel function with bounded support in a multiplicative

25To see this more clearly, we assume that T = {τ}, p = 1, and J = 1, and suppress the subscripts τ and j
from the notation, and take σ̂(x) = 1 for simplicity. We write (in the case where vn(x) = 0)

h−d/2θ̂ = h−d/2
∫
X

max {rn{v̂(x)− vn(x)}, 0} dx

= h−d/2
∫
X

max
{√

nhd{ĝ(x)−Eĝ(x)}, 0
}
dx+ h−d/2Rn,

where Rn is an error term that has at least the same convergence rate as the convergence rate of the remainder
term in the asymptotic linear representation for v̂(x). Now we let

an = E

[∫
X

max
{√

nhd{ĝ(x)−Eĝ(x)}, 0
}
dx

]
and write h−d/2θ̂ − h−d/2an as

h−d/2
(∫
X

max
{√

nhd{ĝ(x)−Eĝ(x)}, 0
}
dx− an

)
+ h−d/2Rn.

It can be shown that the leading term is asymptotically normal using the method of Poissonization. Hence

h−d/2θ̂ − h−d/2an becomes asymptotically normal, if Rn = oP (hd/2). This is where the faster error rate in
the asymptotic linear representation in Assumption A1(i) plays a role.
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form. In such a case, the set K0 depends only on the choice of the kernel function, not on

any model primitives.

Assumption A3. (Uniform Convergence Rate for Nonparametric Estimators) For all j ∈
NJ ,

sup
(x,τ)∈S

rn,j

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣ = OP

(√
log n

)
, P-uniformly.

Assumption A3 requires that v̂τ,j(x) − vn,τ,j(x) have the uniform convergence rate of

OP (r−1
n,j

√
log n) uniformly over P ∈ P . Lemma 2 in Section 4.4 provides some sufficient

conditions for this convergence.

We now introduce conditions for the bandwidth h and the tuning parameter cn for the

contact sets.

Assumption A4. (Rate Conditions for Tuning Parameters) (i) As n → ∞, h → 0,
√

log n/rn → 0, and n−1/2h−d−ν1 → 0 for some arbitrarily small ν1 > 0, where rn ≡
minj∈NJ rn,j.

(ii) For each n ≥ 1, there exist nonstochastic sequences cn,L > 0 and cn,U > 0 such that

cn,L ≤ cn,U , and

inf
P∈P

P {cn,L ≤ ĉn ≤ cn,U} → 1, and
√

log n/cn,L + cn,U/rn → 0,

as n→∞.

The requirement that
√

log n/rn → 0 is satisfied easily for most cases where rn increases

at a polynomial order in n. Assumption A4(ii) requires that ĉn increase faster than
√

log n

but slower than rn with probability approaching one.

Assumption A5. (Regularity Conditions for σ̂τ,j(x)) For each (τ, j) ∈ T ×NJ , there exists

σn,τ,j(·) : X → (0,∞) such that lim infn→∞ inf(x,τ)∈S infP∈P σn,τ,j(x) > 0, and

sup
(x,τ)∈S

|σ̂τ,j(x)− σn,τ,j(x)| = oP (1), P-uniformly.

Assumption A5 requires that the scale normalization σ̂τ,j(x) should be asymptotically

well defined. The condition precludes the case where estimator σ̂τ,j(x) converges to a map

that becomes zero at some point (x, τ) in S. Assumption A5 is usually satisfied by an

appropriate choice of σ̂τ,j(x). When one chooses σ̂τ,j(x) = 1, which is permitted in our

framework, Assumption A5 is immediately satisfied with σn,τ,j(x) = 1. Again, if we go

back to the simple example considered in Section 2.4, it is straightforward to see that under

regularity conditions, with the subscript τ suppressed, σ̂2
1(x) = σ2

n,1(x)+oP (1) and σ2
n,1(x) =

σ2
1(x) + o(1), where σ2

1(x) ≡ E(Y 2|X = x)f(x)
∫
K2(u)du, as n→∞. The convergence can
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be strengthened to a uniform convergence when σ2
1(x) is bounded away from zero uniformly

over x ∈ X and P ∈ P , so that Assumption A5 holds.

We introduce assumptions about the moment conditions for βn,x,τ,j(·, ·) and other regu-

larity conditions. For τ ∈ T and ε1 > 0, let Sτ (ε1) ≡ {x+ a : x ∈ Sτ , a ∈ [−ε1, ε1]d}, where

Sτ ≡ {x ∈ X : (x, τ) ∈ S} for each τ ∈ T . Let U ≡ K0 +K0 such that U contains {0} in its

interior and K0 is the same as Assumption 2.

Assumption A6. (i) There exist M ≥ 2(p+ 2), C > 0, and ε1 > 0 such that

E[|βn,x,τ,j (Yij, u) |M |Xi = x]f(x) ≤ C,

for all (x, u) ∈ Sτ (ε1) × U , τ ∈ T , j ∈ NJ , n ≥ 1, and P ∈ P, where f(·) is the density of

Xi.
26

(ii) For each a ∈ (0, 1/2), there exists a compact set Ca ⊂ Rd such that

0 < inf
P∈P

P{Xi ∈ Rd\Ca} ≤ sup
P∈P

P{Xi ∈ Rd\Ca} < a.

Assumption A6(i) requires that conditional moments of βn,x,τ,j (Yij, z) be bounded. As-

sumption A6(ii) is a technical condition for the distribution of Xi. The third inequality

in Assumption A6(ii) is satisfied if the distribution of Xi is uniformly tight in P , and fol-

lows, for example, if supP∈PE||Xi|| <∞. The first inequality in Assumption A6(ii) requires

that there be a common compact set outside which the distribution of Xi still has positive

probability mass uniformly over P ∈ P . The main thrust of Assumption A6(ii) lies in the

requirement that such a compact set be independent of P ∈ P . While it is necessary to

make this technical condition explicit as stated here, the condition itself appears very weak.

This paper’s asymptotic analysis adopts the approach of Poissonization (see, e.g., Horváth

(1991) and Giné, Mason, and Zaitsev (2003)). However, existing methods of Poissonization

are not readily applicable to our testing problem, mainly due to the possibility of local

or global redundancy among the nonparametric functions. In particular, the conditional

covariance matrix of βn,x,τ,j(Yij, u)’s across different (x, τ, j)’s given Xi can be singular in

the limit. Since the empirical researcher rarely knows a priori the local relations among

nonparametric functions, it is important that the validity of the test is not sensitive to the

local relations among them, i.e., the validity should be uniform in P .

This paper deals with this challenge in three steps. First, we introduce a Poissonized ver-

sion of the test statistic and apply a certain form of regularization to facilitate the derivation

26The conditional expectation EP
[
|βn,x,τ,j (Yij , u) |M |Xi = x

]
is of type E [f(Y, x)|X = x], which is not well

defined according to Kolmogorov’s definition of conditional expectations. See, e.g. Proschan and Presnell
(1998) for this problem. Here we define the conditional expectation in an elementary way by using conditional
densities or conditional probability mass functions of (Yij , Yik) given Xi = x, depending on whether (Yij , Yik)
is continuous or discrete.
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of its limiting distribution uniformly in P ∈ P , i.e., regardless of singularity or degeneracy

in the original test statistic. Second, we use a Berry-Esseen-type bound to compute the

finite sample influence of the regularization bias and let the regularization parameter go to

zero carefully, so that the bias disappears in the limit. Third, we translate thus computed

limiting distribution into that of the original test statistic, using so-called de-Poissonization

lemma. This is how the uniformity issue in this complex situation is covered through the

Poissonization method combined with the method of regularization.

4.3. Asymptotic Validity of Bootstrap Procedure. Recall that E∗ and P ∗ denote the

expectation and the probability under the bootstrap distribution. We make the following

assumptions for v̂∗τ,j(x).

Assumption B1. (Bootstrap Asymptotic Linear Representation) For each j ∈ NJ ,

sup
(x,τ)∈S

∣∣∣∣rn,j { v̂∗τ,j(x)− v̂τ,j(x)

σ̂∗τ,j(x)

}
−
√
nhd{ĝ∗τ,j(x)− E∗ĝ∗τ,j(x)}

∣∣∣∣ = oP ∗(
√
hd), P-uniformly,

where

ĝ∗τ,j(x) ≡ 1

nhd

n∑
i=1

βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)
,

and βn,x,τ,j is a real valued function introduced in Assumption A1.

Assumption B2. For all j ∈ NJ ,

sup
(x,τ)∈S

rn,j

∣∣∣∣ v̂∗τ,j(x)− v̂τ,j(x)

σ̂∗τ,j(x)

∣∣∣∣ = OP ∗(
√

log n), P-uniformly.

Assumption B3. For all j ∈ NJ ,

sup
(x,τ)∈S

∣∣σ̂∗τ,j(x)− σ̂τ,j(x)
∣∣ = oP ∗(1), P-uniformly.

Assumption B1 is the asymptotic linear representation of the bootstrap estimator v̂∗τ,j(x).

The proof of the asymptotic linear representation can be typically proceeded in a similar

way that one obtains the original asymptotic linear representation in Assumption A1. As-

sumptions B2 and B3 are the bootstrap versions of Assumptions A3 and A5.

Assumption B4. (Bandwidth Condition) n−1/2h−( 3M−4
2M−4)d−ν2 → 0 as n → ∞, for some

small ν2 > 0 and for M > 0 that appears in Assumption A6(i).

When βn,x,τ,j (Yij, u) is bounded uniformly over (n, x, τ, j), the bandwidth condition in

Assumption B4 is reduced to n−1/2h−3d/2−ν2 → 0. If Assumption A4(i) holds with M = 6

and p = 1 (this choice of (M, p) satisfies Assumption A6(i)), the bandwidth condition in

Assumption B4 is reduced to n−1/2h−7d/4−ν2 → 0.
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Note that Assumption B4 is stronger than the bandwidth condition in Assumption A4(i).

The main reason is that we need to prove that for some a∞ > 0, we have an = a∞ + o(hd/2)

and a∗n = a∞ + oP (hd/2), P-uniformly, where an is an appropriate location normalizer of

the test statistic, and a∗n is a bootstrap counterpart of an. To show these, we utilize a

Berry-Esseen-type bound for a nonlinear transform of independent sum of random variables.

Since the approximation error depends on the moment bounds for the sum, the bandwidth

condition in Assumption B4 takes a form that involves M > 0 in Assumption A6.

We now present the result of the uniform validity of our bootstrap test.

Theorem 1. Suppose that Assumptions A1-A6 and B1-B4 hold. Then

limsup
n→∞

sup
P∈P0

P{θ̂ > c∗α,η} ≤ α.

One might ask whether the bootstrap test 1{θ̂ > c∗α,η} is asymptotically exact, i.e., whether

the inequality in Theorem 1 holds as an equality. As we show below, the answer is affirmative

in general. The remaining issue is a precise formulation of a subset of P0 such that the

rejection probability of the bootstrap test achieves the level α asymptotically, uniformly

over the subset.

To see when the test will have asymptotically exact size, we apply Lemma 1 to find that

with probability approaching one,

θ̂ =
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ),

where ŝτ (x) ≡ [rn,j{v̂n,τ,j(x)− vn,τ,j(x)}/σ̂τ,j(x)]Jj=1, and un,τ (x; σ̂) ≡ [rn,jvn,τ,j(x)/σ̂τ,j(x)]Jj=1 ,

and cn,U > 0 and cn,L > 0 are nonstochastic sequences that satisfy Assumption A4(ii).27 We

fix a positive sequence qn → 0, and write the right hand side as∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)(4.7)

+
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ).

Under the null hypothesis, we have vn,τ,j(x) ≤ 0, and hence the last sum is bounded by∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ),

27Note that we use Lemma 1 with Bn,A(cn,U , cn,L) here, differently from (4.5). This is because for asymptotic
exactness, we need to use different arguments. See the roadmap of Appendix A for detailed explanations.
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with probability approaching one. Using the uniform convergence rate in Assumption A3,

we find that as long as

Q(Bn,A(cn,U , cn,L)\Bn,A(qn))→ 0,

fast enough, the second term in (4.7) vanishes in probability. As for the first integral, since

for all x ∈ Bn,A(qn), we have |rn,jvn,τ,j(x)/σ̂τ,j(x)| ≤ qn for all j ∈ A, we use the Lipschitz

continuity of the map ΛA,p on a compact set, to approximate the leading sum in (4.7) by

θ̄1,n(qn) ≡
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ).

Thus we let

(4.8) P̃n(λn, qn) ≡

{
P ∈ P : Q

( ⋃
A∈NJ

Bn(cn,U , cn,L)\Bn(qn)

)
≤ λn

}
,

where Bn(cn,U , cn,L) ≡ ∪A∈NJBn,A(cn,U , cn,L), and find that

θ̂ = θ̄1,n(qn) + oP (hd/2), P̃n(λn, qn) ∩ P0-uniformly,

as long as λn and qn converge to zero fast enough. We will specify the conditions in Theorem

2 below.

Let us deal with θ̄1,n(qn). First, it can be shown that there are sequences of nonstochastic

numbers an(qn) ∈ R and σn(qn) > 0 that depend on qn such that

(4.9) h−d/2{θ̄1,n(qn)− an(qn)}/σn(qn)
d→ N(0, 1),

if liminfn→∞σn(qn) > 0. We provide the precise formulae for σn(qn) and an(qn) in Section 6.3.

Since the distribution of h−d/2{θ̄1,n(qn) − an(qn)}/σn(qn) is approximated by the bootstrap

distribution of h−d/2{θ̂∗ − an(qn)}/σn(qn) in large samples, we find that

h−d/2{c∗α − an(qn)}
σn(qn)

= Φ−1(1− α) + oP (1).

Hence the bootstrap critical value c∗α will dominate h−d/2η + â∗ > 0, if for all n ≥ 1,

Φ−1(1− α) ≥ h−d/2{hd/2η + â∗ − an(qn)}
σn(qn)

=
η + h−d/2{â∗ − an(qn)}

σn(qn)
.

We can show that â∗ − an(qn) = oP (hd/2), which follows if λn in (4.8) vanishes to zero

sufficiently fast. Hence if

σn(qn) ≥ η/Φ−1(1− α),
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we have c∗α becomes approximately equal to our bootstrap critical value c∗α,η. This leads to

the following formulation of probabilities.

Definition 2. Define

Pn(λn, qn) ≡
{
P ∈ P̃n(λn, qn) : σn(qn) ≥ η/Φ−1(1− α)

}
,

where P̃n(λn, qn) is as defined in (4.8).

The following theorem establishes the asymptotic exactness of the size of the bootstrap

test over P ∈ Pn(λn, qn) ∩ P0.

Theorem 2. Suppose that Assumptions A1-A6 and B1-B4 hold. Let λn → 0 and qn → 0 be

positive sequences such that

h−d/2 (log n)p/2 λn → 0 and(4.10)

h−d/2qn{(log n)(p−1)/2 + qp−1
n } → 0.

Then

limsup
n→∞

sup
P∈Pn(λn,qn)∩P0

∣∣∣P{θ̂ > c∗α,η} − α
∣∣∣ = 0.

Theorem 2 shows that the rejection probability of our bootstrap test achieves exactly the

level α uniformly over the set of probabilities in Pn(λn, qn)∩P0. If vn,τ,j(x) ≡ 0 for each (x, τ)

and for each j (the least favorable case, say PLFC), then it is obvious that the distribution

PLFC belongs to Pn(λn, qn) for any positive sequences λn → 0 and qn → 0. This would be

the only case of asymptotically exact coverage if bootstrap critical values were obtained as

in (2.12), without contact set estimation. By estimating the contact sets and obtaining a

critical value based on them, Theorem 2 establishes the asymptotically uniform exactness of

the bootstrap test for distributions such that they may not satisfy vn,τ,j(x) ≡ 0 everywhere.

4.4. Sufficient Conditions for Uniform Convergences in Assumptions A3 and B2.

This subsection gives sufficient conditions that yield Assumptions A3 and B2. The result is

formalized in the following lemma.

Lemma 2. (i) Suppose that Assumptions A1-A2 hold and that for each j ∈ NJ , there exist

finite constants C, γj > 0, and a positive sequence δn,j > 0 such that for all n ≥ 1, and all

(x1, τ1) ∈ S,

(4.11) E

[
sup

(x2,τ2)∈S:||x1−x2||+||τ1−τ2||≤λ
(bn,ij(x1, τ1)− bn,ij(x2, τ2))2

]
≤ Cδ2

n,jλ
γj , for all λ > 0,
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where bn,ij(x1, τ1) ≡ βn,x1,τ1,j (Yij, (Xi − x1)/h) and lim supn→∞E[sup(x,τ)∈S b
4
n,ij(x, τ)] ≤ C

and δn,j = ns1,j and h = ns2 for some s1,j, s2 ∈ R. Furthermore, assume that

n−1/2h−d−ν → 0,

for some small ν > 0. Then, Assumption A3 holds.

(ii) Suppose further that Assumptions B1 and B3 hold. Then, Assumption B2 holds.

The condition (4.11) is the local L2-continuity condition for βn,x,τ,j (Yij, (Xi − x)/h) in

(x, τ). The condition corresponds to what Andrews (1994) called “Type IV class”. The

condition is satisfied by numerous maps that are continuous or discontinuous, as long as

regularity conditions for the random vector (Yi, Xi) are satisfied.28 Typically, δn,j diverges to

infinity at a polynomial rate in h−1. The constant γj is 2 or can be smaller than 2, depending

on the smoothness of the underlying function bn,ij(x, τ). The value of γj does not affect the

asymptotic theory of this paper, as long as it is strictly positive.

5. Verifying High-Level Conditions for the First Empirical Example

In this section, we use the auction model of GPV to illustrate how to verify high-level

regularity conditions in Section 4.29

5.1. Details on Estimating Conditional Quantile Functions. We provide further de-

tails on the empirical example considered in Section 3.3. Assume that qk(τ |x) is (r+1)-times

continuously differentiable with respect to x, where r ≥ 1. We use a local polynomial es-

timator q̂k(τ |x). For u ≡ (u1, . . . , ud), a d-dimensional vector of nonnegative integers, let

[u] = u1 + · · · + ud. Let Ar be the set of all d-dimensional vectors u such that [u] ≤ r,

and let |Ar| denote the number of elements in Ar. For z = (z1, · · ·, zd)> ∈ Rd with

u = (u1, · · ·, ud)> ∈ Ar, let zu =
∏d

m=1 z
um
m . Now define c(z) = (zu)u∈Ar , for z ∈ Rd.

Note that c(z) is a vector of dimension |Ar|.
Let {(B`i, Xi, Li) : ` = 1, . . . , Li, i = 1, . . . , n} denote the observed data, where {B`i : ` =

1, . . . , Li} denotes the Li number of observed bids in the i-th auction, Xi a vector of observed

characteristics for the i-th auction, and Li the number of bids for the i-th auction, taking

values from NL ≡ {2, · · ·, L̄}. In our application, L̄ = 3.

Assume that the data {(B`i, Xi, Li) : ` = 1, . . . , Li, i = 1, . . . , n} are i.i.d. over i and that

B`i’s are also i.i.d. over ` conditional on Xi and Li. To implement the test, it is necessary

28Chen, Linton, and Van Keilegom (2003, Theorem 3) introduced its extension to functions indexed partly
by infinite dimensional parameters, and called it local uniform L2-continuity. For further discussions, see
Andrews (1994) and Chen, Linton, and Van Keilegom (2003).
29Similarly one may derive primitive conditions for the second empirical example since it is also concerned
with estimating conditional quantile functions. Hence we omit the details.
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to estimate b. In our application, we use b̂ = min{B`i : ` = 1, . . . , Li, i = 1, . . . , n}, that is

the overall sample minimum.

For each x = (x1, . . . , xd), the r-th order local polynomial quantile regression estimator of

qk(τ |x) can be obtained by minimizing

Sn,x,τ,k(γ) ≡
n∑
i=1

1{Li = k}
Li∑
`=1

lτ

[
B`i − γ>c

(
Xi − z
h

)]
K

(
x−Xi

h

)
with respect to γ ∈ R|Ar|, where lτ (u) ≡ {|u| + (2τ − 1)u}/2 for any u ∈ R, and K(·) is a

d-dimensional kernel function and h a bandwidth. More specifically, let q̂k(τ |x) = e>1 γ̂k(x),

where γ̂k(x) ≡ arg minγ∈R|Ar | Sn,x,τ,k(γ) and e1 is a column vector whose first entry is one, and

the rest zero. Note that all bids are combined in each auction since we consider symmetric

bidders. For u = (u1, · · ·, ud)> ∈ Ar, and r + 1 times differentiable map f on Rd, we define

the following derivative:

(Duf)(x) ≡ ∂[u]

∂xu11 · · · ∂x
ud
d

f(x),

where [u] = u1 + · · ·+ ud. Then we define γτ,k(x) ≡ (γτ,k,u(x))u∈Ar , where

γτ,k,u(x) ≡ 1

u1! · · · ud!
Duqk(τ |x).

5.2. Primitive Conditions for the Example. Let us present primitive conditions for the

auction example of GPV.

Assumption AUC-1. (i) There exists an integer r > 3d/2− 1 and a constant ε > 0 such

that for all (τ, k) ∈ T × NL, qk(τ |·) is r + 1 times continuously differentiable on Sτ (ε) with

derivatives bounded uniformly over (τ, P ) ∈ T × P.

(ii) The density f of X is continuously differentiable on Rd with a derivative bounded uni-

formly over P ∈ P.

Assumption AUC-2. For each k ∈ NL, (i) infx∈Sτ (ε) fτ,k(0|x) is bounded away from zero

uniformly over (τ, P ) ∈ T ×P, with fτ,k(0|x) being the conditional density of B`i− qk(τ |Xi)

given Xi = x and Li = k. (ii) supx∈Sτ (ε) fτ,k(0|x) is bounded uniformly over (τ, P ) ∈ T ×P,

and (iii) fτ,k(ε̄|x) is continuously differentiable in (ε̄, x) with a derivative bounded uniformly

over x ∈ Sτ (ε), τ ∈ T , and P ∈ P.

(iv) P{Li = k|Xi = x} is bounded away from zero uniformly over x ∈ Sτ (ε), τ ∈ T and

P ∈ P, and is continuously differentiable in x with a derivative bounded uniformly over

x ∈ Sτ (ε), τ ∈ T and P ∈ P.

Assumption AUC-3. (i) K is compact-supported, nonnegative, bounded, and Lipschitz

continuous on the interior of its support,
∫
K(u)du = 1, and

∫
K (u) ||u||2du > 0. (ii) As
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n→∞,
n−1/4h−3(d+ν)/4 +

√
nhr+1 → 0,

for some small ν > 0.

Assumption AUC-4. b̂ = b+ oP
(
n−1/2

)
, P-uniformly.

Assumption AUC-1(i) is a standard assumption used in the local polynomial approach

where one approximates qk(·|x) by a linear combination of its derivatives through Taylor

expansion, except only that the approximation behaves well uniformly over P ∈ P . As-

sumption AUC-2 is made to prevent the degeneracy of the asymptotic linear representation

of γ̂τ,k(x) − γτ,k(x) that is uniform over x ∈ Sτ (ε), τ ∈ T and over P ∈ P . Assumptions

AUC-3 (i) and (ii) are conditions for the kernel and the bandwidth. For example, the choice

of h = n−s with the condition 1/(2(r + 1)) < s < 1/(3(d + ν)) satisfies the bandwidth con-

dition. The small ν > 0 there is introduced to satisfy Assumption B4. Assumption AUC-4

holds in general because the extreme order statistic is super-consistent with the n−1 rate of

convergence. Recall that e1 is a unit vector whose first element is one and all other elements

are zeros.

Theorem AUC. If Assumptions AUC-1, AUC-2, AUC-3, and AUC-4 hold, then Assump-

tions A1-A3, A5-A6, and B1-B4 hold with the following definitions: J = 2, rn,j ≡
√
nhd,

vn,τ,1(x) ≡ e>1 {γτ,2(x)− γτ,3(x)},

vn,τ,2(x) ≡ b− e>1 {2γτ,2(x)− γτ,3(x)},

βn,x,τ,1(Yi, z) ≡ αn,x,τ,2(Yi, z)− αn,x,τ,3(Yi, z), and

βn,x,τ,2(Yi, z) ≡ −2αn,x,τ,2(Yi, z) + αn,x,τ,3(Yi, z),

where l̃τ (u) ≡ τ − 1{u ≤ 0}, Yi = {(B`i, Li) : ` = 1, . . . , Li},

αn,x,τ,k(Yi, z) ≡ −1 {Li = k}
k∑
l=1

l̃τ
(
B`i − γ>τ,k(x) ·H · c (z)

)
e>1 M

−1
n,τ,k(x)c (z)K (z) ,

Mn,τ,k(x) ≡ k

∫
P{Li = k|Xi = x+ th}fτ,k(0|x+ th)f(x+ th)K(t)c(t)c>(t)dt,

and H =diag((h|u|)u∈Ar) is the |Ar| × |Ar| diagonal matrix.

It is worth commenting on the linear expansion derived in Theorem AUC. The term

αn,x,τ,k(Yi, z) is not mean zero conditionally on Xi since the bias terms are included inside

l̃τ (·). Also, note that Mn,τ,k(x) depends on n and contains the smoothing bias as well.

However, the results obtained in Theorem AUC are sufficient enough to verify high-level

conditions of the paper.
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The main part of the proof is to establish a uniform error rate for the asymptotic linear

representation for
√
nhd{γ̂τ,k(x)−γτ,k(x)} in a spirit similar to Guerre and Sabbah (2012).30

Our proof uses some arguments of Guerre and Sabbah (2012), who employ a maximal in-

equality of Massart (2007, Theorem 6.8).31

The theoretical novelty in our derivation of the linear expansion in Theorem AUC is

that we have obtained an approximation that is uniform in (x, τ) as well as in P . To the

best of our knowledge, there is no established result on linear expansions of local polynomial

quantile regression estimators that hold uniformly over three aspects (x, τ, P ) simultaneously.

Therefore, our results may be of independent interest and can be useful in other contexts.

6. Power Properties

In this section, we go back to the general setup in Section 4 and consider the power

properties of the bootstrap test. In Section 6.1, we establish the consistency of our test.

Section 6.2 provides heuristic arguments behind local power properties of our tests, and

Section 6.3 presents the local power function in a general form.32

6.1. Consistency. First, to show consistency of our test, we make the following assumption.

Assumption C1. For each j ∈ NJ and (x, τ) ∈ S, vn,τ,j(x) = vτ,j(x) + o(1), and

(6.1) lim sup
n→∞

sup
(x,τ)∈S

|vn,τ,j(x)| <∞.

The pointwise convergence vn,τ,j(x) = vτ,j(x) + o(1) holds typically by an appropriate

choice of vn,τ,j(x). In many examples, condition (6.1) is often implied by Assumptions A1-

A6. If we revisit the simple example considered in Section 2.4, it is straightforward to see

that under Assumptions A1-A6, with the subscript τ suppressed, vn,1(x) = v1(x) + o(1),

where vn,1(x) ≡ Ev̂n,1(x) and v1(x) ≡ E(Y |X = x)f(x), and (6.1) holds easily.

We now establish the consistency of our proposed test as follows.

30See Lemma QR2 in Appendix B. Our asymptotic approximation is based on plugging the asymptotic linear
expansion directly. There is a recent proposal by Mammen, Van Keilegom, and Yu (2013), who developed
nonparametric tests for parametric specifications of regression quantiles and showed that calculating moments
of linear expansions of nonparametric quantile regression estimators might work better in a sense that their
approach requires less stringent conditions for the dimension of covariates and the choice of the bandwidth.
It is an interesting future research topic whether their ideas can be applied to our setup.
31The main significant difference is that the convergence rate obtained by Guerre and Sabbah (2012) is
uniform over h in some interval, while our result is uniform over P ∈ P.
32The local power results in this section are more general than those of Lee, Song, and Whang (2013). In
particular, the results accommodate a wider class of local alternatives that may not converge to the least
favorable case.
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Theorem 3. Suppose that Assumptions A1-A6, B1-B4, and C1 hold and that we are under

a fixed alternative hypothesis such that∫
Λp (vτ,1(x), · · ·, vτ,J(x)) dQ(x, τ) > 0.

Then as n→∞,
P{θ̂ > c∗α,η} → 1.

6.2. Local Power Analysis: Definitions and Heuristics. In this section, we investigate

the local power properties of our test. For local power analysis, we formally define the space

of Pitman directions. Let D be the collection of RJ -valued bounded functions on X ×T such

that for each δ = (δ1, · · ·, δJ) ∈ D, Q{(x, τ) ∈ S : δj(x, τ) 6= 0} > 0 for some j = 1, . . . , J .

That is, at least one of the components of any δ ∈ D is a non-zero function a.e. For each

δ = (δ1, · · ·, δJ) ∈ D, we write δτ,j(x) = δj(x, τ), j = 1, · · ·, J .

For a given vector of sequences bn = (bn,1, · · ·, bn,J), such that bn,j → ∞, and δ ∈ D, we

consider the following type of local alternatives:

(6.2) Hδ : vτ,j(x) = v0
τ,j(x) +

δτ,j(x)

bn,j
, for all j ∈ NJ ,

where v0
τ,j(x) ≤ 0 for all (x, τ, j) ∈ X × T ×NJ , δτ,j(x) > 0 for some (x, τ, j) ∈ X × T ×NJ

such that vτ,j(x) > 0 for some (x, τ, j) ∈ X ×T ×NJ . Note that in (6.2), vτ,j(x) is a sequence

of Pitman local alternatives that consist of three components: v0
τ,j(x), bn, and δτ,j(x).

The first component v0
τ,j(x) determines where the sequence of local alternatives converges

to. For example, if v0
τ,j(x) ≡ 0 for all (x, τ, j), then we have a sequence of local alternatives

that converges to the least favorable case. We allow for negative values for v0
τ,j(x), so that

we include the local alternatives that do not converge to the least favorable case as well.

From here on, we assume the local alternative hypotheses of the form in (6.2). We fix

v0
τ,j(x) and identify each local alternative with a pair (bn, δ) for each Pitman direction δ ∈ D.

The following definitions are useful to explain our local power results.

Definition 3. (i) Given a Pitman direction δ ∈ D, we say that an α-level test, 1{T > cα},
has nontrivial local power against (bn, δ), if under the local alternatives (bn, δ),

liminfn→∞ P {T > cα} > α,

and say that the test has trivial local power against (bn, δ), if under the local alternatives

(bn, δ),

limsupn→∞ P {T > cα} ≤ α.
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(ii) Given a collection D, we say that a test has convergence rate bn against D, if the test

has nontrivial local power against (bn, δ) for some δ ∈ D, and has trivial local power against

(b′n, δ) for all δ ∈ D and all b′n such that b′n,j/bn,j →∞ as n→∞, for all j = 1, . . . , J .

One of the remarkable aspects of the local power properties is that our test has two types of

convergence rates. More specifically, there exists a partition (D1,D2) of D, where our test has

a rate bn against D1 and another rate b′n against D2. Furthermore, in many nonparametric

inequality testing environments, the faster of the two rates bn and b′n achieves the parametric

rate of
√
n.

To see this closely, let us assume the set-up of testing inequality restrictions on a mean

regression function in Section 2.4, and consider the following local alternatives:

(6.3) vn,1(x) = v0(x) +
δ(x)

bn
,

where v0(x) ≤ 0 for all x ∈ X , and δ ∈ D.

First, we set bn =
√
n. Then under this local alternative hypothesis (bn, δ), we can verify

that with probability approaching one,

(6.4) h−1/2(θ̂ − an,0) = h−1/2

{∫
B0
n(cn)

[
Zn,1(x) +

√
nhv0(x)

σ̂1(x)
+
h1/2δ(x)

σ̂1(x)

]
+

dx− an,0

}
,

where Zn,1(x) =
√
nh {v̂1(x)− vn,1(x)} /σ̂1(x), B0

n(cn) =
{
x ∈ X :

∣∣∣√nhv0(x)
∣∣∣ ≤ cn

}
, cn →

∞,
√

log n/cn → 0, and

an,0 = E

[∫
B0
n(cn)

[Zn,1(x)]+ dx

]
.

Under regularity conditions, the right-hand side of (6.4) is approximated by

(6.5) h−1/2

{∫
B0(0)

[
Zn,1(x) +

h1/2δ(x)

σ1(x)

]
+

dx− an,δ
}

+ h−1/2 {an,δ − an,0} ,

where B0(0) = {x ∈ X : v0(x) = 0} and

an,δ = E

[∫
B0(0)

[
Zn,1(x) +

h1/2δ(x)

σ1(x)

]
+

dx

]
.

The leading term in (6.5) converges in distribution to Z1 ∼ N(0, σ2
0) precisely as in (2.11).

Furthermore, we can show that

an,δ =

∫
B0(0)

E

[
Z1 +

h1/2δ(x)

σ1(x)

]
+

dx+ o(h1/2) and

an,0 =

∫
B0(0)

E [Z1]+ dx+ o(h1/2).
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Therefore, as for the last term in (6.5), we find that

h−1/2 {an,δ − an,0} =

∫
B0(0)

h−1/2

(
E

[
Z1 +

h1/2δ(x)

σ1(x)

]
+

− E [Z1]+

)
dx

= 2φ(0)

∫
B0(0)

δ(x)

σ1(x)
dx+ o(1),

where the last equality follows from expanding h−1/2
{

E
[
Z1 + h1/2δ(x)/σ1(x)

]
+
− E [Z1]+

}
.

We conclude that under the local alternatives, we have

h−1/2(θ̂ − an,0) →d Z1 + 2φ(0)

∫
B0(0)

δ(x)

σ1(x)
dx.

The magnitude of the last term in the limit determines the local power of the test. Thus

under Pitman local alternatives such that

(6.6)

∫
B0(0)

δ(x)

σ1(x)
dx > 0,

the test has nontrivial power against
√
n-converging Pitman local alternatives. Note that the

integral in (6.6) is defined on the population contact set B0(0). Thus, the test has nontrivial

power, unless the contact set has Lebesgue measure zero or δ(·) is “too often negative” on

the contact set.

When the integral in (6.6) is zero, we consider the local alternatives (bn, δ) with a slower

convergence rate bn = n1/2h1/4. Following similar arguments as before, we now have

h−1/2(θ̂ − an,0)→d Z1 + limn→∞h
−1/2 {ān,δ − an,0} ,

where

ān,δ =

∫
B0(0)

E

[
Zn,1(x) +

h1/4δ(x)

σ1(x)

]
+

dx,

which can be shown again to be equal to∫
B0(0)

E

[
Z1 +

h1/4δ(x)

σ1(x)

]
+

dx+ o(h1/2).

However, observe that

h−1/2

∫
B0(0)

{
E

[
Z1 +

h1/4δ(x)

σ1(x)

]
+

− E [Z1]+

}
dx

= h−1/42φ(0)

∫
B0(0)

δ(x)

σ1(x)
dx+

1

2

∫
B0(0)

δ2(x)

σ2
1(x)

dx+ o(1)

=
1

2

∫
B0(0)

δ2(x)

σ2
1(x)

dx+ o(1),
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because
∫
B0(0)
{δ(x)/σ1(x)}dx = 0. We find that under the local alternative hypothesis in

(6.3) with bn = n1/2h1/4,

h−1/2(θ̂ − an,0) →d Z1 +
1

2

∫
B0(0)

δ2(x)

σ2
1(x)

dx.

Therefore, even when
∫
B0(0)
{δ(x)/σ1(x)}dx = 0, the test still has nontrivial power against

n1/2h1/4-converging Pitman local alternatives, if the Pitman directions are such that∫
B0(0)

{δ2(x)/σ2
1(x)}dx > 0.

Now let us consider the partition (D1,D2) of D, where

D1 =

{
δ ∈ D :

∫
B0(0)

δ(x)/σ1(x)dx 6= 0

}
and

D2 =

{
δ ∈ D :

∫
B0(0)

δ(x)/σ1(x)dx = 0 and

∫
B0(0)

{δ2(x)/σ2
1(x)}dx > 0

}
.

When infx∈Xσ
2
1(x) > c > 0 for some c > 0 (recall Assumption A5) and Q(B0(0)) > 0, we

have
∫
B0(0)
{δ2(x)/σ2

1(x)}dx > 0 and the set {D1,D2} becomes a partition of D. Thus the

bootstrap test has a convergence rate of
√
n against D1 and n1/2h1/4-rate against D2. In the

next section, Corollary 1 provides a general result of this phenomenon of dual convergence

rates of our bootstrap test.

6.3. Local Power Analysis: Results. We now provide general local power functions

explicitly. We first present explicit forms of location and scale normalizers, an(qn) and

σn(qn) in (4.9). Let for j, k ∈ NJ , and τ1, τ2 ∈ T ,

(6.7) ρn,τ1,τ2,j,k(x, u) ≡ 1

hd
E

[
βn,x,τ1,j

(
Yij,

Xi − x
h

)
βn,x,τ2,k

(
Yik,

Xi − x
h

+ u

)]
.

This function approximates the asymptotic covariance between
√
n(v̂τ,j(x)−vn,τ,j(x))/σ̂τ,j(x)

and
√
n(v̂τ,j(x+uh)−vn,τ,j(x+uh))/σ̂τ,j(x). We define Σn,τ1,τ2(x, u) to be the J-dimensional

square matrix with (j, k)-th entry given by ρn,τ1,τ2,j,k(x, u).

Define for v ∈ RJ ,

Λ̄x,τ (v) ≡
∑
A∈NJ

ΛA,p(v)1 {(x, τ) ∈ Bn,A(qn)} .

Then we define

an(qn) ≡
∫
X

∫
T

E
[
Λ̄x,τ1(W(1)

n,τ,τ (x, 0))
]
dτdx,

and

(6.8) σ2
n(qn) ≡

∫
U

∫
X

∫
T

∫
T
Cn,τ1,τ2(x, u)dτ1dτ2dxdu,
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where

Cn,τ1,τ2(x, u) ≡ Cov
(
Λ̄x,τ1(W(1)

n,τ1,τ2
(x, u)), Λ̄x,τ2(W(2)

n,τ1,τ2
(x, u))

)
,

and [W(1)
n,τ1,τ2(x, u)>,W(2)

n,τ1,τ2(x, u)>]> is a mean zero R2J -valued Gaussian random vector

whose covariance matrix is given by

(6.9)

[
Σn,τ1,τ1(x, 0)

Σn,τ1,τ2(x, u)>
Σn,τ1,τ2(x, u)

Σn,τ2,τ2(x+ uh, 0)

]
.

The multiple integral in (6.8) is nonnegative.

The limit of the quantity σ2
n(qn) as n→∞, if it is positive, is nothing but the asymptotic

variance of the test statistic θ̂ (after location-scale normalization). Not surprisingly the

asymptotic variance does not depend on points (x, τ) of X × T such that vn,τ,j(x)/σn,τ,j(x)

is away below zero, as is expressed through its dependence on the contact sets Bn,A(qn) and

the “truncated map” Λ̄x,τ (·) involving A’s restricted to NJ .

We first make the following assumptions.

Assumption C2. (i) For each (τ, j) ∈ T × NJ , there exists a map v0
n,τ,j : Rd → R such

that for each x ∈ Sτ (ε1), v0
n,τ,j(x) ≤ 0, and

(6.10) vn,τ,j(x) = v0
n,τ,j(x) +

δτ,j(x)

bn,j
(1 + o(1)) ,

where o(1) is uniform in x ∈ Sτ and in τ ∈ T , as n → ∞ and bn,j → ∞ is the positive

sequence in (6.2).

(ii) sup(x,τ)∈S |σn,τ,j(x) − στ,j(x)| = o(1), as n → ∞, for some function στ,j(x) such that

inf(x,τ)∈S στ,j(x) > 0.

Assumption C2 can also be shown to hold in many examples. When appropriate smooth-

ness conditions for vτ,j(x) hold and a suitable (possibly higher-order) kernel function is used,

we can take vn,τ,j(x) in Assumption A1 to be identical to vτ,j(x), and hence Assumption C2

is implied by (6.2). For the simple example in Section 2.4, if we take vn,j(x) = Ev̂j(x), it

follows that vn,j(x) = v0
n,j(x) + b−1

n,j

∫
δj(x+ zh)K(z)dz, with v0

n,j(x) =
∫
v0
j (x+ zh)K(z)dz.

Hence when δj(x) is uniformly continuous in x, we obtain Assumption C2.

The local asymptotic power function is based on the asymptotic normal approximation of

the distribution of θ̂ (after scale and location normalization) under the local alternatives. For

this purpose, we define the sequence of probability sets that admit the normal approximation

under local alternatives. For c1, c2 > 0, let B0
n(c1, c2) and B0

n,A(c1, c2) denote Bn(c1, c2) and

Bn,A(c1, c2) except that vn,τ,j(x)’s are replaced by v0
n,τ,j(x)’s in Assumption C2. As before,

we write B0
n(c) ≡ B0

n(c, c).
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Definition 4. For any positive sequence λn → 0, define

P0
n(λn) ≡

{
P ∈ P̃0

n(λn) : σ2
n(0) ≥ η/Φ−1(1− α)

}
,

where P̃0
n(λn) is equal to P̃n(λn, qn) except that Bn,A(cn,U , cn,L) and Bn,A(qn) are replaced

by B0
n,A(cn,U , cn,L) and B0

n,A(qn) for all A ∈ NJ , and qn is set to be zero.

To give a general form of the local power function, let us define ψn,A,τ (·;x) : RJ→ [0,∞),

(x, τ) ∈ X × T and A ⊂ NJ , as

ψn,A,τ (y;x) =
1

σn(0)
E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + y
)]
· 1
{

(x, τ) ∈ B0
n,A(0)

}
.

The local power properties of the bootstrap test are mainly determined by the slope and the

curvature of this function. So, we define

(6.11) ψ
(1)
n,A,τ (y;x) ≡ ∂

∂y
ψn,A,τ (y;x) and ψ

(2)
n,A,τ (y;x) ≡ ∂2

∂y∂y>
ψn,A,τ (y;x),

if the first derivatives and the second derivatives in the definition exist respectively.

Assumption C3. (i) There exists ε1 > 0 such that for all (τ, A) ∈ T ×NJ and all x in the

interior of Sτ (ε1), ψ
(1)
n,A,τ (0;x) exists for all n ≥ 1 and

ψ
(1)
A,τ (0;x) ≡ lim

n→∞
ψ

(1)
n,A,τ (0;x)

exists, and lim supn→∞ sup(x,τ)∈S |ψ
(1)
n,A,τ (0;x)| < C for some C > 0.

(ii) There exists ε1 > 0 such that for all (τ, A) ∈ T ×NJ and all x in the interior of Sτ (ε1),

ψ
(2)
n,A,τ (0;x) exists for all n ≥ 1 and

ψ
(2)
A,τ (0;x) ≡ lim

n→∞
ψ

(2)
n,A,τ (0;x)

exists, and lim supn→∞ sup(x,τ)∈S |ψ
(2)
n,A,τ (0;x)| < C for some C > 0.

To appreciate Assumption C3, consider the case where J = 2, A = {1, 2}, and W(1)
n,τ,τ (x, 0)

has a distribution denoted by Gn. Choose y1 ≥ y2 without loss of generality. We take

Λp(v1, v2) = max{v1, v2, 0}p. Then we can write E[ΛA,p(W(1)
n,τ,τ (x, 0) + y)] as∫

R2

(w1 + y1)p1 {w1 ∈ [w2 + y2 − y1,∞) and w2 ∈ [−y2,∞)} dGn(w1, w2)

+

∫
R2

(w2 + y2)p 1 {w1 ∈ (−∞, w2 + y2 − y1) and w2 ∈ [−y2,∞)} dGn(w1, w2)

+

∫
R2

(w1 + y1)p1 {w1 ∈ [−y1,∞) and w2 ∈ (−∞,−y2)} dGn(w1, w2).

Certainly the three quantities are all differentiable in (y1, y2).
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The following theorem offers the local power function of the bootstrap test in a general

form.

Theorem 4. Suppose that Assumptions A1-A6, B1-B4, C1-C2, and C3(i) hold and that

(6.12) h−d/2 (log n)p/2 λn → 0,

as n→∞. Then for each sequence Pn ∈ P0
n(λn), n ≥ 1, which satisfies the local alternative

hypothesis (bn, δ) for some δ ∈ D with bn = (rn,jh
−d/2)Jj=1,

lim
n→∞

Pn{θ̂ > c∗α,η} = 1− Φ (z1−α − µ1(δ)) ,

where Φ denotes the standard normal cdf,

µ1(δ) ≡
∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δτ,σ(x)dQ(x, τ),

and

(6.13) δτ,σ(x) ≡
(
δτ,1(x)

στ,1(x)
, · · ·, δτ,J(x)

στ,J(x)

)
.

Theorem 4 shows that if we take bn such that bn,j = rn,jh
−d/2 for each j = 1, . . . , J , the

local asymptotic power of the test against (bn, δ) is determined by the shift µ1(δ). Thus, the

bootstrap test has nontrivial local power against (bn, δ) if and only if

µ1(δ) > 0.

The test is asymptotically biased against (bn, δ) such that µ1(δ) < 0.

Suppose that

(6.14) µ1(δ) = 0,

for all A ∈ NJ , i.e., when δτ,σ has positive and negative parts which precisely cancels out

in the integration. Then, we show that the bootstrap test has nontrivial asymptotic power

against local alternatives that converges at a rate slower than n−1/2 to the null hypothesis.

Theorem 5. Suppose that the conditions of Theorem 4 and Assumption C3(ii) hold. Then

for each sequence Pn ∈ P0
n(λn), n ≥ 1, which satisfies the local alternative hypothesis (bn, δ)

for some δ ∈ D such that µ1(δ) = 0 and bn = (rn,jh
−d/4)Jj=1,

lim
n→∞

Pn{θ̂ > c∗α,η} = 1− Φ (z1−α − µ2(δ)) ,

where

µ2(δ) ≡ 1

2

∑
A∈NJ

∫
δ>τ,σ(x)ψ

(2)
A,τ (0;x)δτ,σ(x)dQ(x, τ).
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The local power function depends on the limit of the curvature of the function ψn,A,τ (y;x)

at y = 0, for all A ∈ NJ . When the function is strictly concave at 0 in the limit, ψ
(2)
A,τ (0;x) is

positive definite on X ×T , and in this case, the bootstrap test has nontrivial power whenever

δτ,σ(x) is nonzero on a set whose intersection with B0
n(0) has Lebesgue measure greater than

c > 0 for all n ≥ 1, for some c > 0.

From Theorems 4 and 5, it is seen that the phenomenon of dual convergence rates generally

hold for our tests. To formally state the result, define

D1 ≡ {δ ∈ D : µ1(δ) 6= 0} and

D2 ≡ {δ ∈ D : µ1(δ) = 0 and µ2(δ) > 0} .

When lim infn→∞Q(B0
n(0)) > 0, the set {D1,D2} becomes a partition of the space of Pitman

directions D.

Corollary 1. Suppose that the conditions of Theorem 5 hold. Then the bootstrap test has

convergence rate bn = (rn,jh
−d/2)Jj=1 against D1, and convergence rate bn = (rn,jh

−d/4)Jj=1

against D2.

When rn,j’s diverge to infinity at the usual nonparametric rate rn,j = n1/2hd/2 as in many

kernel-based estimators, the test has a parametric rate of convergence bn =
√
n and nontrivial

local power against D1. However, the test has a convergence rate slower than the parametric

rate against D2.

When rn,j’s diverge slower than the rate n1/2hd/2 as in the case of kernel-based derivative

estimators, the test has a convergence rate slower than the parametric rate. In Appendix

II.2, we present several nonparametric tests for monotonicity where d = 1, J = 1, and

rn,1 = n1/2h3/2. In this case, the monotonicity tests have convergence rate with bn = n1/2h

against D1, and convergence rate with bn = n1/2h5/4 against D2.

7. Conclusions

In this paper, we have proposed a general method for testing inequality restrictions on

nonparametric functions and have illustrated its usefulness by looking at two particular

empirical applications. We regard our examples as just some illustrative applications and

believe that our framework can be useful in a number of other settings.

Our bootstrap test is based on a one-sided version of Lp functionals of kernel-type estima-

tors (1 ≤ p < ∞). We have provided regularity conditions under which the bootstrap test

is asymptotically valid uniformly over a large class of distributions and have also provided a

class of distributions for which the asymptotic size is exact. We have shown the consistency

of our test and have obtained a general form of the local power function.
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There are different notions of efficiency for nonparametric tests and hence there is no

compelling sense of an asymptotically optimal test for the hypothesis considered in this paper.

See Nitikin (1995) and Bickel, Ritov, and Stoker (2006) for a general discussion. It would

be interesting to consider a multiscale version of our test based on a range of bandwidths

to see if it achieves adaptive rate-optimality against a sequence of smooth alternatives along

the lines of Armstrong and Chan (2013) and Chetverikov (2011).

Appendices

Appendix I reports the results of Monte Carlo experiments, and Appendix II presents more

examples of testing problems that can be included in our general framework. Appendix A

gives the proofs of Theorems 1-5, Appendix B provides the proof of Theorem AUC, and

Appendices C and D offer auxiliary results for the proofs of Theorems 1-5.

I. Monte Carlo Experiments

This part of the appendix reports the finite-sample performance of our proposed test for

the Monte Carlo design considered in Andrews and Shi (2013, Section 10.3, hereafter AS).

The null hypothesis has the form

H0 : E(Y − θ|X = x) ≤ 0 for each x ∈ X

with a fixed θ. AS generated a random sample of (Y,X) from the following model:

Y = f(X) + U,

where X ∼ Unif[−2, 2], U follows truncated normal such that Ui = min{max{−3, σŨi}, 3}
with Ũi ∼ N(0, 1) and σ = 1, and f(·) is a function with an alternative shape. AS considered

two functions:

fAS1(x) := Lφ(x10),

fAS2(x) := L ·max {φ((x− 1.5)10), φ((x+ 1.5)10)},

These two functions have steep slopes, fAS1 being a roughly plateau-shaped function and

fAS2 a roughly double-plateau-shaped function, respectively. AS considered the following

Monte Carlo designs:

DGP1: f(x) = fAS1(x) and L = 1; DGP2: f(x) = fAS1(x) and L = 5;

DGP3: f(x) = fAS2(x) and L = 1; DGP4: f(x) = fAS2(x) and L = 5.

AS compared their tests with Chernozhukov, Lee, and Rosen (2013, hereafter CLR) and Lee,

Song, and Whang (2013). The latter test uses conservative standard normal critical values

based on the least favorable configuration.
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Table 3. Results for Monte Carlo Experiments: Coverage Probability

(1) (2) (3) (4) (5) (6) (7) (8)
AS CLR LSW1 LSW2

n CvM KS series local Ccs = 0.4 Ccs = 0.5 Ccs = 0.6
linear

DGP1 100 .986 .986 .707 .804 1.00 .980 .990 .999
250 .975 .973 .805 .893 1.00 .951 .960 .971
500 .975 .970 .872 .925 1.00 .968 .976 .977
1000 .971 .966 .909 .935 1.00 .962 .971 .973

DGP2 100 1.00 1.00 .394 .713 1.00 .996 .999 1.00
250 1.00 1.00 .683 .856 1.00 .953 .963 .975
500 1.00 1.00 .833 .908 1.00 .963 .972 .976
1000 1.00 1.00 .900 .927 1.00 .965 .968 .968

DGP3 100 .970 .969 .620 .721 1.00 .987 .991 .993
250 .969 .964 .762 .854 1.00 .952 .965 .973
500 .963 .957 .854 .900 1.00 .966 .971 .976
1000 .969 .963 .901 .927 1.00 .949 .957 .962

DGP3 100 .998 .999 .321 .655 1.00 .998 .999 1.00
250 .997 .998 .612 .826 1.00 .952 .965 .976
500 .994 .994 .808 .890 1.00 .964 .971 .973
1000 .994 .991 .893 .918 1.00 .943 .950 .958

Notes: Figures in columns (1)-(5) are from Table V of Andrews and Shi
(2013), whereas those in columns (6)-(8) are based 1000 Monte Carlo
replications in each experiment, with the number of bootstrap repli-
cations being 200. LSW1 refers to the test of Lee, Song, and Whang
(2013), which uses conservative standard normal critical values based
on the least favorable configuration. LSW2 refers to this paper that uses
bootstrap critical values based on the estimated contact set. The tun-
ing parameter is chosen by the rule ĉn = Ccs log log(n)q1−0.1/ log(n)(S

∗
n),

where Ccs ∈ {0.4, 0.5, 0.6}.

In this paper, we used the same statistic for Lee, Song, and Whang (2013) as reported in

AS. Specifically, we used the L1 version of the test with the inverse standard error weight

function. In implementing the test, we used K(u) = (3/2)(1 − (2u)2)I(|u| ≤ 1/2) and

h = 2 × ŝX × n−1/5, where I(A) is the usual indicator function that has value one if A

is true and zero otherwise and ŝX is the sample standard deviation of X. Thus, the only

difference between the new test (which we call LSW2) and Lee, Song, and Whang (2013)

(which we call LSW1) is the use of critical values: LSW1 uses the standard normal critical

values based on the least favorable configuration, whereas LSW2 uses bootstrap critical

values based on the estimated contact set. For contact set estimation, we set the rule

ĉn = Ccs log log(n)q1−0.1/ log(n)(S
∗
n), where Ccs ∈ {0.4, 0.5, 0.6}.
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Table 4. Results for Monte Carlo Experiments: False Coverage Probability

(1) (2) (3) (4) (5) (6) (7) (8)
AS CLR LSW1 LSW2

n CvM KS series local Ccs = 0.4 Ccs = 0.5 Ccs = 0.6
linear

DGP1 100 .84 .89 .88 .83 .98 .81 .90 .95
250 .57 .67 .82 .69 .92 .44 .49 .54
500 .25 .37 .72 .50 .70 .17 .18 .20
1000 .03 .07 .57 .26 .25 .02 .02 .02

DGP2 100 1.0 1.0 .91 .89 .99 .94 .98 1.0
250 1.0 1.0 .85 .73 .96 .48 .54 .62
500 .97 .99 .77 .56 .82 .19 .21 .23
1000 .70 .89 .61 .33 .40 .03 .03 .03

DGP3 100 .70 .79 .89 .84 .90 .69 .79 .86
250 .30 .46 .83 .66 .65 .27 .32 .35
500 .06 .15 .70 .47 .26 .06 .06 .08
1000 .00 .01 .55 .23 .02 .00 .00 .00

DGP4 100 .95 .99 .91 .88 .95 .89 .95 .97
250 .66 .83 .86 .70 .75 .30 .35 .42
500 .23 .42 .74 .51 .36 .07 .08 .09
1000 .01 .04 .59 .29 .04 .00 .00 .00

Notes: See notes in Table 3. Figures in columns (1)-(5) are “CP-
corrected”, where those in columns (6)-(8) are not “CP-corrected”.

The experiments considered sample sizes of n = 100, 250, 500, 1000 and the nominal level

of α = 0.05. We performed 1000 Monte Carlo replications in each experiment. The number

of bootstrap replications was 200.

The null hypothesis is tested on X = [−1.8, 1.8]. To compare simulation results from AS,

the coverage probability (CP) is computed at nominal level 95% when θ = maxx∈X f(x)

and the false coverage probability (FCP) is computed at nominal level 95% when θ =

maxx∈X f(x)− 0.02.

Tables 3 and 4 report the results of Monte Carlo experiments. In each table, figures in

columns (1)-(5) are from Table V of Andrews and Shi (2013), whereas those in columns

(6)-(8) are from our Monte Carlo experiments. Table 3 shows that coverage probabilities

of LSW2 are much closer to the nominal level than those of LSW1. When c = 0.4 and

n = 100 or 250, we see some under-coverage for LSW2, but it disappears as n gets larger.

Table 4 reports the false coverage probabilities (FCPs). Figures in columns (1)-(5) are

“CP-corrected” by AS, where those in columns (6)-(8) are not “CP-corrected”. However,

CP-correction would not change the results for either n ≥ 500 or c ≥ 0.5 since in each of

these cases, we have over-coverage. We can see that in terms of FCPs, LSW2 performs much
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better than LSW1 in all DGPs. Furthermore, the performance of LSW2 is equivalent to

that of AS for DGP1, DGP3, and DGP4, and is superior to AS for DGP2. Overall, our

simulation results show that our new test is a substantial improved version of LSW1 and is

now very much comparable to AS. The relative poor performance of CLR in tables 3 and 4

are mainly due to the experimental design. If the underlying function is sharply peaked, as

those in the reported simulations of Chernozhukov, Lee, and Rosen (2013), CLR performs

better than AS. In unreported simulations, we confirmed that CLR performs better than

LSW2 as well. This is very reasonable since CLR is based on the sup-norm statistic, whereas

ours is based on the one-sided Lp norm. Therefore, we may conclude that AS, CLR, and

LSW2 complement each other.

II. Further Examples of Testing Functional Inequalities

II.1. Testing Functional Inequalities in the Auction Model via Estimating Con-

ditional Cumulative Distribution Functions. This appendix illustrates the usefulness

and flexibility of our framework by reconsidering implications from GPV in terms of con-

ditional stochastic dominance. Specifically, relative to the test statistic in the main text

(based on estimating conditional quantiles functions), we consider a related but distinct

testing statistic based on estimating conditional cumulative distribution functions.

We may rewrite (3.3) as

G3(b|x)−G2(b|x) ≤ 0 for any b ∈ [b, b2] and for any x ∈ X

G2 [(b+ b) /2|x]−G3(b|x) ≤ 0 for any b ∈ [b, b3] and for any x ∈ X .
(II.1)

where Gk(·|x) is the CDF of the observed bid (conditional on X = x) when the number of

bidders is I = k (k = 2, 3). Recall that in GPV, the support of the observed bid is [b, bk].

Note that strictly speaking, the restrictions in (II.1) are not identical to those in (3.3) since

τ in (3.3) is limited to a compact strict subset of (0, 1).

To implement the test, it is necessary to know bk (k = 2, 3), in addition to the value of

b. As before, in our application, we set b the overall minimum value, and bk the maximum

value when the number of bids is k for k = 2, 3.

Define

v1(b, x) := G3(b|x)−G2(b|x),

v2(b, x) := G2 [(b+ b) /2|x]−G3(b|x).

To construct the test statistic, it is necessary to estimate vj(b, x), where j = 1, 2.
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For each k = 2, 3, define pk(x) := Pr(Li = k|Xi = x)f(x), where f(·) is the marginal

density of Xi. To describe our estimator of vj(b, x) in a simple form, define

B̂i(b) := L−1
i

Li∑
`=1

1(B`i ≤ b),

p̂k(x) := n−1

n∑
i=1

1(Li = k)Kh (x−Xi) ,

where Kh(·) = K(·/h)/hd, K is a d-dimensional kernel function, h is a bandwidth, and d is

the dimension of X. Then v1(b, x) and v2(b, x) are estimated by

v̂1(b, x) := n−1

n∑
i=1

B̂i(b)

[
1(Li = 3)

p̂3(x)
− 1(Li = 2)

p̂2(x)

]
Kh (x−Xi) ,

v̂2(b, x) := n−1

n∑
i=1

[
B̂i [(b+ b) /2] 1(Li = 2)

p̂2(x)
− B̂i(b)1(Li = 3)

p̂3(x)

]
Kh (x−Xi) .

Note that again all bids are combined in each auction (see the definition of B̂i(b)) since we

consider symmetric bidders.

The sum statistic would be convenient for testing (II.1) since b2 can be different from b3.

Then the test statistic has the form

θ̂ =

∫
[b,b2]×X

[rnv̂1(b, x)]p+ dQ(b, x) +

∫
[b,b3]×X

[rnv̂2(b, x)]p+ dQ(b, x),(II.2)

where Q is Lebesgue measure. Note that we did not normalize v̂j(b, x) by its pointwise

standard error here. One advantage of doing this is that we can test the null hypothesis on

the full support [b, bk], (k = 2, 3) without an elaborate use of the trimming function or a

decaying weight function at the boundary.

II.2. Nonparametric Tests of Monotonicity: an Lp Approach. In this appendix, we

present new methods for testing monotonicity by constructing one-sided Lp-type functionals

in a suitable fashion. Suppose that we observe n independent and identically distributed

random vectors {(Yi, Xi) : i = 1, . . . , n} from the joint distribution of random variables

Y and X, where Y is the dependent variable and X is a univariate explanatory variable.

We consider testing monotonicity in three examples: one in mean regression, another in

conditional distribution function, and the third in quantile regression. In what follows, we

focus on the case that J = 1; however, it is straightforward to extend to the J > 1 case with

a multivariate vector of Yi.
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II.2.1. Testing monotonicity of mean regression. Let X ⊂ R be the region of our interest in

the domain of the regression function E[Y |X = x]. Consider testing the hypothesis

H0 : E[Y |X = x] is increasing on X .

Let K be a one-dimensional kernel function and h be a bandwidth. Define the following

U -process: for x ∈ X ,

v̂(x) ≡ 1

n(n− 1)h

n∑
i=1

n∑
j=1,j 6=i

(Yj − Yi)sgn(Xi −Xj)Kh(x−Xi)Kh(x−Xj),

where Kh(z) ≡ K(z/h)/h, and sgn(x) ≡ 1{x > 0} − 1{x < 0}, x ∈ R. If E[Y |X = ·] is

continuously differentiable, as n→∞, we have that

Ev̂(x)→ −∂E[Y |X = x]

∂x
f 2(x)

∫ ∫
|u1 − u2|K(u1)K(u2)du1du2,

where f(·) is the density function of X. That is, the limit of Ev̂(x) is less than or equal to

zero if and only if ∂E[Y |X = x]/∂x ≥ 0. This suggests we develop a test based on

θ̂ =

∫
X

(max {rnv̂(x), 0})p dx(II.3)

with a suitable choice of rn.

Define vn(x) ≡ h−1E [(Yj − Yi)sgn(Xi −Xj)Kh(x−Xi)Kh(x−Xj)]. It can be shown that

the U -process v̂(x) has the following asymptotic representation:
√
nh3 {v̂(x)− vn(x)}

=
1√
nh

n∑
i=1

{
βn,x

(
Yi,

x−Xi

h

)
− E

[
βn,x

(
Yj,

x−Xj

h

)]}
+Rn,

where Rn is a remainder term that is of smaller order than the leading term and

βn,x(Yi, z) ≡ 2 {E[Y |X = x]− Yi}K(z)

∫
sgn(u− z)K (u) du.

Therefore, we have rn =
√
nh3.

In a contemporaneous paper, Chetverikov (2012) proposed an adaptive test using the sup-

norm statistic of a studentized version of a U-process, including v̂(x) as a special case. The

test based on (II.3) is an alternative to the sup-norm test of Chetverikov (2012). The test of

Chetverikov (2012) is closely related to the tests proposed in Ghosal, Sen, and van der Vaart

(2000). They developed monotonicity tests for the function m(·) in the transformation model

φ(Y ) = m(X) + ε, where φ(·) is a monotone function and X and ε are independent. In their

setup, independence between X and ε is indispensable, but φ(·) can be unknown as long as

it is strictly monotone. They constructed sup-norm and time spent test statistics (S1,n and
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S2,n of Ghosal, Sen, and van der Vaart (2000, page 1060)) using the following U -process:

(II.4) Un(x) ≡ 1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

sgn(Yj − Yi)sgn(Xi −Xj)Kh(x−Xi)Kh(x−Xj).

Equation (2.5) of Ghosal, Sen, and van der Vaart (2000) shows that the limit of h−1EUn(x)

is less than or equal to zero if and only if ∂m(x)/∂x ≥ 0. As before, we may develop a test

based on (II.4) with a redefined v̂(x) = h−1Un(x) and the same rn.

In addition to sup-norm and time spent test statistics, Ghosal, Sen, and van der Vaart

(2000, page 1070) suggested test statistics that are similar to our one-sided Lp statistics;

however, they did not provide asymptotic theory, remarking that there are no limit theorems

for one-sided Lp functionals of a stationary Gaussian process. However, we can obtain the

limiting distribution of our suggested test statistic in (II.3) by a direct approximation of θ̂

via Poissonization techniques, without going through strong approximation results such as

Rio (1994) and Chernozhukov, Lee, and Rosen (2013).

II.2.2. Testing stochastic monotonicity. Let FY |X(·|x) denote the distribution of Y condi-

tional on X = x, where (Y,X) is a pair of random variables whose joint distribution is

absolutely continuous with respect to Lebesgue measure. We assume that the function

FY |X(y|x) is continuously differentiable with respect to x for each y. Consider testing the

hypothesis H0 : ∂FY |X(y|x)/∂x ≤ 0 for all (y, x) ∈ Y × X , where Y ⊂ R and X ⊂ R are

domains of interest.

In this subsection, consider the following U -process: for (y, x) ∈ Y × X ,

(II.5)

v̂(y, x) ≡ 1

n(n− 1)h

n∑
i=1

n∑
j=1,j 6=i

[1(Yi ≤ y)− 1(Yj ≤ y)]sgn(Xi −Xj)Kh(x−Xi)Kh(x−Xj).

Lee, Linton, and Whang (2009) proposed a nonparametric test of stochastic monotonicity

using the sup-norm statistic based on v̂(y, x). Note that as mentioned in Lee, Linton, and

Whang (2009), under the regularity conditions imposed in this paper, as n → ∞, we have

that

Ev̂(y, x)→
∂FY |X(y|x)

∂x
f 2(x)

∫ ∫
|u1 − u2|K(u1)K(u2)du1du2.

That is, the limit of Ev̂(y, x) is less than or equal to zero if and only if H0 holds. Again this

suggests we develop a test based on

θ̂ =

∫
X×T

(max {rnv̂(τ, x), 0})p dQ(x, τ)(II.6)
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with rn =
√
nh3. The one-sided Lp functional-based test complements the sup-norm test of

Lee, Linton, and Whang (2009). Delgado and Escanciano (2012) proposed an alternative

approach based on the sup-norm of the difference between the empirical copula function and

its least concave majorant.

II.2.3. Testing Monotonicity of Quantile Regression. Let q(τ |x) denote the τ -th quantile of Y

conditional on X = x, where τ ∈ (0, 1). In this subsection, we consider testing monotonicity

of quantile regression. The null hypothesis and the alternative hypothesis are as follows:

H0 : q(τ |x1) ≤ q(τ |x2) for all (τ, (x1, x2)) ∈ T × X against(II.7)

H1 : q(τ |x1) > q(τ |x2) for some (τ, (x1, x2)) ∈ T × X ,

where X ⊂ {(x1, x2) ∈ R2 : x1 ≤ x2} and T ⊂ (0, 1). The null hypothesis states that the

quantile functions are increasing on X for all τ ∈ T , and the alternative hypothesis is the

negation of the hypothesis. If T consists of a singleton set, then testing (II.7) amounts to

testing monotonicity of quantile regression at a fixed quantile.

Suppose that q(τ |x) is continuously differentiable on on X for each τ ∈ T . Then one

natural approach is to test the sign restriction of the derivative of q(τ |x). In other words, we

again develop a test based on (II.6) with v̂(τ, x) now being the local polynomial estimator

of ∂q(τ |x)/∂x and rn =
√
nh3.

Our general framework covers various other forms of monotonicity tests for quantile re-

gression. For example, one might be interested in monotonicity of an interquartile regres-

sion function. More specifically, let τ1 < τ2 be chosen from (0, 1) and write ∆qτ1,τ2(x) ≡
q(τ2|x1)− q(τ1|x1). Then the null hypothesis and the alternative hypothesis of monotonicity

of the interquartile regression function are as follows:

H0,∆ : ∆qτ1,τ2,j(x1) ≤ ∆qτ1,τ2,j(x2) for all (x1, x2) ∈ X against(II.8)

H1,∆ : ∆qτ1,τ2,j(x1) > ∆qτ1,τ2,j(x2) for some (x1, x2) ∈ X .

The null hypothesis states that the interquartile regression function qτ2,j(x) − qτ1,j(x) is

increasing on X for all j ∈ NJ . This type of monotonicity can be used to investigate

whether the income inequality (in terms of interquartile comparison) become severe as certain

demographic variable X increases. Once again, we can consider a test based on (II.3) with

v̂(x) now being the local polynomial estimator of [∂q(τ2|x)/∂x−∂q(τ2|x)/∂x] and rn =
√
nh3.

Appendix A. Proofs of Theorems 1-5

The roadmap of Appendix A is as follows. Appendix A begins with the proofs of Lemma

1 (the representation of θ̂) and Lemma 2 (the uniform convergence of v̂τ,j(x)). Then we
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establish auxiliary results, Lemmas A1-A4, to prepare for the proofs of Theorems 1-3. The

brief descriptions of these auxiliary results are given below.

Lemma A1 establishes asymptotic representation of the location normalizers for the test

statistic both in the population and in the bootstrap distribution. The crucial implication

is that the difference between the population version and the bootstrap version is of order

oP (hd/2), P-uniformly. The result is in fact an immediate consequence of Lemma D12 in

Appendix D.

Lemma A2 establishes uniform asymptotic normality of the representation of θ̂ and its

bootstrap version. The asymptotic normality results use the method of Poissonization as in

Giné, Mason, and Zaitsev (2003) and Lee, Song, and Whang (2013). However, in contrast

to the preceding researches, the results established here are much more general, and hold

uniformly over a wide class of probabilities. The lemma relies on Lemmas C7-C9 in Appendix

C and their bootstrap versions in Lemmas D7-D9 in Appendix D. These results are employed

to obtain the uniform asymptotic normality of the representation of θ̂ in Lemma A2.

Lemma A3 establishes that the estimated contact sets B̂A(ĉn) are covered by its enlarged

population version, and covers its shrunk population version with probability approaching

one uniformly over P ∈ P . In fact, this is an immediate consequence of the uniform conver-

gence results for v̂τ,j(x) and σ̂τ,j(x) in Assumptions 3 and 5. Lemma A3 is used later, when

we replace the estimated contact sets by their appropriate population versions, eliminating

the nuisance to deal with the estimation errors in B̂A(ĉn).

Lemma A4 presents the approximation result of the critical values for the original and

bootstrap test statistics in Lemma A2, by critical values from the standard normal distri-

bution uniformly over P ∈ P . Although we do not propose using the normal critical values,

the result is used as an intermediate step for justifying the use of the bootstrap method in

this paper. Obviously, Lemma A4 follows as a consequence of Lemma A2.

Equipped with Lemmas A1-A4, we proceed to prove Theorem 1. For this, we first use the

representation result of Lemma 1 for θ̂. In doing so, we use BA(cn,L, cn,U) as a population

version of B̂A(ĉn). This is because

BA(cn,L, cn,U) ⊂ B̂A(ĉn)

with probability approaching one by Lemma A3, and thus, makes the bootstrap test statistic

θ̂∗ dominate the one that involves BA(cn,L, cn,U) in place of B̂A(ĉn). The distribution of the

latter bootstrap version with BA(cn,L, cn,U) is asymptotically equivalent to the representation

of θ̂ with BA(cn,L, cn,U) after location-scale normalization, as long as the limiting distribution

is nondegenerate. When the limiting distribution is degenerate, we use the second component

hd/2η+â∗ in the definition of c∗α,η to ensure the asymptotic validity of the bootstrap procedure.
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For both cases of degenerate and nondegenerate limiting distributions, Lemma A1 which

enables one to replace â∗ by an appropriate population version is crucial.

The proof of Theorem 2 that shows the asymptotic exactness of the bootstrap test modifies

the proof of Theorem 1 substantially. Instead of using the representation result of Lemma

1 for θ̂ with Bn,A(cn,L, cn,U), we now use the same version but with Bn,A(cn,U , cn,L). This

is because for asymptotic exactness, we need to approximate the original and bootstrap

quantities by versions using Bn,A(qn) for small qn, and to do this, we need to control the

remainder term in the bootstrap statistic with the integral domain B̂A(ĉn)\Bn,A(qn). By our

choice of Bn,A(cn,U , cn,L) and by the fact that we have

B̂A(ĉn) ⊂ Bn,A(cn,U , cn,L),

with probability approaching one by Lemma A3, we can bound the remainder term with

a version with the integral domain Bn,A(cn,U , cn,L)\Bn,A(qn). Thus this remainder term

vanishes by the condition for λn and qn in the definition of Pn(λn, qn).

The rest of the proofs are devoted to proving the power properties of the bootstrap proce-

dure. Theorem 3 establishes consistency of the bootstrap test. Theorems 4 and 5 establish

local power functions under Pitman local drifts. The proofs of Theorems 4-5 are similar to

the proof of Theorem 2, as we need to establish the asymptotically exact form of the rejection

probability for the bootstrap test statistic. Nevertheless, we need to employ some delicate

arguments to deal with the Pitman local alternatives, and need to expand the rejection prob-

ability to obtain the final results. For this, we first establish Lemmas A5-A7. Essentially,

Lemma A5 is a version of the representation result of Lemma 1 under local alternatives.

Lemma A6 and Lemma A7 parallel Lemma A1 and Lemma 2 under local alternatives.

Let us begin by proving Lemma 1. First, recall the following definitions

(A.1) ŝτ (x) ≡
[
rn,j{v̂τ,j(x)− vn,τ,j(x)}

σ̂τ,j(x)

]
j∈NJ

and ŝ∗τ (x) ≡
[
rn,j{v̂∗τ,j(x)− v̂,τ,j(x)}

σ̂∗τ,j(x)

]
j∈NJ

.

Also, define

(A.2) ûτ (x) ≡
[
rn,j v̂τ,j(x)

σ̂τ,j(x)

]
j∈NJ

and uτ (x; σ̂) ≡
[
rn,jvn,τ,j(x)

σ̂τ,j(x)

]
j∈NJ

.

Proof of Lemma 1. It suffices to show the following two statements:

Step 1: As n→∞,

inf
P∈P0

P

{∫
S\Bn(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ) = 0

}
→ 1,

where we recall Bn(cn,1, cn,2) ≡ ∪A∈NJBn,A(cn,1, cn,2).
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Step 2: For each A ∈ NJ , as n→∞,

inf
P∈P0

P

{∫
Bn,A(cn,1,cn,2)

{Λp (ûτ (x))− ΛA,p (ûτ (x))} dQ(x, τ) = 0

}
→ 1.

First, we prove Step 1. We write the integral in the probability as

(A.3)

∫
S\Bn(cn,1,cn,2)

Λp (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ).

Let

An(x, τ) ≡
{
j ∈ NJ :

rn,jvn,τ,j(x)

σn,τ,j(x)
≥ −(cn,1 ∧ cn,2)

}
.

We first show that when (x, τ) ∈ S\Bn(cn,1, cn,2), we have An(x, τ) = ∅ under the null

hypothesis. Suppose that (x, τ) ∈ S\Bn(cn,1, cn,2) but to the contrary, An(x, τ) is nonempty.

By the definition of An(x, τ), we have (x, τ) ∈ Bn,An(x,τ)(cn,1, cn,2). However, since

S\Bn(cn,1, cn,2) = S ∩
(
∩A∈NJBc

n,A(cn,1, cn,2)
)
⊂ Bc

n,An(x,τ)(cn,1, cn,2),

this contradicts the fact that (x, τ) ∈ S\Bn(cn,1, cn,2). Hence whenever (x, τ) ∈ S\Bn(cn,1, cn,2),

we have An(x, τ) = ∅.

Note that

vn,τ,j(x)

σ̂τ,j(x)
=
vn,τ,j(x)

σn,τ,j(x)

{
1 +

σn,τ,j(x)− σ̂τ,j(x)

σ̂τ,j(x)

}
=
vn,τ,j(x)

σn,τ,j(x)
{1 + oP (1)} ,

where oP (1) is uniform over (x, τ) ∈ S and over P ∈ P by Assumption A5. Fix a small

ε > 0. We have for all j ∈ NJ ,

inf
P∈P0

P

{
rn,jvn,τ,j(x)

σ̂τ,j(x)
< −cn,1 ∧ cn,2

1 + ε
for all (x, τ) ∈ S\Bn(cn,1, cn,2)

}
≥ inf

P∈P0

P

{
rn,jvn,τ,j(x)

σn,τ,j(x)
< − cn,1 ∧ cn,2

(1 + ε) {1 + oP (1)}
for all (x, τ) ∈ S\Bn(cn,1, cn,2)

}
→ 1,

as n → ∞, where the last convergence follows because An(x, τ) = ∅ for all (x, τ) ∈
S\Bn(cn,1, cn,2). Therefore, with probability approaching one, the term in (A.3) is bounded

by

(A.4)

∫
S\Bn(cn,1,cn,2)

Λp

(
ŝτ (x)−

(
cn,1 ∧ cn,2

1 + ε

)
1J

)
dQ(x, τ),

where 1J is a J-dimensional vector of ones. Using the definition of Λp(v), bound the above

integral by

(A.5) Jp/2

 J∑
j=1

[
rn,j sup

(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣− cn,1 ∧ cn,2
1 + ε

]2

+

p/2

.
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Note that by Assumption A3,

rn,j sup
(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣ = OP

(√
log n

)
.

Fix any arbitrarily large M > 0 and denote by En the event that

rn,j sup
(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣ ≤M
√

log n.

The term (A.5), when restricted to this event En, is bounded by

Jp/2

(
J∑
j=1

[
M
√

log n− cn,1 ∧ cn,2
1 + ε

]2

+

)p/2

which becomes zero from some large n on, given that (cn,1 ∧ cn,2)/
√

log n → ∞. Since

supP∈P0PE
c
n → 0 as n → ∞ and then M → ∞ by Assumption A3, we obtain the desired

result of Step 1.

As for Step 2, we have for any small ε > 0, and for all j ∈ NJ\A,

P

{
rn,jvn,τ,j(x)

σ̂τ,j(x)
< −cn,1 ∧ cn,2

1 + ε
for all (x, τ) ∈ Bn,A(cn,1, cn,2)

}
(A.6)

≥ P

{
rn,jvn,τ,j(x)

σn,τ,j(x)
< − cn,1 ∧ cn,2

(1 + ε) {1 + oP (1)}
for all (x, τ) ∈ Bn,A(cn,1, cn,2)

}
→ 1,

similarly as before. Let s̄τ,A(x) be a J-dimensional vector whose j-th entry is rn,j v̂n,τ,j(x)/σ̂τ,j(x)

if j ∈ A, and rn,j{v̂n,τ,j(x) − vn,τ,j(x)}/σ̂τ,j(x) if j ∈ NJ\A. Since by Assumption A5, we

have

inf
P∈P0

P {uτ (x; σ̂) ≤ 0 for all (x, τ) ∈ S} → 1,

as n→∞, using either definition of Λp(v) in (4.1),∫
Bn,A(cn,1,cn,2)

ΛA,p (ûτ (x)) dQ(x, τ)(A.7)

≤
∫
Bn,A(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ)

≤
∫
Bn,A(cn,1,cn,2)

Λp

(
s̄τ,A(x)− cn,1 ∧ cn,2

1 + ε
1−A

)
dQ(x, τ),

where 1−A is the J-dimensional vector whose j-th entry is zero if j ∈ A and one if j ∈ NJ\A,

and the last inequality holds with probability approaching one by (A.6). Note that by

Assumption A3 and by the assumption that
√

log n{c−1
n,1 + c−1

n,2} → ∞, we deduce that for
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any j ∈ NJ ,

inf
P∈P0

P

{
rn,j sup

(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣ ≤ cn,1 ∧ cn,2
1 + ε

}
→ 1,

as n→∞. Hence, as n→∞,

inf
P∈P0

P

{ ∫
Bn,A(cn,1,cn,2)

Λp (̄sτ,A(x)− ((cn,1 ∧ cn,2)/(1 + ε))1−A) dQ(x, τ)

=
∫
Bn,A(cn,1,cn,2)

ΛA,p (̄sτ,A(x)) dQ(x, τ)

}
→ 1.

Since ∫
Bn,A(cn,1,cn,2)

ΛA,p (̄sτ,A(x)) dQ(x, τ) =

∫
Bn,A(cn,1,cn,2)

ΛA,p (ûτ (x)) dQ(x, τ),

we obtain the desired result from (A.7).

Now let us turn to the proof of Lemma 2 in Section 4.4.

Proof of Lemma 2. (i) Recall the definition bn,ij(x, τ) ≡ βn,x,τ,j (Yij, (Xi − x)/h)). Take

Mn,j ≡
√
nhd/

√
log n, and let

ban,ij(x, τ) ≡ bn,ij(x, τ)1n,ij and bbn,ij(x, τ) ≡ bn,ij(x, τ) (1− 1n,ij) ,

where 1n,ij ≡ 1{sup(x,τ)∈S |bn,ij(x, τ)| ≤Mn,j/2}. First, note that by Assumption A1,

rn,j
√
hd sup

(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣(A.8)

≤ sup
(x,τ)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(
ban,ij(x, τ)− E

[
ban,ij(x, τ)

])∣∣∣∣∣
+ sup

(x,τ)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(
bbn,ij(x, τ)− E

[
bbn,ij(x, τ)

])∣∣∣∣∣+ oP (1), P-uniformly.(A.9)

We now prove part (i) by proving the following two steps.

Step 1:

sup
(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
bbn,ij(x, τ)− E

[
bbn,ij(x, τ)

])∣∣∣∣∣ = oP (
√

log n), P-uniformly.

Step 2:

sup
(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
ban,ij(x, τ)− E

[
ban,ij(x, τ)

])∣∣∣∣∣ = OP (
√

log n), P-uniformly.

Step 1 is carried out by some elementary moment calculations, whereas Step 2 is proved

using a maximal inequality of Massart (2007, Theorem 6.8).
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Proof of Step 1: It is not hard to see that

E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(
bbn,ij(x, τ)− E

[
bbn,ij(x, τ)

])∣∣∣∣∣
]

≤ 2
√
nE

[
sup

(x,τ)∈S
|bn,ij(x, τ)| (1− 1n,ij)

]

≤ C
√
n

(
Mn,j

2

)−3

E

[
sup

(x,τ)∈S
|bn,ij(x, τ)|4

]
≤ C1

√
n

(
Mn,j

2

)−3

,

for some C1 > 0, C > 0. The last bound follows by the uniform fourth moment bound for

bn,ij(x, τ) assumed in Lemma 2. Note that

√
n (Mn,j)

−3 = n−1h−3d/2 (log n)3/2 = o
(√

log nhd/2
)
,

by the condition that n−1/2h−d−ν → 0 for some small ν > 0.

Proof of Step 2: For each j ∈ NJ , let Fn,j ≡ {βan,x,τ,j(·, (·−x)/h)/Mn,j : (x, τ) ∈ S}, where

βan,x,τ,j(Yij, (Xi − x)/h) ≡ ban,ij(x, τ). Note that the indicator function 1n,ij in the definition

of βan,x,τ,j does not depend on (x, τ) of βan,x,τ,j. Using (4.11) in Lemma 2 and following (part

of) the arguments in the proof of Theorem 3 of Chen, Linton, and Van Keilegom (2003), we

find that there exist C1 > 0 and C2,j > 0 such that for all ε > 0,

N[] (ε,Fn,j, L2(P )) ≤ N

((
εMn,j

δn,j

)2/γj

,X × T , || · ||

)
≤ C1

(
εMn,j

δn,j
∧ 1

)−C2,j

,

where N[] (ε,Fn,j, L2(P )) denotes the ε-bracketing number of the class Fn,j with respect to

the L2(P )-norm and N (ε,X × T , || · ||) denotes the ε-covering number of the space X × T
with respect to the Euclidean norm || · ||. The last inequality follows by the assumption that

X and T are compact subsets of a Euclidean space. The class Fn,j is uniformly bounded by

1/2.

Let {[βan,xk,τk,j(·, (·−xk)/h)/Mn,j−∆k(·, ·)/Mn,j, β
a
n,xk,τk,j

(·, (·−xk)/h)/Mn,j +∆k(·, ·)/Mn,j] :

k = 1, · · ·, Nn,j} constitutes ε-brackets, where ∆k(Yij, Xi) ≡ sup |βan,x,τ,j(Yij, (Xi − x)/h) −
βan,xk,τk,j(Yij, (Xi − xk)/h)| and the supremum is over (x, τ) ∈ S such that√

||x− xk||2 + ||τ − τk||2 ≤ C1(εMn,j/δn,j)
2/γj .

By the previous covering number bound, we can take Nn,j ≤ C1 ((εMn,j/δn,j) ∧ 1)−C2,j , and

E∆2
k(Yij, Xi)M

−2
n,j < ε2.
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Note that for any k ≥ 2,

E
[
|ban,ij(x, τ)/Mn,j|k

]
≤ E

[
b2
n,ij(x, τ)

]
/M2

n,j ≤ CM−2
n,jh

d = C(log n)/n,

by the fact that |ban,ij(x, τ)/Mn,j| ≤ 1/2. Furthermore,

E
[
|∆k(Yij, Xi)/Mn,j|k

]
≤ E

[
∆2
k(Yij, Xi)/M

2
n,j

]
≤ ε2,

where the first inequality follows because |∆k(Yij, Xi)/Mn,j| ≤ 1. Therefore, by Theorem 6.8

of Massart (2007), we have (from sufficiently large n on)

E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1

Mn,j

√
n

n∑
i=1

(
ban,ij(x, τ)− E

[
ban,ij(x, τ)

])∣∣∣∣∣
]

(A.10)

≤ C1

∫ C2h
d/2

Mn,j

0

{(
−C3 log

(
εMn,j

δn,j
∧ 1

))
∧ n
}1/2

dε− C4√
n

log

(√
log n√
n

)
,

where C1, C2, C3, and C4 are positive constants. (The inequality above follows because
√

log n/
√
n→

0 as n → ∞.) The leading integral has a domain restricted to [0, δn,j/Mn,j], so that it is

equal to

C1

∫ C2h
d/2

Mn,j
∧
δn,j
Mn,j

0

{(
−C3 log

(
εMn,j

δn,j

))
∧ n
}1/2

dε

=
C1δn,j
Mn,j

∫ C2h
d/2

δn,j
∧1

0

√
(−C3 log ε) ∧ ndε

= O

(
δn,j
Mn,j

(
hd/2

δn,j
∧ 1

)√
− log

(
hd/2

δn,j
∧ 1

))
.

After multiplying by Mn,j/h
d/2, the last term is of order

O

((
1 ∧ δn,j

hd/2

)√
− log

(
hd/2

δn,j
∧ 1

))
= O

(√
− log

(
hd/2

δn,j
∧ 1

))
= O(

√
log n),

because δn,j = ns1,j and h = ns2 for some s1,j, s2 ∈ R.

Also, note that after multiplying by Mn,j/h
d/2 =

√
n/
√

log n, the last term in (A.10) (with

minus sign) becomes

− C4√
log n

log

(√
log n√
n

)
≤ C4

√
log n

2
− C4 log

√
log n√

log n
= O

(√
log n

)
,

where the inequality follows because
√

log n ≥ 1 for all n ≥ e ≡ exp(1). Collecting the

results for both the terms on the right hand side of (A.10), we obtain the desired result of

Step 2.
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(ii) Define b∗n,ij(x, τ) ≡ βn,x,τ,j(Y
∗
ij , (X

∗
i − x)/h). By Assumptions B1 and B3, it suffices to

show that

sup
(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
b∗n,ij(x, τ)− E∗

[
b∗n,ij(x, τ)

])∣∣∣∣∣ = OP ∗(
√

log n), P-uniformly.

Using Le Cam’s Poissonization lemma in Giné and Zinn (1990) (Proposition 2.2 on p.855)

and following the arguments in the proof of Theorem 2.2 of Giné (1997), we deduce that

E

[
E∗

(
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
b∗n,ij(x, τ)− E∗

[
b∗n,ij(x, τ)

])∣∣∣∣∣
)]

≤ e

e− 1
E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(Ni − 1)

{
bn,ij(x, τ)− 1

n

n∑
k=1

bn,kj(x, τ)

}∣∣∣∣∣
]
,

where Ni’s are i.i.d. Poisson random variables with mean 1 and independent of {(Xi, Yi)}ni=1.

The last expectation is bounded by

E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

{(Ni − 1) bn,ij(x, τ)− E [(Ni − 1) bn,ij(x, τ)]}

∣∣∣∣∣
]

+E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1n
n∑
i=1

(Ni − 1)

∣∣∣∣∣
∣∣∣∣∣ 1√
nhd

n∑
k=1

(bn,kj(x, τ)− E [bn,kj(x, τ)])

∣∣∣∣∣
]
.

Using the same arguments as in the proof of (i), we find that the first expectation is

O
(√

log n
)

uniformly in P ∈ P . Using independence, we write the second expectation

as

E

[∣∣∣∣∣ 1n
n∑
i=1

(Ni − 1)

∣∣∣∣∣
]
· E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
k=1

(bn,kj(x, τ)− E [bn,kj(x, τ)])

∣∣∣∣∣
]

which, as shown in the proof of part (i), is O(
√

log n), uniformly in P ∈ P .

For further proofs, we introduce new notation. Define for any positive sequences cn,1 and

cn,2, and any v ∈ RJ ,

(A.11) Λ̄x,τ (v) ≡
∑
A∈NJ

ΛA,p(v)1{(x, τ) ∈ Bn,A(cn,1, cn,2)}.

We let

aRn (cn,1, cn,2) ≡
∫
X×T

E
[
Λ̄x,τ (

√
nhdzN,τ (x))

]
dQ(x, τ), and(A.12)

aR∗n (cn,1, cn,2) ≡
∫
X×T

E∗
[
Λ̄x,τ (

√
nhdz∗N,τ (x))

]
dQ(x, τ),
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where zN,τ (x) and z∗N,τ (x) are random vectors whose j-th entry is respectively given by

zN,τ,j(x) ≡ 1

nhd

N∑
i=1

(
βn,x,τ,j

(
Yij,

Xi − x
h

)
− E

[
βn,x,τ,j

(
Yij,

Xi − x
h

)])
and

z∗N,τ,j(x) ≡ 1

nhd

N∑
i=1

(
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)
− E∗

[
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)])
,

and N is a Poisson random variable with mean n and independent of {Yi, Xi}∞i=1. We also

define

an(cn,1, cn,2) ≡
∫

E
[
Λ̄x,τ (W(1)

n,τ,τ (x, 0))
]
dQ(x, τ).

(See Section 6.3 for the definition of W(1)
n,τ,τ (x, u).)

Lemma A1. Suppose that Assumptions A6(i) and B4 hold and let cn,1 and cn,2 be any

nonnegative sequences. Then∣∣aRn (cn,1, cn,2)− an(cn,1, cn,2)
∣∣ = o(hd/2), uniformly in P ∈ P, and∣∣aR∗n (cn,1, cn,2)− an(cn,1, cn,2)
∣∣ = oP (hd/2), P-uniformly.

Proof of Lemma A1. The proof is essentially the same as the proof of Lemma D12 in Ap-

pendix D.

For any given nonnegative sequences cn,1, cn,2, we define

(A.13) σ2
n(cn,1, cn,2) ≡

∫
T

∫
T

∫
X
C̄τ1,τ2(x)dxdτ1dτ2,

where

C̄τ1,τ2(x) ≡
∫
U
Cov

(
Λ̄n,x,τ1(W(1)

n,τ1,τ2
(x, u)), Λ̄n,x,τ2(W(2)

n,τ1,τ2
(x, u))

)
du.

Let

(A.14) θ̄n(cn,1, cn,2) ≡
∫

Λ̄x,τ (̂sτ (x)) dQ(x, τ),

and

(A.15) θ̄∗n(cn,1, cn,2) ≡
∫

Λ̄x,τ (̂s∗τ (x)) dQ(x, τ).

From here on, for any sequence of random quantities Zn and a random vector Z, we write

Zn
d→ N(0, 1), P0-uniformly,

if for each t > 0,

sup
P∈P0

|P {Zn ≤ t} − Φ(t)| = o(1).
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And for any sequence of bootstrap quantities Z∗n and a random vector Z, we write

Z∗n
d∗→ N(0, 1), P0-uniformly,

if for each t > 0,

|P ∗ {Z∗n ≤ t} − Φ(t)| = oP ∗(1), P0-uniformly.

Lemma A2. (i) Suppose that Assumptions A1-A3, A4(i), and A5-A6 are satisfied. Then for

any sequences cn,1, cn,2 > 0 such that lim infn→∞ infP∈P0 σ
2
n(cn,1, cn,2) > 0 and

√
log n/cn,2 →

0, as n→∞,

h−d/2
(
θ̄n(cn,1, cn,2)− aRn (cn,1, cn,2)

σn(cn,1, cn,2)

)
d→ N(0, 1), P0-uniformly.

(ii) Suppose that Assumptions A1-A3, A4(i), A5-A6, B1 and B4 are satisfied. Then for any

sequences cn,1, cn,2 ≥ 0 such that lim infn→∞ infP∈P0 σ
2
n(cn,1, cn,2) > 0 and

√
log n/cn,2 → 0,

as n→∞,

h−d/2
(
θ̄∗n(cn,1, cn,2)− aR∗n (cn,1, cn,2)

σn(cn,1, cn,2)

)
d∗→ N(0, 1), P0-uniformly.

Proof of Lemma A2. (i) By Lemma 1, we have (with probability approaching one)

θ̄n(cn,1, cn,2) =
∑
A∈NJ

∫
Bn,A(cn,1,cn,2)

Λp(̂sτ (x))dQ(x, τ) =
∑
A∈NJ

∫
Bn,A(cn,1,cn,2)

ΛA,p(̂sτ (x))dQ(x, τ).

Note that aRn (cn,1, cn,2) =
∑

A∈NJ a
R
n,A(cn,1, cn,2), where

aRn,A(cn,1, cn,2) ≡
∫
Bn,A(cn,1,cn,2)

E
[
ΛA,p(

√
nhdzN,τ (x))

]
dQ(x, τ).

Using Assumption A1, we find that h−d/2{θ̄n(cn,1, cn,2)− aRn (cn,1, cn,2)} is equal to

h−d/2
∑
A∈NJ

{ζn,A(Bn,A(cn,1, cn,2))− EζN,A(Bn,A(cn,1, cn,2))}+ oP (1),

where for any Borel set B ⊂ S,

ζn,A(B) ≡
∫
B

ΛA,p(
√
nhdzn,τ (x))dQ(x, τ),

ζN,A(B) ≡
∫
B

ΛA,p(
√
nhdzN,τ (x))dQ(x, τ),

and

zn,τ (x) ≡ 1

nhd

n∑
i=1

βn,x,τ (Yi, (Xi − x)/h)− 1

hd
E [βn,x,τ (Yi, (Xi − x)/h)] ,

with

βn,x,τ (Yi, (Xi − x)/h) = (βn,x,τ,1(Yi1, (Xi − x)/h), · · ·, βn,x,τ,J(YiJ , (Xi − x)/h))>.
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We take 0 < ε̄l → 0 as l→∞ and take Cl ⊂ Rd such that

0 < P
{
Xi ∈ Rd\Cl

}
≤ ε̄l,

and Q((X\Cl)×T )→ 0 as l→∞. Such a sequence {ε̄l}∞l=1 exists by Assumption A6(ii) by

the condition that S is compact. We write

h−d/2
∑

A∈NJ{ζn,A(Bn,A(cn,1, cn,2))− EζN,A(Bn,A(cn,1, cn,2))}
σ2
n(cn,1, cn,2)

(A.16)

=
h−d/2

∑
A∈NJ{ζn,A(Bn,A(cn,1, cn,2) ∩ (Cl × T ))− EζN,A(Bn,A(cn,1, cn,2) ∩ (Cl × T ))}

σ2
n(cn,1, cn,2)

+
h−d/2

∑
A∈NJ{ζn,A(Bn,A(cn,1, cn,2)\(Cl × T ))− EζN,A(Bn,A(cn,1, cn,2)\(Cl × T ))}

σ2
n(cn,1, cn,2)

= A1n + A2n, say.

As for A2n, we apply Lemma C7 in Appendix C, and the condition that Q((X\Cl)×T )→ 0,

as l→∞, and

liminfn→∞infP∈P0σn(c1n, c2n) > 0,

to deduce that A2n = oP (1), as n → ∞ and then l → ∞. As for A1n, first observe that as

n→∞ and then l→∞,

(A.17)
∣∣σ2
n(cn,1, cn,2)− σ̄2

n,l(cn,1, cn,2)
∣∣→ 0,

where σ̄2
n,l(cn,1, cn,2) is equal to σ2

n(cn,1, cn,2) except that Bn,A(cn,1, cn,2)’s are replaced by

Bn,A(cn,1, cn,2) ∩ (Cl × T ). The convergence follows by Assumption 6(i). Also by Lemma

C9(i) and the convergence in (A.17) and the fact that

lim inf
n→∞

inf
P∈P0

σ2
n(cn,1, cn,2) > 0,

we have

A1n
d→ N(0, 1), P0-uniformly,

as n→∞ and as l→∞. Hence we obtain (i).

(ii) The proof can be done in the same way as in the proof of (i), using Lemmas D7 and

D9(i) in Appendix D instead of Lemmas C7 and C9(i) in Appendix C.

Lemma A3. Suppose that Assumptions A1-A5 hold. Then for any sequences cn,L, cn,U > 0

satisfying Assumption A4(ii), and for each A ∈ NJ ,

inf
P∈P

P
{
Bn,A(cn,L, cn,U) ⊂ B̂A(ĉn) ⊂ Bn,A(cn,U , cn,L)

}
→ 1, as n→∞.
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Proof of Lemma A3. By using Assumptions A3-A5, and following the proof of Theorem

2, Claim 1 in Linton, Song, and Whang (2010), we can complete the proof. Details are

omitted.

Define for cn,1, cn,2 > 0,

Tn(cn,1, cn,2) ≡ h−d/2
(
θ̄n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
and

T ∗n(cn,1, cn,2) ≡ h−d/2
(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
.

We introduce critical values for the finite sample distribution of θ̂ as follows:

γαn (cn,1, cn,2) ≡ inf {c ∈ R : P {Tn(cn,1, cn,2) ≤ c} > 1− α} .

Similarly, let us introduce bootstrap critical values:

(A.18) γα∗n (cn,1, cn,2) ≡ inf {c ∈ R : P ∗ {T ∗n(cn,1, cn,2) ≤ c} > 1− α} .

Finally, we introduce asymptotic critical values: γα∞ ≡ Φ−1(1 − α), where Φ denotes the

standard normal CDF.

Lemma A4. Suppose that Assumptions A1-A3, A4(i), and A5-A6 hold. Then the following

holds.

(i) For any cn,1, cn,2 →∞ such that

lim inf
n→∞

inf
P∈P

σ2
n(cn,1, cn,2) > 0,

it is satisfied that

sup
P∈P
|γαn (cn,1, cn,2)− γα∞| → 0, as n→∞.

(ii) Suppose further that Assumptions B1 and B4 hold. Then for any cn,1, cn,2 → ∞ such

that

lim inf
n→∞

inf
P∈P

σ2
n(cn,1, cn,2) > 0,

it is satisfied that

sup
P∈P
|γα∗n (cn,1, cn,2)− γα∞| → 0, as n→∞.

Proof of Lemma A4. (i) The statement immediately follows from the first statement of Lemma

A2(i) and Lemma A1.

(ii) We show only the second statement. Fix a > 0. Let us introduce two events:

En,1 ≡ {γα∗n (cn,1, cn,2)− γα∞ < −a} and En,2 ≡ {γα∗n (cn,1, cn,2)− γα∞ > a} .
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On the event En,1, we have

α = P ∗
{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∗n (cn,1, cn,2)

}
≥ P ∗

{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∞ − a

}
.

By Lemma A2(ii) and Lemma A1, the last probability is equal to

1− Φ (γα∞ − a) + oP (1) > α + oP (1),

where oP (1) is uniform over P ∈ P and the last strict inequality follows by the definition of

γα∞ and a > 0. Hence supP∈P PEn,1 → 0 as n→∞. Similarly, on the event En,2, we have

α = P ∗
{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∗n (cn,1, cn,2)

}
≤ P ∗

{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∞ + a

}
.

By the first statement of Lemma A2(ii) and Lemma A1, the last bootstrap probability is

bounded by

1− Φ (γα∞ + a) + oP (1) < α + oP (1),

so that we have supP∈P PEn,2 → 0 as n→∞. We conclude that

sup
P∈P

P {|γα∗n (cn,1, cn,2)− γα∞| > a} = sup
P∈P

(PEn,1 + PEn,2)→ 0,

as n→∞, obtaining the desired result.

Proof of Theorem 1. By Lemma 1, we have

inf
P∈P0

P

{
θ̂ =

∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (ûτ (x)) dQ(x, τ)

}
→ 1,

as n→∞. Since under the null hypothesis, we have vn,τ,j(·)/σ̂τ,j(·) ≤ 0 for all j ∈ NJ , with

probability approaching one by Assumption A5, we have∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (ûτ (x)) dQ(x, τ)

≤
∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (̂sτ (x)) dQ(x, τ) ≡ θ̄n(cn,L, cn,U).

Thus, we have as n→∞,

(A.19) inf
P∈P0

P
{
θ̂ ≤ θ̄n(cn,L, cn,U)

}
→ 1.
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Let the (1− α)-th percentile of the bootstrap distribution of

θ̄∗n(cn,L, cn,U) =
∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p(̂s
∗
τ (x))dQ(x, τ)

be denoted by c̄α∗n,L. By Lemma A3 and Assumption A4(ii), with probability approaching

one,

(A.20)
∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (̂s∗τ (x)) dQ(x, τ) ≤
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

This implies that as n→∞,

(A.21) inf
P∈P

P
{
c∗α ≥ c̄α∗n,L

}
→ 1.

There exists a sequence of probabilities {Pn}n≥1 ⊂ P0 such that

limsup
n→∞

sup
P∈P0

P
{
θ̂ > c∗α,η

}
= limsup

n→∞
Pn

{
θ̂ > c∗α,η

}
(A.22)

= limn→∞Pwn

{
θ̂wn > c∗wn,α,η

}
,

where {wn} ⊂ {n} is a certain subsequence, and θ̂wn and c∗wn,α,η are the same as θ̂ and c∗α,η
except that the sample size n is now replaced by wn.

By Assumption A6(i), {σn(cn,L, cn,U)}n≥1 is a bounded sequence. Therefore, there exists

a subsequence {un}n≥1 ⊂ {wn}n≥1, such that σun(cun,L, cun,U) converges. We consider two

cases:

Case 1: limn→∞σun(cun,L, cun,U) > 0, and

Case 2: limn→∞σun(cun,L, cun,U) = 0.

In both case, we will show below that

(A.23) limsup
n→∞

Pun{θ̂un > c∗un,α,η} ≤ α.

Since along {wn}, Pwn{θ̂wn > c∗wn,α,η} converges, it does so along any subsequence of {wn}.
Therefore, the above limsup is equal to the last limit in (A.22). This completes the proof.

Proof of (A.23) in Case 1: We write Pun{θ̂un > c∗un,α,η} as

Pun

(
h−d/2

(
θ̂un − aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> h−d/2

(
c∗un,α,η − aun(cun,L, cun,U)

σun(cun,L, cun,U)

))

≤ Pun

(
h−d/2

(
θ̂un − aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> h−d/2

(
c̄α∗un,L − aun(cun,L, cun,U)

σun(cun,L, cun,U)

))
+ o(1),
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where the inequality follows by the fact that c∗α,η ≥ c∗α ≥ c̄α∗n,L with probability approaching

one by (A.21). Using (A.19), we bound the last probability by

(A.24)

Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> h−d/2

(
c̄α∗un,L − aun(cun,L, cun,U)

σun(cun,L, cun,U)

)}
+o(1).

Therefore, since limn→∞σun(cun,L, cun,U) > 0, by Lemmas A2 and A4, we rewrite the last

probability in (A.24) as

Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> γα∗un(cun,L, cun,U)

}
+ o(1)

= Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> γα∞

}
+ o(1) = α + o(1).

This completes the proof of Step 1.

Proof of (A.23) in Case 2: First, observe that

a∗un(cun,L, cun,U) ≤ a∗un(ĉun),

with probability approaching one by Lemma A3. Hence using this and (A.19),

Pun

{
θ̂un > c∗un,α,η

}
= Pun

{
h−d/2

(
θ̂un − aun(cun,L, cun,U)

)
> h−d/2

(
c∗un,α,η − aun(cun,L, cun,U)

)}
≤ Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

)
> h−d/2

(
hd/2η + a∗un(cun,L, cun,U)− aun(cun,L, cun,U)

) }+ o(1).

By Lemma A1, the leading probability is equal to

Pun
{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

)
> η + oP (1)

}
+ o(1).

Since η > 0 and limn→∞σun(cun,L, cun,U) = 0, the leading probability vanishes by Lemma

C9(ii).

Proof of Theorem 2. We focus on probabilities P ∈ Pn(λn, qn)∩P0. Recalling the definition

of un,τ (x; σ̂) ≡ [rn,jvn,τ,j(x)/σ̂τ,j(x)]j∈NJ and applying Lemma 1 along with the condition

that √
log n/cn,U <

√
log n/cn,L → 0,
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as n→∞, we find that with probability approaching one,

θ̂ =
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

=
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

+
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ).

Since under P ∈ P0, un,τ (x; σ̂) ≤ 0 for all x ∈ S, with probability approaching one by

Assumption 5, the last term multiplied by h−d/2 is bounded by (from some large n on)

h−d/2
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ)

≤ h−d/2
∑
A∈NJ

(
sup

(x,τ)∈S
||̂sτ (x)||

)p

Q (Bn,A(cn,U , cn,L)\Bn,A(qn))

= OP

(
h−d/2(log n)p/2λn

)
= oP (1),

where the second to the last equality follows because Q (Bn,A(cn,U , cn,L)\Bn,A(qn)) ≤ λn by

the definition of Pn(λn, qn), and the last equality follows by (4.10).

On the other hand,

h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

= h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ)

+h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

−h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ).

From the definition of Λp in (4.1), the last difference (in absolute value) is bounded by

Ch−d/2
∑
A∈NJ

∫
Bn,A(qn)

‖[un,τ (x; σ̂)]A‖ ‖[̂sτ (x)]A‖p−1 dQ(x, τ)

+Ch−d/2
∑
A∈NJ

∫
Bn,A(qn)

‖[un,τ (x; σ̂)]A‖ ‖[un,τ (x; σ̂)]A‖p−1 dQ(x, τ),

where [a]A is a vector a with the j-th entry is set to be zero for all j ∈ NJ\A and C > 0 is a

constant that does not depend on n ≥ 1 or P ∈ P . We have sup(x,τ)∈Bn,A(qn) ‖[un,τ (x; σ̂)]A‖ ≤
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qn(1 + oP (1)), by the null hypothesis and by Assumption A5. Also, by Assumptions A3 and

A5,

sup(x,τ)∈Bn,A(qn) ‖[̂sτ (x)]A‖ = OP

(√
log n

)
.

Therefore, we conclude that

h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

= h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ) +OP

(
h−d/2qn{(log n)(p−1)/2 + qp−1

n }
)
.

The last OP (1) term is oP (1) by the condition for qn in (4.10). Thus we find that

(A.25) θ̂ = θ̄n(qn) + oP (hd/2),

where θ̄n(qn) =
∑

A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ).

Now let us consider the bootstrap statistic. We write

θ̂∗ =
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p (̂s∗τ (x)) dQ(x, τ)

=
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ) +
∑
A∈NJ

∫
B̂A(ĉn)\Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

By Lemma A3, we find that

inf
P∈P

P
{
B̂n,A(ĉn) ⊂ Bn,A(cn,U , cn,L)

}
→ 1, as n→∞,

so that∑
A∈NJ

∫
B̂A(ĉn)\Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ) ≤
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ),

with probability approaching one. The last term multiplied by h−d/2 is bounded by

h−d/2

(
sup

(x,τ)∈S
||̂s∗τ (x)||

)p ∑
A∈NJ

Q (Bn,A(cn,U , cn,L)\Bn,A(qn))

= OP ∗
(
h−d/2(log n)p/2λn

)
= oP ∗(1), Pn(λn, qn)-uniformly,

where the second to the last equality follows by Assumption B2 and the definition of

Pn(λn, qn), and the last equality follows by (4.10). Thus, we conclude that

(A.26)
h−d/2(θ̂∗ − an(qn))

σn(qn)
=
h−d/2

(
θ̄∗n(qn)− an(qn)

)
σn(qn)

+ oP ∗(1), Pn(λn, qn)-uniformly,
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where

θ̄∗(qn) ≡
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

Using the same arguments, we also observe that

(A.27) â∗ = â∗(qn) + oP (hd/2) = an(qn) + oP (hd/2),

where the last equality uses Lemma A1. Let the (1 − α)-th percentile of the bootstrap

distribution of θ̄∗(qn) be denoted by c̄α∗n (qn). Then by (A.26), we have

(A.28)
h−d/2 (c∗α − an(qn))

σn(qn)
=
h−d/2 (c̄α∗n (qn)− an(qn))

σn(qn)
+ oP ∗(1), Pn(λn, qn)-uniformly.

By Lemma A4(ii) and by the condition that σn(qn) ≥ η/Φ−1(1−α), the leading term on the

right hand side is equal to

Φ−1(1− α) + oP ∗(1), Pn(λn, qn)-uniformly.

Note that

(A.29) c∗α ≥ hd/2η + â∗n + oP (hd/2),

by the restriction σn(qn) ≥ η/Φ−1(1 − α) in the definition of Pn(λn, qn) and (A.27). Using

this, and following the proof of Step 1 in the proof of Theorem 2, we deduce that

P

{
h−d/2

(
θ̂ − an(qn)

σn(qn)

)
> h−d/2

(
c∗α,η − an(qn)

σn(qn)

)}

= P

{
h−d/2

(
θ̄n(qn)− an(qn)

σn(qn)

)
> h−d/2

(
c∗α − an(qn)

σn(qn)

)}
+ o(1)

= P

{
h−d/2

(
θ̄n(qn)− an(qn)

σn(qn)

)
> h−d/2

(
c̄α∗n (qn)− an(qn)

σn(qn)

)}
+ o(1),

where the first equality uses (A.25), (A.29), and the second equality uses (A.28). Since

σn(qn) ≥ η/Φ−1(1 − α) > 0 for all P ∈ Pn(λn, qn) ∩ P0 by definition, using the same

arguments in the proof of Lemma A4, we obtain that the last probability is equal to

α + o(1),

uniformly over P ∈ Pn(λn, qn) ∩ P0.
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Proof of Theorem 3. For any convex nonnegative map f on RJ , we have 2f(b/2) ≤ f(a +

b) + f(−a). Hence we find that

θ̂ =

∫
Λp (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ)

≥ 1

2p−1

∫
Λp (uτ (x; σ̂)) dQ(x, τ)−

∫
Λp (−ŝτ (x)) dQ(x, τ).

From Assumption A3, the last term is OP ((log n)p/2). Using Assumption A3, we bound the

leading integral from below by

(A.30) min
j∈NJ

rpn,j

(∫
Λp (ṽn,τ (x)) dQ(x, τ)

{∫
Λp (vn,τ (x)) dQ(x, τ)∫
Λp (ṽn,τ (x)) dQ(x, τ)

− 1

}
+ oP (1)

)
,

where vn,τ (x) ≡ [vn,τ,j(x)/σn,τ,j(x)]j∈NJ and ṽn,τ (x) ≡ [vτ,j(x)/σn,τ,j(x)]j∈NJ . Since

liminfn→∞

∫
Λp (ṽn,τ (x)) dQ(x, τ) > 0,

we use Assumption C1 and apply the Dominated Convergence Theorem to write (A.30) as

min
j∈NJ

rpn,j

∫
Λp (ṽn,τ (x)) dQ(x, τ) (1 + oP (1)) .

Since minj∈NJ rn,j → ∞ as n → ∞ and liminfn→∞
∫

Λp (ṽn,τ (x)) dQ(x, τ) > 0, we have for

any M > 0,

P

{
1

2p−1

∫
Λp (uτ (x; σ̂)) dQ(x, τ) > M

}
→ 1,

as n→∞. Also since
√

log n/minj∈NJ rn,j → 0 (Assumption A4(i)), Assumption A3 implies

that for any M > 0,

P
{
θ̂ > M

}
→ 1.

Also, note that by Lemma A2(ii), h−d/2(c∗α − an)/σn = OP (1). Hence

c∗α = an +OP (hd/2) = OP (1).

Given that c∗α = OP (1) and â∗ = OP (1) by Lemma A1 and Assumption A6(i), we obtain

that P{θ̂ > c∗α,η} → 1, as n→∞.

Lemma A5. Suppose that the conditions of Theorem 4 or Theorem 5 hold. Then as n→∞,
the following holds: for any cn,1, cn,2 > 0 such that√

log n/cn,2 → 0,

as n→∞. Then

inf
P∈P0

n(λn)
P

{∫
S\B0

n(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ) = 0

}
→ 1.
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Furthermore, we have for any A ∈ NJ ,

inf
P∈P0

n(λn)
P

{∫
B0
n,A(cn,1,cn,2)

{Λp (ûτ (x))− ΛA,p (ûτ (x))} dQ(x, τ) = 0

}
→ 1.

Proof of Lemma A5. Consider the first statement. Let λ be either d/2 or d/4. We write∫
S\B0

n(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ)

=

∫
S\B0

n(cn,1,cn,2)

Λp (̂sτ (x) + (uτ (x; σ̂)) dQ(x, τ).

=

∫
S\B0

n(cn,1,cn,2)

Λp

(
ŝτ (x) + u0

τ (x; σ̂) + hλδτ,σ̂(x)
)
dQ(x, τ),

where u0
τ (x; σ̂) ≡ (rn,1v

0
n,τ,1(x)/σ̂τ,1(x), · · ·, rn,Jv0

n,τ,J(x)/σ̂τ,J(x)) and

(A.31) δτ,σ̂(x) ≡
(
δτ,1(x)

σ̂τ,1(x)
, · · ·, δτ,J(x)

σ̂τ,J(x)

)
.

Note that δτ,σ̂(x) is bounded with probability approaching one by Assumption A3. Also note

that for each j ∈ NJ ,

sup
(x,τ)∈S

∣∣∣∣rn,j{v̂n,τ,j(x)− v0
n,τ,j(x)}

σ̂τ,j(x)

∣∣∣∣ ≤ sup
(x,τ)∈S

∣∣∣∣rn,j{v̂n,τ,j(x)− vn,τ,j(x)}
σ̂τ,j(x)

∣∣∣∣+ hλ sup
(x,τ)∈S

∣∣∣∣ δτ,j(x)

σ̂τ,j(x)

∣∣∣∣
(A.32)

= OP

(√
log n+ hλ

)
= OP

(√
log n

)
,

by Assumption A3. Hence we obtain the desired result, using the same arguments as in the

proof of Lemma 1.

Given that we have (A.32), the proof of the second statement can be proceeded in the

same way as the proof of the first statement.

Recall the definitions of Λ̄x,τ (v) in (A.11). We define for v ∈ RJ , Λ̄0
x,τ (v) to be Λ̄x,τ (v)

except that Bn,A(cn,1, cn,2) is replaced by B0
n,A(cn,1, cn,2). Define for λ ∈ {0, d/4, d/2},

(A.33) θ̂δ(cn,1, cn,2;λ) ≡
∫

Λ̄0
x,τ

(
ŝτ (x) + hλδτ,σ(x)

)
dQ(x, τ).

Let

aRn,δ(cn,1, cn,2;λ) ≡
∫

E
[
Λ̄0
x,τ

(√
nhdzN,τ (x) + hλδτ,σ(x)

)]
dQ(x, τ),

θ̂∗δ(cn,1, cn,2;λ) ≡
∫

Λ̄0
x,τ

(
ŝ∗τ (x) + hλδτ,σ(x)

)
dQ(x, τ),

and

(A.34) aR∗n,δ(cn,1, cn,2;λ) ≡
∫

E∗
[
Λ̄0
x,τ

(√
nhdz∗N,τ (x) + hλδτ,σ(x)

)]
dQ(x, τ).
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We also define

an,δ(cn,1, cn,2;λ) ≡
∫

E
[
Λ̄0
x,τ (W(1)

n,τ,τ (x, 0) + hλδτ,σ(x))
]
dQ(x, τ).

When cn,1 = cn,2 = cn, we simply write aRn,δ(cn;λ), aR∗n,δ(cn;λ), and an,δ(cn;λ), instead of

writing aRn,δ(cn, cn;λ), aR∗n,δ(cn, cn;λ), and an,δ(cn, cn;λ).

Lemma A6. Suppose that the conditions of Assumptions A6(i) and B4 hold. Then for each

P ∈ P such that the local alternatives in (6.2) hold with bn,j = rn,jh
−λ, j = 1, · · ·, J , for

some λ ∈ {0, d/4, d/2}, and for each nonnegative sequences cn,1, cn,2,∣∣aRn,δ(cn,1, cn,2;λ)− an,δ(cn,1, cn,2;λ)
∣∣ = o(hd/2), and∣∣aR∗n,δ(cn,1, cn,2;λ)− an,δ(cn,1, cn,2;λ)
∣∣ = oP (hd/2).

Proof of Lemma A6. The result follows immediately from Lemma D12 in Appendix D.

Lemma A7. Suppose that the conditions of Theorem 4 are satisfied. Then for each λ ∈
{0, d/4, d/2}, for each P ∈ P0

n(λn) such that the local alternatives in (6.2) hold,

h−d/2

(
θ̄n,δ(cn,U , cn,L;λ)− aRn,δ(cn,U , cn,L;λ)

σn(cn,U , cn,L)

)
d→ N(0, 1) and

h−d/2

(
θ̄∗n,δ(cn,U , cn,L;λ)− aR∗n,δ(cn,U , cn,L;λ)

σn(cn,U , cn,L)

)
d∗→ N(0, 1), P0

n(λn)-uniformly.

Proof of Lemma A7. Note that by the definition of P0
n(λn), we have

lim inf
n→∞

inf
P∈P0

n(λn)
σ2
n(cn,U , cn,L) ≥ η

Φ−1(1− α)
.

Hence we can follow the proof of Lemma A2 to obtain the desired results.

Proof of Theorem 4. Using Lemma A5, we find that

θ̂ =
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ)

with probability approaching one. We write the leading sum as∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ) +Rn,

where

Rn ≡
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ).
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We write h−d/2Rn as

h−d/2
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p

(
ŝτ (x) + u0

τ (x; σ̂)

+hd/2δτ,σ̂(x)(1 + o(1))

)
dQ(x, τ)

≤ h−d/2
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δτ,σ̂(x)(1 + o(1))

)
dQ(x, τ),

by Assumption C2. We bound the last sum as

Ch−d/2
∑
A∈NJ

(
sup

(x,τ)∈S
||̂sτ (x)||

)p

Q
(
B0
n,A(cn,U , cn,L)\B0

n,A(0)
)

= OP

(
h−d/2 (log n)p/2 λn

)
= oP (1)

using Assumption A3 and the rate condition in (4.10). We conclude that

h−d/2θ̂ = h−d/2
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ) + oP (1)(A.35)

= h−d/2
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δτ,σ̂(x)

)
dQ(x, τ) + oP (1),

where the second equality follows by Assumption C2 and by the definition of B0
n,A(0).

Fix small κ > 0 and define

δLτ,σ,κ,j(x) ≡

{
δτ,j(x)

(1+κ)σn,τ,j(x)
if δτ,j(x) ≥ 0

δτ,j(x)

(1−κ)σn,τ,j(x)
if δτ,j(x) < 0

and

δUτ,σ,κ,j(x) ≡

{
δτ,j(x)

(1−κ)σn,τ,j(x)
if δτ,j(x) ≥ 0

δτ,j(x)

(1+κ)σn,τ,j(x)
if δτ,j(x) < 0

.

Define δLτ,σ,κ(x) and δUτ,σ,κ(x) to be RJ -valued maps whose j-th entries are given by δLτ,σ,κ,j(x)

and δUτ,σ,κ,j(x) respectively. By construction, Assumptions A3 and C2(ii), we have

P
{
δLτ,σ,κ(x) ≤ δτ,σ̂(x) ≤ δUτ,σ,κ(x)

}
→ 1,

as n→∞. Therefore, with probability approaching one,

θ̂δ,L(0; d/2) ≡
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δLτ,σ,κ(x)

)
dQ(x, τ)(A.36)

≤
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δτ,σ̂(x)

)
dQ(x, τ)

≤
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δUτ,σ,κ(x)

)
dQ(x, τ) ≡ θ̂δ,U(0; d/2).

We conclude from (A.35) that

(A.37) θ̂δ,L(0; d/2) + oP (hd/2) ≤ θ̂ ≤ θ̂δ,U(0; d/2) + oP (hd/2).
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As for the bootstrap counterpart, note that since δτ,j(x) is bounded and σn,τ,j(x) is bounded

away from zero uniformly over (x, τ) ∈ S and n ≥ 1, and hence

(A.38) sup
(x,τ)∈S

∣∣∣∣ 1

h−d/2
δτ,j(x)

σn,τ,j(x)

∣∣∣∣ ≤ Chd/2 → 0,

as n→∞. By (A.38), the difference between rn,jvn,τ,j(x)/σn,τ,j(x) and rn,jv
0
n,τ,j(x)/σn,τ,j(x)

vanishes uniformly over (x, τ) ∈ S. Therefore, combining this with Lemma A3, we find that

(A.39) P
{
B̂n(ĉn) ⊂ B0

n(cn,U , cn,L)
}
→ 1,

as n→∞.

Now with probability approaching one,

θ̂∗ =
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p (̂s∗τ (x)) dQ(x, τ)(A.40)

=
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ)

+
∑
A∈NJ

∫
B̂A(ĉn)\B0

n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

As for the last sum, it is bounded by∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ),

with probability approaching one by (A.39). The above sum multiplied by h−d/2 is bounded

by

h−d/2

(
sup

(x,τ)∈S
||̂s∗τ (x)||

)p ∑
A∈NJ

Q
(
B0
n,A(cn,U , cn,L)\B0

n,A(0)
)

= OP ∗
(
h−d/2(log n)p/2λn

)
= oP ∗(1), P-uniformly,

by Assumption B2 and the rate condition for λn. Thus, we conclude that

(A.41) θ̂∗ = θ̄∗(0) + oP ∗(h
d/2), P0

n(λn)-uniformly,

where

θ̄∗(0) ≡
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

Let c̄α∗n (0) be the (1−α)-th quantile of the bootstrap distribution of θ̄∗(0) and let γα∗n (0) be

the (1− α)-th quantile of the bootstrap distribution of

(A.42) h−d/2
(
θ̄∗(0)− aR∗n (0)

σn(0)

)
.
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By the definition of P0
n(λn), we have σ2

n(0) > η/Φ−1(1−α). Let aRδ,U(0; d/2) and aRδ,L(0; d/2)

be aRn,δ(0; d/2) except that δτ,σ is replaced by δUτ,σ,κ and δLτ,σ,κ respectively. Also, let aδ,U(0; d/2)

and aδ,L(0; d/2) be an,δ(0; d/2) except that δτ,σ is replaced by δUτ,σ,κ and δLτ,σ,κ respectively.

We bound P{θ̂ > c∗α,η} by

P

{
h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
> h−d/2

(
c∗α − aRδ,U(0; d/2)

σn(0)

)}
+ o(1)

= P

{
h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,U(0; d/2)

σn(0)

)}
+ o(1),

where the equality uses (A.41). Then we observe that

c̄α∗n (0)− aRδ,U(0; d/2)

σn(0)
=

c̄α∗n (0)− aR∗n (0)

σn(0)
+
aR∗n (0)− aRδ,U(0; d/2)

σn(0)

= hd/2γα∗n (0) +
aR∗n (0)− aRδ,U(0; d/2)

σn(0)
.

As for the last term, we use Lemmas A1 and A6 to deduce that

aR∗n (0)− aRδ,U(0; d/2) = aRn (0)− aRδ,U(0; d/2) + oP (hd/2)

= an(0)− aδ,U(0; d/2) + oP (hd/2).

As for an(0)− aδ,U(0; d/2), we observe that

σn(0)−1h−d/2
{
E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δUτ,σ,κ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

(A.43)

= σn(0)−1h−d/2
{
E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δUτ,σ,κ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

= ψ
(1)
n,A,τ (0;x)>δUτ,σ,κ(x) +O

(
hd/2

)
,

so that

h−d/2 (an(0)− aδ,U(0))

σn(0)
= −

∑
A∈NJ

∫
ψ

(1)
n,A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ) + o(1)

= −
∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ) + o(1),

where the last equality follows by the Dominated Convergence Theorem. On the other hand,

by Lemma A7, we have

h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
d→ N(0, 1).
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Since γα∗n (0) = γα,∞ + oP (1) by Lemma A4, we use this result to deduce that

lim
n→∞

P

{
h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,U(0; d/2)

σn(0)

)}

= 1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ)

)
.

Similarly, we also use (A.37) to bound P
{
θ̂ > c∗α,η

}
from below by

P

{
h−d/2

(
θ̂δ,L(0; d/2)− aRδ,L(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,L(0; d/2)

σn(0)

)}
+ o(1),

and using similar arguments as before, we obtain that

lim
n→∞

P

{
h−d/2

(
θ̂δ,L(0; d/2)− aRδ,L(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,L(0; d/2)

σn(0)

)}

= 1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δLτ,σ,κ(x)dQ(x, τ)

)
.

We conclude from this and (A.36) that for any small κ > 0,

1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δLτ,σ,κ(x)dQ(x, τ)

)
+ o(1)

≤ P
{
θ̂ > c∗α,η

}
≤ 1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ)

)
+ o(1).

Note that ψ
(1)
A,τ (0;x)>δUτ,σ,κ(x) and ψ

(1)
A,τ (0;x)>δLτ,σ,κ(x) are bounded maps in (x, τ) by the

assumption of the theorem, and that

lim
κ→0

δLτ,σ,κ(x) = lim
κ→0

δUτ,σ,κ(x) = δτ,σ(x),

for each (x, τ) ∈ S. Hence by sending κ → 0 and applying the Dominated Convergence

Theorem to both the bounds above, we obtain the desired result.

Proof of Theorem 5. First, observe that Lemma A5 continues to hold. This can be seen by

following the proof of Lemma A5 and noting that (A.32) becomes here

sup
(x,τ)∈S

∣∣∣∣rn,j{v̂n,τ,j(x)− v0
n,τ,j(x)}

σ̂τ,j(x)

∣∣∣∣ = OP

(√
log n+ hd/4

)
= OP

(√
log n

)
,

yielding the same convergence rate. The rest of the proof is the same. Similarly, Lemma A6

continues to hold also under the modified local alternatives of (6.2) with bn,j = rn,jh
−d/4.
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We define

(A.44) δ̃τ,σ(x) ≡ h−d/4δτ,σ(x).

We follow the proof of Theorem 4 and take up arguments from (A.43). Observe that

σn(0)−1h−d/2
{

E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δ̃τ,σ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

= σn(0)−1h−d/2
{

E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δ̃τ,σ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

= ψ
(1)
n,A,τ (0;x)>δ̃τ,σ(x) + hd/2δ̃τ,σ(x)>ψ

(2)
n,A,τ (0;x)δ̃τ,σ(x)/2.

By the Dominated Convergence Theorem,∫
ψ

(1)
n,A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) =

∫
ψ

(1)
A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) + o(1) and∫

ψ
(2)
n,A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) =

∫
ψ

(2)
A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) + o(1).

Since
∑

A∈NJ

∫
ψ

(1)
A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) = 0, by the condition for δτ,σ(x) in the theorem,

∑
A∈NJ

∫
h−d/2

 E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δ̃τ,σ(x)
)]

−E
[
ΛA,p(W(1)

n,τ,τ (x, 0))
]  dQ(x, τ)

=
1

2

∑
A∈NJ

∫
δτ,σ(x)>ψ

(2)
A,τ (0;x)δτ,σ(x)dQ(x, τ) + o(1).

Now we can use the above result by replacing δτ,σ(x) by δUτ,σ,κ(x) and δLτ,σ,κ(x) and follow the

proof of Theorem 4 to obtain the desired result.

Appendix B. Proofs of Results for the Example in Section 5

We first offer a general asymptotic linear representation theorem for quantile regression

functions that can be useful for other purposes. While the proof employs some arguments

from Guerre and Sabbah (2012), the result is different from theirs. The main difference is

that their result pays attention to uniformity in h over some range, while our result pays

attention to uniformity in P .

Let (B>, X>, L)>, with B ≡ (B1, · · ·, BL̄)> ∈ RL̄, and X ∈ Rd, be a random vector such

that the joint distribution of (B>, X>)> is absolutely continuous with respect to Lebesgue

measure and L is a discrete random variable taking values from NL ≡ {1, 2, · · ·, L̄}. For each

x ∈ Rd and k ∈ NL, the conditional distribution of Bl given (X,L) = (x, k) is the same

across l = 1, · · ·, k.

Let qk(τ |x) denote the τ -th quantile of Bl conditional on X = x and L = k, where

τ ∈ (0, 1). That is, P{Bl ≤ qk(τ |x)|X = x, L = k} = τ for all x in the support of X and all
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k ∈ {1, · · ·, L̄}. We write

Bl = qk(τ |X) + ετ,lk, τ ∈ (0, 1), for all k ∈ {1, · · ·, L̄},

where ετ,lk is a continuous random variable such that the τ -th conditional quantile of ετ,lk

given X and L = k is equal to zero. Note that qk(τ |x) is the same across k = 1, · · ·, L̄, by

our assumption.

Suppose that we are given a random sample {(B>i , X>i , Li)>}ni=1 of (B>, X>, L)>. We use

a local polynomial method, similar to Chaudhuri (1991a) and Chaudhuri (1991b). Assume

that qk(τ |x) is (r+1)-times continuously differentiable with respect to x, where r ≥ 1. Then,

we construct an estimator γ̂τ,k(x) as follows:

γ̂τ,k(x) ≡ argminγ∈R|Ar |

n∑
i=1

1 {Li = k}
k∑
l=1

lτ
(
Bli − γ>c(Xi − x)

)
Kh(Xi − x),

where lτ (u) ≡ u[τ − 1{u ≤ 0}] for any u ∈ R, Kh(t) = K(t/h)/hd, K is a d-variate kernel

function, and h is a bandwidth that goes to zero as n→∞.

We make the following assumptions.

Assumption QR1. (i) There exists an integer r ≥ 1 such that for all (τ, k) ∈ T × NL,

qk(τ |·) is r+ 1 times continuously differentiable on Sτ (ε) with derivatives bounded uniformly

over (τ, P ) ∈ T × P.

(ii) The density f of X is continuously differentiable on R with a derivative bounded uni-

formly over P ∈ P.

Assumption QR2. For each k ∈ NL, (i) infx∈Sτ (ε) fτ,k(0|x) is bounded away from zero

uniformly over (τ, P ) ∈ T ×P, with fτ,k(0|x) being the conditional density of Bli− qk(τ |Xi)

given Xi = x and Li = k. (ii) supx∈Sτ (ε) fτ,k(0|x) is bounded uniformly over (τ, P ) ∈ T ×P,

and (iii) fτ,k(ε̄|x) is continuously differentiable in (ε̄, x) with a derivative bounded uniformly

over x ∈ Sτ (ε), τ ∈ T , and P ∈ P. (iv) P{Li = k|Xi = x} is bounded away from zero

uniformly over x ∈ Sτ (ε), τ ∈ T , and P ∈ P, and continuously differentiable in x with a

derivative bounded uniformly over x ∈ Sτ (ε), τ ∈ T , and P ∈ P.

Assumption QR3. (i) K is compact-supported, nonnegative, bounded, and Lipschitz con-

tinuous on the interior of its support,
∫
K(u)du = 1, and

∫
K (u) ||u||2du > 0. (ii) As

n→∞, n−1/2h−d/2 log n+
√
nhr+1 → 0.

We define

∆x,τ,lk,i ≡ Bli − γ>τ,k(x)c(Xi − x),

ch,x,i ≡ c ((Xi − x)/h) , and Kh,x,i ≡ K ((Xi − x)/h) ,
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where we recall c(z) = (zu)u∈Ar , for z ∈ Rd, and γτ,k(x) = (γτ,k,u(x))u∈Ar with

γτ,k,u(x) =
1

u1! · · · ud!
Duqk(τ |x).

We also define for a, b ∈ R|Ar|,

ζn,x,τ,k(a, b) ≡
n∑
i=1

1 {Li = k}
Li∑
l=1

 lτ

(
∆x,τ,lk,i − (a+ b)>ch,x,i/

√
nhd
)

−lτ
(

∆x,τ,lk,i − a>ch,x,i/
√
nhd
) Kh,x,i,

ψn,x,τ,k ≡ − 1√
nhd

n∑
i=1

1 {Li = k}
Li∑
l=1

l̃τ (∆x,τ,lk,i) ch,x,iKh,x,i,

where we recall l̃τ (x) ≡ τ − 1{x ≤ 0}. Define ζ∆
n,x,τ,k(a, b) ≡ ζn,x,τ,k(a, b)− b>ψn,x,τ,k.

Lemma QR1. Suppose that Assumptions QR1-QR3 hold. Let {δ1n}∞n=1 and {δ2n}∞n=1 be

positive sequences such that δ1n = OP (1) and δ2n ≤ δ1n from some large n on. Then for each

k ∈ NL, the following holds uniformly over P ∈ P:

(i)

E

[
sup

a,b:||a||≤δ1n,||b||≤δ2n
sup

τ∈T ,x∈Sτ (ε)

|ζ∆
n,x,τ,k(a, b)− E[ζ∆

n,x,τ,k(a, b)]|

]

= O

(
δ2n

√
log n

n1/4hd/4

)
.

(ii)

E

[
sup

τ∈T ,x∈Sτ (ε)

‖ψn,x,τ,k‖

]
= O

(√
log n

)
.

(iii)

sup
a,b:||a||≤δ1n,||b||≤δ2n

sup
τ∈T ,x∈Sτ (ε)

∣∣∣∣E[ζ∆
n,x,τ,k(a, b)]−

b>Mn,τ,k(x)(b+ 2a)

2

∣∣∣∣
= O

(
δ2nδ

2
1n

n1/2hd/2
+ δ2nδ1nh

r+1

)
,

where we recall the definition of Mn,τ,k(x) as

Mn,τ,k(x) ≡ k

∫
P{Li = k|Xi = x+ th}fτ,k(0|x+ th)f(x+ th)K(t)c(t)c>(t)dt.

Proof of Lemma QR1. (i) Define

(B.1) δn,τ,k(x1;x) ≡ {qk(τ |x1)− γτ,k(x1)>c(x1 − x)}1{|x1 − x| ≤ h},
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where the dependence on P is through qk(τ |x1) and γτ,k(x1). We also let

(B.2) δn,τ,k(x1) ≡ sup
τ∈T , x∈Sτ (ε)

sup
P∈P
|δn,τ,k(x1;x)|.

It is not hard to see that

(B.3) supτ∈T , x1∈Sτ (ε)|δn,τ,k(x1)| = O(hr+1),

because qk(τ |x1)− γτ,k(x1)>c(x1−x) is a residual from the Taylor expansion of qk(τ |x1) and

X is bounded, and the derivatives from the Taylor expansion are bounded uniformly over

P ∈ P .

Let f∆
τ,k,x(t|x′) be the conditional density of ∆x,τ,lk,i given Xi = x′. For all x′ ∈ Rd such that

|x− x′| ≤ h, we have

f∆
τ,k,x(t|x′) =

∂

∂t
P {∆x,τ,lk,i ≤ t|Xi = x′}

(B.4)

=
∂

∂t
P {Bli − qk(τ |Xi) ≤ t− δn,τ,k(x′;x)|Xi = x′} = fτ,k(t− δn,τ,k(x′;x)|x′).

Since fτ,k(·|x′) is bounded uniformly over x′ ∈ Sτ (ε) and over τ ∈ T (Assumption QR2(iii)),

we conclude that for some C > 0 that does not depend on P ∈ P ,

(B.5) sup
τ∈T

sup
x′,x∈Sτ (ε)

f∆
τ,k,x(t|x′) < C.

We will use the results in (B.3) and (B.5) later.

Following the identity in Knight (1998, see the proof of Theorem 1), we write

lτ (x− y)− lτ (x) = −y · l̄τ (x) + µ(x, y),

where µ(x, y) ≡ y
∫ 1

0
{1{x ≤ ys} − 1{x ≤ 0}}ds and

l̄τ (x) ≡ τ − 1{x ≤ 0}+ (1/2) · 1{x = 0}.

Write ζ∆
n,x,τ,k(a, b)− E[ζ∆

n,x,τ,k(a, b)] as

n∑
i=1

{Gn,x,τ,k(Si; a, b)− E [Gn,x,τ,k(Si; a, b)]} ,

where Si ≡ (Y >i , X
>
i , Li)

>, Yi = (Y1,i, · · ·, YL̄,i)>, and

(B.6) Gn,x,τ (Si; a, b) ≡
∫ 1

0

gn,x,τ,k(Si; s, b, a)ds
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and gn,x,τ,k(Si; s, b, a) is defined to be

1 {Li = k}
k∑
l=1

 1
{

∆x,τ,lk,i − a>ch,x,i/
√
nhd ≤ (sb)> ch,x,i/

√
nhd
}

−1
{

∆x,τ,lk,i − a>ch,x,i/
√
nhd ≤ 0

}  b>ch,x,iKh,x,i√
nhd

.

Let Gn ≡ {Gn,x,τ,k(·; a, b) : (a, b, x) ∈ [−δ1n, δ1n]r+1 × [−δ2n, δ2n]r+1 × Sτ (ε), τ ∈ T },

G1n ≡ {λτ,1n(·; a, x) : (a, x) ∈ [−δ1n, δ1n]r+1 × Sτ (ε), τ ∈ T }

G2n ≡ {b>λτ,2n(·;x) : (b, x) ∈ [−δ2n, δ2n]r+1 × Sτ (ε), τ ∈ T } and

G3n ≡ {λτ,3n(·;x) : x ∈ Sτ (ε), τ ∈ T },

where

λτ,1n(Si; a, x) ≡ (∆x,τ,lk,i − a>λτ,2n(Si;x))L̄l=1

λτ,2n(Si;x) ≡ ch,x,i/
√
nhd and λτ,3n(Si;x) ≡ Kh,x,i.

First, we compute the entropy bound for Gn. We focus on G1n first. There exists C >

0 that does not depend on P ∈ P , such that for any τ ∈ T , any (a, x) and (a′, x′) in

[−δ1n, δ1n]r+1 × Sτ (ε), and any τ, τ ′ ∈ T ,

|λτ,1n(Si; a, x)− λτ ′,1n(Si; a
′, x′)| ≤ C

n1/2hr+d/2
{||a− a′||+ |τ − τ ′|+ ||x− x′||} .

Since [−δ1n, δ1n]r+1 × Sτ (ε) is bounded in the Euclidean space uniformly in τ ∈ T , there is

C > 0 such that for all ε ∈ (0, 1],

logN(ε,G1n, || · ||∞) ≤ −C log(εmin{n−1/2h−r−d/2, 1}),

where || · ||∞ denotes the usual supremum norm. Applying similar arguments to G2n and G3n,

we conclude that

(B.7) logN(ε,Gmn, || · ||∞) ≤ C − C log(ε/n), m = 1, 2, 3,

for some C > 0.

Define for x ∈ R, δ > 0,

1Lδ (x) ≡ (1−min{x/δ, 1}) 1{0 < x}+ 1{x ≤ 0} and

1Uδ (x) ≡ (1−min{(x/δ) + 1, 1}) 1{0 < x+ δ}+ 1{x+ δ ≤ 0}.
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We also define for x, y, z ∈ R,

µ(x, y, z) ≡ zy

∫ 1

0

{1{x ≤ ys} − 1{x ≤ 0}}ds,

µUδ (x, y, z) ≡ zy

∫ 1

0

{1{x ≤ ys} − 1Uδ (x)}ds, and

µLδ (x, y, z) ≡ zy

∫ 1

0

{1{x ≤ ys} − 1Lδ (x)}ds.

Then observe that

µLδ (x, y, z) ≤ µ(x, y, z) ≤ µUδ (x, y, z)(B.8) ∣∣µUδ (x, y, z)− µ(x, y, z)
∣∣ ≤ |zy|1{|x| < δ}∣∣µLδ (x, y, z)− µ(x, y, z)
∣∣ ≤ |zy|1{|x| < δ}∣∣µUδ (x, y, z)− µUδ (x′, y′, z′)
∣∣ ≤ C{|y − y′|+ |z − z′|+ |x− x′|/δ}, and∣∣µLδ (x, y, z)− µLδ (x′, y′, z′)
∣∣ ≤ C{|y − y′|+ |z − z′|+ |x− x′|/δ},

for any y, y′, x, x′, z, z′ ∈ R. Define

GUn,δ ≡
{
µUδ (g1(Si), g2(Si), g3(Si)) : gm ∈ Gmn, m = 1, 2, 3

}
, and

GLn,δ ≡
{
µLδ (g1(Si), g2(Si), g3(Si)) : gm ∈ Gmn, m = 1, 2, 3

}
.

From (B.8) and (B.7), we find that there exists C > 0 such that for each δ > 0 and ε > 0,

logN[](Cε,GUn,δ, Lp(P )) ≤ C − C log(εδ/n) and(B.9)

logN[](Cε,GLn,δ, Lp(P )) ≤ C − C log(εδ/n).

We fix ε > 0, set δ = ε, and take brackets [g
(ε)
1,L, g

(ε)
1,U ], · · ·, [g(ε)

N,L, g
(ε)
N,U ] and [g̃

(ε)
1,L, g̃

(ε)
1,U ], · ·

·, [g̃(ε)
N,L, g̃

(ε)
N,U ] such that

E
(
|g(ε)
s,U(Si)− g(ε)

s,L(Si)|2
)
≤ ε2 and(B.10)

E
(
|g̃(ε)
s,U(Si)− g̃(ε)

s,L(Si)|2
)
≤ ε2,

and for any g ∈ GUn and g̃ ∈ GLn , there exists s ∈ {1, · · ·, N} such that g
(ε)
s,L ≤ g ≤ g

(ε)
s,U and

g̃
(ε)
s,L ≤ g̃ ≤ g̃

(ε)
s,U . Without loss of generality, we assume that g

(ε)
s,L, g

(ε)
s,U ∈ GUn and g̃

(ε)
s,L, g̃

(ε)
s,U ∈ GLn .

By the first inequality in (B.8), we find that the brackets [g̃
(ε)
s,L, g

(ε)
s,U ], k = 1, · · ·, N, cover Gn.

Hence by putting δ = ε in (B.9) and redefining constants, we conclude that for some C > 0

(B.11) logN[](Cε,Gn, Lp(P )) ≤ C − C log(ε/n),

for all ε > 0.
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Now, observe that

(B.12) sup
b:||b||≤δ2n,τ∈T ,x∈Sτ (ε)

∣∣∣∣b>ch,x,iKh,x,i√
nhd

∣∣∣∣ ≤ c̄||K||∞δ2n√
nhd

,

where c̄ > 0 is the diameter of the compact support of K.

For any g ∈ Gn/L̄ and any m ≥ 1, E [|g(Si)|m|Xi, Li = k] is bounded by∣∣∣∣b>ch,x,iKh,x,i√
nhd

∣∣∣∣m .
Therefore, by (B.12), for some constants C1, C2 > 0, it is satisfied that for any m ≥ 2,

sup
P∈P

E [|g(Si)|m] ≤ C1

(
δ2n√
nhd

)m
· sup
P∈P

P

{
max
s=1,···,d

|Xis − x| ≤ h/2

}
≤ C2b

m−2
n s2

n,

where

(B.13) bn ≡
δ2n√
nhd

and sn ≡
δ2n

n3/4hd/4
.

By (B.8), (B.10), and (B.12), and the definition of bn and sn in (B.13), there exist constants

C1, C2 > 0 such that for all m ≥ 2,

E
(
|g(ε)
s,U(Si)− g̃(ε)

s,L(Si)|m
)

= E
(
|g(ε)
s,U(Si)− g̃(ε)

s,L(Si)|m−2|g(ε)
s,U(Si)− g̃(ε)

s,L(Si)|2
)

≤ C1 · bm−2
n · E

(
|g(ε)
s,U(Si)− g̃(ε)

s,L(Si)|2
)

≤ 2C1 · bm−2
n · E

(
|g(ε)
s,U(Si)− g(ε)

s,L(Si)|2
)

+2C1 · bm−2
n · E

(
|g(ε)
s,L(Si)− g̃(ε)

s,L(Si)|2
)

≤ 2C2 · bm−2
n · {ε2 + b2

nε} ≤ 2C2 · bm−2
n · ε.

(The term b2
nε is obtained by chaining the second and third inequalities of (B.8) and using

the fact that δ = ε and the uniform bound in (B.5). The last inequality follows because

bn → 0 as n → ∞.) We define ε̄ = ε1/2 and bound the last term by C3b
m−2
n ε̄2, for some

C3 > 0, because bn ≤ 1 from some large n on. The entropy bound in (B.11) as a function of

ε̄ remains the same except for a different constant C > 0 there.

Now by Theorem 6.8 of Massart (2007) and (B.11), there exist C1, C2 > 0 such that

sup
P∈P

E

[
sup

a,b:||a||≤δ1n,||b||≤δ2n,τ∈T ,x∈Sτ (ε)

|ζ∆
n,x,τ,k(a, b)− E[ζ∆

n,x,τ,k(a, b)]|

]

≤ C1

√
n

∫ sn

0

√
n ∧

{
− log

( ε
n

)}
dε+ C1(bn + sn) log n

≤ C2sn
√
n log n+ C2bn log n = O

(
δ2n

√
log n

n1/4hd/4

)
,
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where the last equality follows by the definitions of bn and sn in (B.13) and by Assumption

QR3(ii).

(ii) Define λτ,4n(Si;x) ≡ ∆x,τ,lk,i and Lk,1 ≡ {l̃τ (λτ,4n(·;x)) : τ ∈ T , x ∈ Sτ (ε)}, and Lk,2 ≡
{λτ,2n(·;x)λτ,3n(·;x) : τ ∈ T , x ∈ Sτ (ε)}. We write

ψn,x,τ,k = {ψn,x,τ,k − E [ψn,x,τ,k]}+ E [ψn,x,τ,k] .

The leading term is an empirical process indexed by the functions in Lk ≡ Lk,1 · Lk,2.

Approximating the indicator function in l̃τ by upper and lower Lipschitz functions and

following similar arguments in the proof of (i), we find that

sup
P∈P

logN[](ε,Lk, Lp(P )) ≤ C − C log ε+ C log n,

for some constant C > 0. Note that we can take a constant function C as an envelope of

Lk. Then we follow the proof of Lemma 2 to obtain that

E

[
sup

τ∈T ,x∈Sτ (ε)

‖{ψn,x,τ,k − E [ψn,x,τ,k]}‖

]
= O(

√
log n), uniformly in P ∈ P .

By using (B.3) and (B.4), we find that

E [ψn,x,τ,k] = O(hr+1).

Since
√
nhr+1 → 0, we obtain the desired result.

(iii) Recall the definition of gn,x,τ,k(Si; s, b, a) in the proof of Lemma QR1(i). We write

E[ζ∆
n,x,τ,k(a, b)] = n

∫ 1

0

E [gn,x,τ,k(Si; s, b, a)] ds.

Using change of variables, we rewrite∫ 1

0

E [gn,x,τ,k(Si; s, b, a)] ds = kP {Li = k|Xi} · φn(Xi; a, b),

where

φn(Xi; a, b) =

∫ (b+a)>ch,x,i/
√
nhd

a>ch,x,i/
√
nhd

{
Fτ,k (u− δn,τ,k(Xi;x)|Xi)

−Fτ,k (−δn,τ,k(Xi;x)|Xi)

}
du ·Kh,x,i.

By expanding the difference, we have

φn(Xi; a, b) =

∫ (b+a)>ch,x,i/
√
nhd

a>ch,x,i/
√
nhd

udu · fτ,k (−δn,τ,k(Xi;x)|Xi) ·Kh,x,i +Rn,x,i(a, b),

where Rn,x,i(a, b) denotes the remainder term in the expansion. As for the leading integral,∫ (b+a)>ch,x,i/
√
nhd

a>ch,x,i/
√
nhd

udu =
1

2nhd
{
b>ch,x,ic

>
h,x,i(b+ 2a)

}
.
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Hence, for any sequences an, bn, we can write E[ζ∆
n,x,τ,k(an, bn)] as

1

2
b>nh

−dE
[
P {Li = k|Xi} fτ,k (−δn,τ,k(Xi;x)|Xi) ch,x,ic

>
h,x,i ·Kh,x,i

]
(bn + 2an)

+nkE [P {Li = k|Xi}Rn,x,i(an, bn)]

=
1

2
b>nMn,τ,k(x)(bn + 2an) + nkE [P {Li = k|Xi}Rn,x,i(an, bn)] ,

where the last O(hr+1anbn) term is due to (B.3). We can bound

nk |E [P {Li = k|Xi}Rn,x,i(an, bn)]| ≤ C1nkE

[∫ (bn+an)>ch,x,i/
√
nhd

a>n ch,x,i/
√
nhd

u2du ·Kh,x,i

]
+O(hr+1anbn)

≤ C2bna
2
n

n1/2hd/2
+O(hr+1anbn),

where C1 > 0 and C2 > 0 are constants that do not depend on n or P ∈ P .

Lemma QR2. Suppose that Assumptions QR1-QR3 hold. Then, for each k ∈ NL,

sup
τ∈T ,x∈Sτ (ε)

∥∥∥√nhdH(γ̂τ,k(x)− γτ,k(x))−M−1
n,τ,k(x)ψn,x,τ,k

∥∥∥
= OP

(
log1/2 n

n1/4hd/4

)
, P-uniformly.

Proof of Lemma QR2. (i) Let

ũn,x,τ ≡ −M−1
n,τ,k(x)ψn,x,τ,k,(B.14)

ψ̃n,x,τ,k(b) ≡ b>ψn,x,τ,k + b>Mn,τ,k(x)b/2, and

ψ̃n,x,τ,k(a, b) ≡ ψ̃n,x,τ,k(a+ b)− ψ̃n,x,τ,k(a).

For any a ∈ R|Ar|, we can write

ψ̃n,x,τ,k(ũn,x,τ , a− ũn,x,τ ) = ψ̃n,x,τ,k(a)− ψ̃n,x,τ,k(ũn,x,τ )(B.15)

= (a− ũn,x,τ )>Mn,τ,k(x) (a− ũn,x,τ ) /2

≥ C1||a− ũn,x,τ ||2,

where C1 > 0 is a constant that does not depend on τ ∈ T , x ∈ Sτ (ε) or P ∈ P . The last

inequality uses Assumption QR2(ii) and the fact that K is a nonnegative map that is not

constant at zero.

Let

ûn,x,τ ≡
√
nhdH(γ̂τ,k(x)− γτ,k(x)),
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where x ∈ Sτ (ε) and τ ∈ T . Since ζn,x,τ,k(ũn,x,τ , b) is convex in b, we have for any 0 < δ ≤ l

and for any b ∈ R|Ar| such that ||b|| = 1,

(δ/l)ζn,x,τ,k(ũn,x,τ , lb) ≥ ζn,x,τ,k(ũn,x,τ , δb)(B.16)

≥ ψ̃n,x,τ,k(ũn,x,τ , δb)−∆n,k(δ),

where

∆n,k(δ) ≡ sup
b∈R|Ar |:||b||≤1

|ζn,x,τ,k(ũn,x,τ , δb)− ψ̃n,x,τ,k(ũn,x,τ , δb)|.

Therefore, if ||ûn,x,τ − ũn,x,τ || ≥ δ, we replace b by û∆
n,x,τ = (ûn,x,τ − ũn,x,τ )/||ûn,x,τ − ũn,x,τ ||

and l by ||ûn,x,τ − ũn,x,τ || in (B.14), and use (B.16) to obtain that

0 ≥ ζn,x,τ,k(ũn,x,τ , ||ûn,x,τ − ũn,x,τ ||û∆
n,x,τ )(B.17)

≥ ζn,x,τ,k(ũn,x,τ , δû
∆
n,x,τ )

≥ ψ̃n,x,τ,k(ũn,x,τ , δû
∆
n,x,τ )−∆n,k(δ)

≥ C1δ
2||û∆

n,x,τ ||2 −∆n,k(δ) = C1δ
2 −∆n,k(δ),

for all δ ≤ ||ûn,x,τ − ũn,x,τ ||, where the first inequality follows because ζn,x,τ,k(ũn,x,τ , ||ûn,x,τ −
ũn,x,τ ||b) is minimized at b = û∆

n,x,τ by the definition of local polynomial estimation, the

fourth inequality follows from (B.15), and the last equality follows because ||û∆
n,x,τ ||2 = 1.

We take large M > 0 and let

(B.18) δ1n = M
√

log n and δ2n =
M
√

log n

n1/4hd/4
.

If δ2n ≤ ||ûn,x,τ − ũn,x,τ ||, we have

C1δ
2
2n ≤ ∆n,k(δ2n),

from (B.17). We let

1n ≡ 1

{
sup

τ∈T ,x∈Sτ (ε)

||ũn,x,τ || ≤Mδ1n

}
.

Then we write

P

{
inf

τ∈T ,x∈Sτ (ε)
||ûn,x,τ − ũn,x,τ ||2 ≥ δ2

2n

}
≤ P

{
∆n,k(δ2n)1n ≥ δ2

2n

}
+ E [1− 1n] .
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Now, we show that the first probability vanishes as n → ∞. For each b ∈ R|Ar|, using the

definition of ψ̃n,x,τ,k(ũn,x,τ , b) = ψ̃n,x,τ,k(ũn,x,τ + b)− ψ̃n,x,τ,k(ũn,x,τ ), we write

ψ̃n,x,τ,k(ũn,x,τ , b) = ψ̃n,x,τ,k(ũn,x,τ + b)− ψ̃n,x,τ,k(ũn,x,τ )

= b>ψn,x,τ,k + (ũn,x,τ + b)>Mn,x,τ (ũn,x,τ + b)/2− ũ>n,x,τMn,x,τ ũn,x,τ/2

= b>ψn,x,τ,k + b>Mn,x,τb/2 + b>Mn,x,τ ũn,x,τ

= b>Mn,x,τb/2.

Therefore,

ζn,x,τ,k(ũn,x,τ , b)− ψ̃n,x,τ,k(ũn,x,τ , b) = ζ∆
n,x,τ,k(ũn,x,τ , b)− E

[
ζ∆
n,x,τ,k(ũn,x,τ , b)

]
+E

[
ζ∆
n,x,τ,k(ũn,x,τ , b)

]
− b>Mn,x,τb/2 + b>ψn,x,τ,k

= ζ∆
n,x,τ,k(ũn,x,τ , b)− E

[
ζ∆
n,x,τ,k(ũn,x,τ , b)

]
+E

[
ζ∆
n,x,τ,k(ũn,x,τ , b)

]
− b>Mn,x,τ (b+ 2ũn,x,τ )/2.

By Lemma QR1(i),

sup
τ∈T ,x∈Sτ (ε)

sup
b∈R|Ar |:||b||≤δ2n

∣∣ζ∆
n,x,τ,k(ũn,x,τ , b)− E

[
ζ∆
n,x,τ,k(ũn,x,τ , b)

]∣∣
= OP

(
δ2n

√
log n

n1/4hd/4
+
δ2n log n

n1/2hd/2

)
= OP

(
δ2n

√
log n

n1/4hd/4

)
,

by the definition in (B.18). And by Lemma QR1(iii),

sup
τ∈T ,x∈Sτ (ε)

sup
b∈R|Ar |:||b||≤δ2n

∣∣E [ζ∆
n,x,τ,k(ũn,x,τ , b)

]
− b>Mn,x,τ (b+ 2ũn,x,τ )/2

∣∣
= O

(
δ2n log n

n1/2hd/2
+ δ2n

√
log nhr+1

)
= O

(
δ2n log n

n1/2hd/2

)
,

by the definition in (B.18) and Assumption QR3(ii). Thus we conclude that

(B.19) |∆n,k(δ2n)| = OP

(
δ2n

√
log n

n1/4hd/4

)
,

where the last OP term is uniform over P ∈ P . We deduce from (B.19) that

sup
P∈P

P

{
∆n,k(δ2n)1

{
sup

τ∈T ,x∈Sτ (ε)

||ũn,x,τ || ≤ δ1n

}
≥ δ2

2n

}
→ 0 as n→∞

and as M ↑ ∞. The proof is completed because

sup
P∈P

P

{
sup

τ∈T ,x∈Sτ (ε)

||ũn,x,τ || > δ1n

}
→ 0,
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as n→∞ and as M ↑ ∞ by Lemma QR1(ii). Thus, we conclude that

||ûn,x,τ − ũn,x,τ || = OP

( √
log n

n1/4hd/4

)
,

uniformly in P ∈ P .

For z = (x, τ) ∈ Z, define ∆∗x,τ,lk,i ≡ Y ∗l,i − γ>τ,k(x)c(X∗i − x),

ζ∗n,x,τ,k(a, b) ≡
n∑
i=1

1{Li = k}
k∑
l=1

 lτ

(
∆∗x,τ,lk,i − (a+ b)>c∗h,x,i/

√
nhd
)

−lτ
(

∆∗x,τ,lk,i − b>c∗h,x,i/
√
nhd
) Kh,x (X∗i ) ,

ψ∗n,x,τ,k ≡ − 1√
nhd

n∑
i=1

1{Li = k}
k∑
l=1

l̃τ
(
∆∗x,τ,lk,i

)
· c∗h,x,i ·K∗h,x,i,

where c∗h,x,i and K∗h,x,i are ch,x,i and Kh,x,i except that Xi is replaced by X∗i . We also define

ζ∆∗
n,x,τ,k(a, b) ≡ ζ∗n,x,τ,k(a, b) − b>ψ∗n,x,τ,k. The following lemma is the bootstrap analogue of

Lemma QR1.

Lemma QR3. Suppose that Assumptions QR1-QR3 hold. Let {δ1n}∞n=1 and {δ2n}∞n=1 be

positive sequences such that δ1n = O(1) and δ2n ≤ δ1n from some large n on. Then for each

k ∈ NL, the following holds uniformly over P ∈ P:

(i)

E∗

[
sup

a,b:||a||≤δ1n,||b||≤δ2n
sup

τ∈T ,x∈Sτ (ε)

|ζ∆∗
n,x,τ,k(a, b)− E∗[ζ∆∗

n,x,τ,k(a, b)]|

]

= OP

(
δ2n

√
log n

n1/4hd/4

)
.

(ii)

sup
a,b:||a||≤δ1n,||b||≤δ2n

sup
τ∈T ,x∈Sτ (ε)

∣∣∣∣E∗[ζ∆∗
n,x,τ,k(a, b)]−

b>Mn,τ,k(x)(b+ 2a)

2

∣∣∣∣
= OP

(
δ2n

√
log n

n1/4hd/4
+ δ2nδ1nh

r+1

)
.

Proof of Lemma QR3. (i) Similarly as in the proof of Lemma QR1(i), we rewrite ζ∆∗
n,x,τ,k(a, b)−

E∗[ζ∆∗
n,x,τ,k(a, b)] as

n∑
i=1

{Gn,x,τ,k(S
∗
i ; a, b)− E [Gn,x,τ,k(S

∗
i ; a, b)]} ,

where S∗i = (Y ∗>i , X∗>i )>. Let π = (x, τ, s, a, b) and Πn = S(ε)×T × [0, 1]× [−δ1n, δ1n]r+1×
[−δ2n, δ2n]r+1, where S(ε) = {(x, τ) ∈ X × T : x ∈ Sτ (ε)}. Using Proposition 2.5 of Giné



GENERAL FUNCTIONAL INEQUALITIES 91

(1997),

E

[
E∗

[
sup

a,b:||a||≤δ1n,||b||≤δ2n
sup

τ∈T ,x∈Sτ (ε)

|ζ∆∗
n,x,τ,k(a, b)− E∗[ζ∆∗

n,x,τ,k(a, b)]|

]]

≤ CE

[
ENi

(
sup
π∈Πn

∣∣∣∣∣
n∑
i=1

(Ni − 1)

{
gn,x,τ,k(Si; s, b, a)− 1

n

n∑
i=1

gn,x,τ,k(Si; s, b, a)

}∣∣∣∣∣
)]

,

where {Ni}ni=1 are i.i.d. Poisson random variables with mean 1 independent of {(Y >i , X>i )>}∞i=1,

ENi denotes expectation only with respect to the distribution of {Ni}ni=1, and gn(·; s, b, a)

is as defined in the proof of Lemma QR1(i). Here the constant C > 0 does not depend on

P ∈ P . We can bound the above by

CE

[
sup
π∈Πn

∣∣∣∣∣
n∑
i=1

(Ni − 1) (gn,x,τ,k(Si; s, b, a)− E [gn,x,τ,k(Si; s, b, a)])

∣∣∣∣∣
]

+CE

(∣∣∣∣∣
n∑
i=1

(Ni − 1)

∣∣∣∣∣
)
× E

(
sup
π∈Πn

∣∣∣∣∣ 1n
n∑
i=1

gn,x,τ,k(Si; s, b, a)− E [gn,x,τ,k(Si; s, b, a)]

∣∣∣∣∣
)
.

The leading expectation is bounded by O(δ2n

√
log n/(n1/4hd/4)) similarly as in the proof of

Lemma QR1(i). And the product of the two expectations in the second term is bounded by

O(
√
n)× E

(
sup
π∈Πn

∣∣∣∣∣ 1n
n∑
i=1

{gn,x,τ,k(Si; s, b, a)− E [gn,x,τ,k(Si; s, b, a)]}

∣∣∣∣∣
)

= O
(
δ2n

√
log n/(n1/4hd/4)

)
,

where the constant C > 0 does not depend on P ∈ P , and the last equality follows similarly

as in the proof of Lemma QR1(i).

(ii) Note that

(B.20) E∗[ζ∆∗
n,x,τ,k(a, b)] = E∗[ζ∆∗

n,x,τ,k(a, b)]− E[ζ∆
n,x,τ,k(a, b)] + E[ζ∆

n,x,τ,k(a, b)].

The difference between the first two terms on the right hand side is

OP

(
δ2n

√
log n

n1/4hd/4
+
δ2n log n

n1/2hd/2

)
= OP

(
δ2n

√
log n

n1/4hd/4

)
,

uniformly in P ∈ P , as we have seen in (i). We apply Lemma QR1(iii) to the last expectation

in (B.20) to obtain the desired result.
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Lemma QR4. Suppose that Assumptions QR1-QR3 hold. Then for each k ∈ NJ ,

sup
(x,τ)∈X1×T

∥∥∥√nhdH(γ̂∗τ,k(x)− γ̂τ,k(x))−M−1
n,τ,k(x)ψ∗n,x,τ,k

∥∥∥
= OP ∗

(
log1/2 n

n1/4hd/4

)
, P-uniformly.

Proof of Lemma QR4. The proof uses Lemma QR3 in the same way as the proof of Lemma

QR2 uses Lemma QR1. Details are omitted.

Proof of Theorem AUC. First, let us turn to Assumption A1. Since
√
nhd × oP (n−1/2) =

oP (hd/2) by Assumption AUC-4, it suffices to consider v̂τ,2(x) that uses b instead of b̂. Hence

By Lemma QR2, the asymptotic linear representation in Assumption A1 follows. The error

rate oP (
√
hd) is satisfied, because

h−d/2

(
log1/2 n

n1/4hd/4

)
= n−1/4h−3d/4 log1/2 n→ 0,

by Assumption AUC-3(ii) and the condition r > 3d/2− 1. Assumption A2 follows because

both βn,x,τ,1(Si, z) and βn,x,τ,2(Si, z) have a multiplicative component of K(z) which has a

compact support by Assumption AUC-3(i). As for Assumption A3, we use Lemma 2 in

Appendix A. First define

ex,τ,k,li ≡ 1 {Li = k} l̃τ
(
Bli − γ>τ,k(x) ·H · c

(
Xi − x
h

))
and

ξx,τ,k,i ≡ e>1 M
−1
n,τ,k(x)c

(
Xi − x
h

)
K

(
Xi − x
h

)
First observe that for each fixed x2 ∈ Rd, τ2 ∈ T , and λ > 0,

E

[
sup

||x2−x3||+||τ2−τ3||≤λ

(
αn,x2,τ2,2

(
Yi,
Xi − x2

h

)
− αn,x3,τ3,2

(
Yi,
Xi − x3

h

))2
]

(B.21)

≤ 2
k∑
l=1

E

[
E

[
sup

||x2−x3||+||τ2−τ3||≤λ
(ex2,τ2,k,li − ex3,τ3,k,li)

2 |Xi

]
ξ2
x2,τ2,k,i

]

+2
k∑
l=1

E

[
sup

||x2−x3||+||τ2−τ3||≤λ
(ξx2,τ2,k,i − ξx3,τ3,k,i)

2

]
.

Using Lipschitz continuity of the conditional density of Bli given Li = k and Xi = x in

(x, τ) (Assumption AUC-2(iii)) and Lipschitz continuity of γτ,k(x) in (x, τ) (Assumption

AUC-1(i)), we find that the first term is bounded by Ch−s1λ for some C > 0 and s1 > 0.

Since

Mn,τ,k(x) = kP {Li = k|Xi = x} fτ,k(0|x)f(x)

∫
K(t)c(t)c(t)>dt+ o(1),
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we find that M−1
n,τ,k(x) is Lipschitz continuous in (x, τ) by Assumptions AUC-1(i), AUC-

2(iii)(iv) and AUC-3(i). Hence the last term in (B.21) is also bounded by Ch−s2λ2 for some

C > 0 and s2 > 0. Therefore, the condition in (4.11) holds with

bn,ij(x, τ) = αn,x,τ,2

(
Yi,
Xi − x
h

)
.

Also, observe that

E

[∣∣∣∣αn,x,τ,2(Yi,Xi − x
h

)∣∣∣∣4
]
≤ C,

because αn,x,τ,2(·, ·) is uniformly bounded. We also obtain the same result for αn,x,τ,3(·, ·).
Thus the conditions of Lemma 2 are satisfied with bn,ij(x, τ) taken to be βn,x,τ,1(Yi, (Xi−x)/h)

or βn,x,τ,2(Yi, (Xi − x)/h). Now Assumption 3 follows from Lemma 2. Since we are taking

σ̂τ,j(x) = 1, it suffices to take σn,τ,j(x) = 1 in Assumption A5. Assumption A6(i) is satisfied

because βn,x,τ,j is bounded. Assumption B1 follows by Lemma QR4. Assumption B4 follows

by taking M →∞, because βn,x,τ,j is bounded.

Appendix C. Proofs of Auxiliary Results for Lemmas A2(i), Lemma A4(i),

and Theorem 1

The eventual result in this appendix is Lemma C9 which is used to show the asymptotic

normality of the location-scale normalized representation of θ̂ and its bootstrap version,

and to establish its asymptotic behavior in the degenerate case. For this, we first prepare

Lemmas C1-C3. To obtain uniformity that covers the case of degeneracy, this paper uses

a method of regularization, where the covariance matrix of random quantities is added by

a diagonal matrix of small diagonal elements. The regularized random quantities having

this covariance matrix does not suffer from degeneracy in the limit, even when the original

quantities have covariate matrix that is degenerate in the limit. Thus, for these regularized

quantities, we can obtain uniform asymptotic theory using an appropriate Berry-Esseen-type

bound. Then, we need to deal with the difference between the regularized covariance matrix

and the original one. Lemma C1 is a simple result of linear algebra that is used to control

this discrepancy.

Lemma C2 has two sub-results from which one can deduce a uniform version of Levy’s

continuity theorem. We have not seen any such results in the literature or monographs, so we

provide its full proof. The result has two functions. First, the result enables one to deduce

convergence in distribution in terms of convergence of cumulative distribution functions and

convergence in distribution in terms of convergence of characteristic functions in a manner

that is uniform over a given collection of probabilities. The original form of convergence

in distribution due to the Poissonization method in Giné, Mason, and Zaitsev (2003) is
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convergence of characteristic functions. Certainly pointwise in P , this convergence implies

convergence of cumulative distribution functions, but it is not clear under what conditions

this implication is uniform over a given class of probabilities. Lemma C2 essentially clarifies

this issue.

Lemma C3 is an extension of de-Poissonization lemma that appeared in Beirlant and

Mason (1995). The proof is based on the proof of their same result in Giné, Mason, and

Zaitsev (2003), but involves a substantial modification, because unlike their results, we need a

version that holds uniformly over P ∈ P . This de-Poissonization lemma is used to transform

the asymptotic distribution theory for the Poissonized version of the test statistic into that

for the original test statistic.

Lemmas C4-C5 establish some moment bounds for a normalized sum of independent quan-

tities. This moment bound is later used to control a Berry-Esseen-type bound, when we

approximate those sums by corresponding centered normal random vectors.

Lemma C6 obtains an approximate version for the scale normalizer σn. The approximate

version involves a functional of a Gaussian random vector, which stems from approximating

a normalized sum of independent random vectors by a Gaussian random vector through

using a Berry-Esseen-type bound. For this result, we use the regularization method that

we mentioned before. Due to the regularization, we are able to cover the degenerate case

eventually.

Lemma C7 is an auxiliary result that is used to establish Lemma C9 in combination with

the de-Poissonization lemma (Lemma C3). And Lemma C8 establishes asymptotic normality

of the Poissonized version of the test statistics. The asymptotic normality for the Poissonized

statistic involves the discretization of the integrals, thereby, reducing the integral to a sum

of 1-dependent random variables, and then applies the Berry-Esseen-type bound in Shergin

(1993). Note that by the moment bound in Lemmas C4-C5 that is uniform over P ∈ P , we

obtain the asymptotic approximation that is uniform over P ∈ P . The lemma also presents

a corresponding result for the degenerate case.

Finally, Lemma C9 combines the asymptotic distribution theory for the Poissonized test

statistic in Lemma C7 with the de-Poissonization lemma (Lemma C3) to obtain the asymp-

totic distribution theory for the original test statistic. The result of Lemma C9 is used to

establish the asymptotic normality result in Lemma A7.

The following lemma provides some inequality of matrix algebra.

Lemma C1. For any J × J positive semidefinite symmetric matrix Σ and any ε > 0,∥∥∥(Σ + εI)1/2 − Σ1/2
∥∥∥ ≤ √Jε,

where ‖A‖ =
√
tr(AA′) for any square matrix A.
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Remark 1. The main point of Lemma C1 is that the bound
√
Jε is independent of the matrix

Σ. Such a uniform bound is crucially used for the derivation of asymptotic validity of the

test uniform in P ∈ P .

Proof of Lemma C1. First observe that

tr{(Σ + εI)1/2 − Σ1/2}2(C.1)

= tr (2Σ + εI)− 2tr((Σ + εI)1/2 Σ1/2).

Since Σ ≤ Σ + εI, we have Σ1/2 ≤ (Σ + εI)1/2 . For any positive semidefinite matri-

ces A and B, tr(AB) ≥ 0 (see e.g. Abadir and Magnus (2005)). Therefore, tr(Σ) ≤
tr((Σ + εI)1/2 Σ1/2). From (C.1), we find that

tr (2Σ + εI)− 2tr((Σ + εI)1/2 Σ1/2)

≤ tr (2Σ + εI)− 2tr(Σ) = εJ.

The following lemma can be used to derive a version of Levy’s Continuity Theorem that

is uniform in P ∈ P .

Lemma C2. Suppose that Vn ∈ Rd is a sequence of random vectors and V ∈ Rd is a random

vector. We assume without loss of generality that Vn and V live on the same measure space

(Ω,F), and P is a given collection of probabilities on (Ω,F). Furthermore define

ϕn(t) ≡ E
[
exp(it>Vn)

]
, ϕ(t) ≡ E

[
exp(it>V )

]
,

Fn(t) ≡ P {Vn ≤ t} , and F (t) ≡ P {V ≤ t} .

(i) Suppose that the distribution P ◦ V −1 is uniformly tight in {P ◦ V −1 : P ∈ P}. Then for

any continuous function f on Rd taking values in [−1, 1] and for any ε ∈ (0, 1], we have

sup
P∈P
|Ef(Vn)− Ef(V )| ≤ ε−dCd sup

P∈P
sup
t∈Rd

|Fn(t)− F (t)|+ 4ε,

where Cd > 0 is a constant that depends only on d.

(ii) Suppose that supP∈P E||V ||2 <∞. If

sup
P∈P

sup
u∈Rd

|ϕn(u)− ϕ(u)| → 0, as n→∞,

then for each t ∈ Rd,

sup
P∈P
|Fn(t)− F (t)| → 0, as n→∞.
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On the other hand, if for each t ∈ Rd,

sup
P∈P
|Fn(t)− F (t)| → 0, as n→∞,

then for each u ∈ Rd,

sup
P∈P
|ϕn(u)− ϕ(u)| → 0, as n→∞.

Proof of Lemma C2. (i) The proof uses arguments in the proof of Lemma 2.2 of van der

Vaart (1998). Take a large compact rectangle B ⊂ Rd such that P{V /∈ B} < ε. Since

the distribution of V is tight uniformly over P ∈ P , we can take such B independently of

P ∈ P . Take a partition B = ∪Jεj=1Bj and points xj ∈ Bj such that Jε ≤ Cd,1ε
−d, and

|f(x)− fε(x)| < ε for all x ∈ B, where Cd,1 > 0 is a constant that depends only on d, and

fε(x) ≡
Jε∑
j=1

f(xj)1{x ∈ Bj}.

Thus we have

|Ef(Vn)− Ef(V )| ≤ |Ef(Vn)− Efε(Vn)|+ |Efε(Vn)− Efε(V )|+ |Efε(V )− Ef(V )|

≤ 2ε+ P{Vn /∈ B}+ P{V /∈ B}+ |Efε(Vn)− Efε(V )|

≤ 4ε+ |P{Vn /∈ B} − P{V /∈ B}|+ |Efε(Vn)− Efε(V )|

= 4ε+ |P{Vn ∈ B} − P{V ∈ B}|+ |Efε(Vn)− Efε(V )| .

The second inequality following by P{V /∈ B} < ε. As for the last term, we let

bn ≡ sup
P∈P

sup
t∈Rd

|Fn(t)− F (t)| ,

and observe that

|Efε(Vn)− Efε(V )| ≤
Jε∑
j=1

|P{Vn ∈ Bj} − P{V ∈ Bj}| |f(xj)|

≤
Jε∑
j=1

|P{Vn ∈ Bj} − P{V ∈ Bj}| ≤ Cd,2bnJε,

where Cd,2 > 0 is a constant that depends only on d. The last inequality follows because

for any rectangle Bj, we have |P{Vn ∈ Bj} − P{V ∈ Bj}| ≤ Cd,2bn for some Cd,2 > 0. We

conclude that

|Ef(Vn)− Ef(V )| ≤ 4ε+ Cd,2
(
Cd,1ε

−d + 1
)
bn ≤ 4ε+ Cdε

−dbn,

where Cd = Cd,2{Cd,1 + 1}. The last inequality follows because ε ≤ 1.
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(ii) We show the first statement. We first show that under the stated condition, the sequence

{P ◦V −1
n }∞n=1 is uniformly tight uniformly over P ∈ P . That is, for any ε > 0, we show there

exists a compact set B ⊂ Rd such that for all n ≥ 1,

sup
P∈P

P
{
Vn ∈ Rd\B

}
< ε.

For this, we assume d = 1 without loss of generality, let Pn denote the distribution of Vn and

consider the following: (using arguments in the proof of Theorem 3.3.6 of Durrett (2010))

P

{
|Vn| >

2

u

}
≤ 2

∫
|x|>2/u

(
1− 1

|ux|

)
dPn(x)

≤ 2

∫ (
1− sinux

ux

)
dPn(x)

=
1

u

∫ u

−u
(1− ϕn(t)) dt.

Define ēn ≡ supP∈P supt∈R |ϕn(t)− ϕ(t)|. Using Theorem 3.3.8 of Durrett (2010), we bound

the last term by

2ēn +
1

u

∫ u

−u
(1− ϕ(t)) dt ≤ 2ēn +

∣∣∣∣1u
∫ u

−u

(
−itEV +

t2EV 2

2

)
dt

∣∣∣∣
+2

∣∣∣∣1u
∫ u

−u
t2EV 2dt

∣∣∣∣ .
The supremum of the right hand side terms over P ∈ P vanishes as we send n → ∞ and

then u ↓ 0, by the assumption that supP∈PE|V |2 <∞. Hence the sequence {P ◦ V −1
n }∞n=1 is

uniformly tight uniformly over P ∈ P .

Now, for each t ∈ Rd, there exists a subsequence {n′} ⊂ {n} and {Pn′} ⊂ P such that

(C.2) limsup
n→∞

sup
P∈P
|Fn(t)− F (t)| = lim

n′→∞
|Fn′(t;Pn′)− F (t;Pn′)| ,

where

Fn(t;Pn) = Pn {Vn ≤ t} and F (t;Pn) = Pn {V ≤ t} .

(Hence, F (t;Pn) is the cdf of distribution Pn ◦ V −1.)

Since {Pn′ ◦ V −1
n′ }∞n′=1 is uniformly tight (as shown above), there exists a subsequence

{n′k} ⊂ {n′} such that

(C.3) Fn′k(t;Pn′k)→ F ∗(t), as k →∞,

for some cdf F ∗. Also {Pn′ ◦ V −1}∞n′=1 is uniformly tight (because supP∈P E||V ||2 < ∞),

{Pn′k ◦V
−1}∞k=1 is uniformly tight and hence there exists a further subsequence {n′kj} ⊂ {n

′
k}
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such that

(C.4) F (t;Pn′kj
)→ F ∗∗(t), as j →∞,

for some cdf F ∗∗. Since {n′kj} ⊂ {n
′
k}, we have from (C.3),

(C.5) Fn′kj
(t;Pn′kj

)→ F ∗(t), as j →∞.

By the condition of (ii), we have

(C.6)
∣∣∣ϕn′kj (u;Pn′kj

)− ϕ(u;Pn′kj
)
∣∣∣→ 0, as j →∞,

where

ϕn (u;Pn) = EPn (exp (iuVn)) and ϕ (u;Pn) = EPn (exp (iuV )) ,

and EPn represents expectation with respect to the probability measure Pn. Furthermore,

by (C.4) and (C.5), and Levy’s Continuity Theorem,

lim
j→∞

ϕn′kj
(u;Pn′kj

) and lim
j→∞

ϕ(u;Pn′kj
)

exist and coincide by (C.6). Therefore, for all t ∈ Rd,

F ∗∗(t) = F ∗(t).

In other words,

lim
n′→∞

|Fn′ (t;Pn′)− F (t;Pn′)| = lim
n′→∞

∣∣∣Fn′kj (t;Pn′kj)− F (t;Pn′kj)∣∣∣ = 0.

Therefore, the first statement of (ii) follows by the last limit applied to (C.2).

Let us turn to the second statement. Again, we show that {P ◦ V −1
n }∞n=1 is uniformly tight

uniformly in P ∈ P . Note that given a large rectangle B,

P
{
Vn ∈ Rd\B

}
≤
∣∣P {Vn ∈ Rd\B

}
− P

{
V ∈ Rd\B

}∣∣+ P
{
V ∈ Rd\B

}
.

There exists N such that for all n ≥ N , the first difference vanishes as n→∞, uniformly in

P ∈ P , by the condition of the lemma. As for the second term, we bound it by

P {Vj > aj, j = 1, · · ·, d} ≤
d∑
j=1

EV 2
j

aj
,

where Vj is the j-th entry of V and B = ×dj=1[aj, bj], bj < 0 < aj. By taking aj’s large enough,

we make the last bound arbitrarily small independently of P ∈ P , because supP∈PEV 2
j <∞

for each j = 1, · · ·, d. Therefore, {P ◦ V −1
n }∞n=1 is uniformly tight uniformly in P ∈ P .
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Now, we turn to the proof of the second statement of (ii). For each u ∈ Rd, there exists

a subsequence {n′} ⊂ {n} and {Pn′} ⊂ P such that

limsup
n→∞

sup
P∈P
|ϕn(u)− ϕ(u)| = lim

n′→∞
|ϕn′(u;Pn′)− ϕ(u;Pn′)| ,

where ϕn(u;Pn) = EPn exp(iu>Vn) and ϕ(u;Pn) = EPn exp(iu>V ). By the condition in the

second statement of (ii), for each t ∈ Rd,

(C.7) lim
n′→∞

|Fn′ (t;Pn′)− F (t;Pn′)| = 0.

Since {Pn′ ◦ V −1
n′ }∞n′=1 is uniformly tight (as shown above), there exists a subsequence

{n′k} ⊂ {n′} such that Fn′k(t;Pn′k) → F ∗(t), as k → ∞, and hence by Levy’s Continuity

Theorem, we have ϕn′k(u;Pn′k) → ϕ∗(u), as k → ∞. Similarly, we also have ϕ(u;Pn′k) →
ϕ∗∗(u), as k →∞. By (C.7), we have F ∗(t) = F ∗∗(t) and ϕ∗(u) = ϕ∗∗(u). Therefore,

lim
n′→∞

|ϕn′ (u;Pn′)− ϕ (u;Pn′)| = lim
n′→∞

∣∣∣ϕn′kj (u;Pn′kj

)
− ϕ

(
u;Pn′kj

)∣∣∣ = 0.

Thus we arrive at the desired result.

The following lemma offers a version of the de-Poissonization lemma of Beirlant and Mason

(1995) (see Theorem 2.1 on page 5). In contrast to the result of Beirlant and Mason (1995),

the version here is uniform in P ∈ P .

Lemma C3. Let N1,n(α) and N2,n(α) be independent Poisson random variables with N1,n(α)

being Poisson (n(1−α)) and N2,n(α) being Poisson (nα), where α ∈ (0, 1). Denote Nn(α) =

N1,n(α) +N2,n(α) and set

Un(α) =
N1,n(α)− n(1− α)√

n
and Vn(α) =

N2,n(α)− nα√
n

.

Let {Sn}∞n=1 be a sequence of random variables and P be a given set of probabilities P on a

measure space on which (Sn, Un(αP ), Vn(αP )) lives, where αP ∈ (0, 1) is a quantity that may

depend on P ∈ P and for some ε > 0,

(C.8) ε ≤ inf
P∈P

αP ≤ sup
P∈P

αP ≤ 1− ε.

Furthermore, assume that for each n ≥ 1, the random vector (Sn, Un(αP )) is independent

of Vn(αP ) with respect to each P ∈ P. Let for t1, t2 ∈ R2,

bn,P (t1, t2;σP ) ≡
∣∣P {Sn ≤ t1, Un(αP ) ≤ t2} − P{σPZ1 ≤ t1,

√
1− αPZ2 ≤ t2}

∣∣ ,
where Z1 and Z2 are independent standard normal random variables and σ2

P > 0 for each

P ∈ P. (Note that infP∈P σ
2
P is allowed to be zero.)



100 LEE, SONG, AND WHANG

(i) As n→∞,

sup
P∈P

sup
t∈R

∣∣∣∣E[exp(itSn)|Nn(αP ) = n]− exp

(
−σ

2
P t

2

2

)∣∣∣∣
≤ 2ε+

(
4Cd sup

P∈P
an,P (ε)

)√
2π

ε
,

where an,P (ε) ≡ ε−dbn,P + ε, bn,P ≡ supt1,t2∈R bn,P (t1, t2;σP ), and ε is the constant in (C.8).

(ii) Suppose further that for all t1, t2 ∈ R, as n→∞,

sup
P∈P

bn,P (t1, t2; 0)→ 0.

Then, for all t ∈ R, we have as n→∞,

sup
P∈P
|E[exp(itSn)|Nn(αP ) = n]− 1| → 0.

Remark 2. While the proof of Lemma C3 follows that of Lemma 2.4 of Giné, Mason, and

Zaitsev (2003), it is worth noting that in contrast to Lemma 2.4 of Giné, Mason, and Zaitsev

(2003) or Theorem 2.1 of Beirlant and Mason (1995), Lemma C3 gives an explicit bound for

the difference between the conditional characteristic function of Sn given Nn(αP ) = n and

the characteristic function of N(0, σ2
P ). Under the stated conditions, (in particular (C.8)),

the explicit bound is shown to depend on P ∈ P only through bn,P . Thus in order to obtain

a bound uniform in P ∈ P , it suffices to control αP and bn,P uniformly in P ∈ P .

Proof of Lemma C3. (i) Let φn,P (t, u) = E[exp(itSn + iuUn(αP ))] and

φP (t, u) = exp(−(σ2
P t

2 + (1− αP )u2)/2).

By the condition of the lemma and Lemma C2(i), we have for any ε > 0,

|φn,P (t, u)− φP (t, u)| ≤ (ε−dCdbn,P + 4ε)(C.9)

≤ 4ε−dCdbn,P + 4ε = 4Cdan,P (ε).

Note that an,P (ε) depends on P ∈ P only through bn,P .

Following the proof of Lemma 2.4 of Giné, Mason, and Zaitsev (2003), we have

ψn,P (t) = E[exp(itSn)|Nn(αP ) = n]

=
1√
2π

(1 + o(1))

∫ π
√
n

−π
√
n

φn,P (t, v)E [exp(ivVn(αP ))] dv,

uniformly over P ∈ P . Note that the equality comes after applying Sterling’s formula to

2πP{Nn(αP ) = n} and change of variables from u to v/
√
n. (See the proof of Lemma 2.4 of

Giné, Mason, and Zaitsev (2003).) The distribution of Nn(αP ), being Poisson (n), does not

depend on the particular choice of αP ∈ (0, 1), and hence the o(1) term is o(1) uniformly
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over t ∈ R and over P ∈ P . We follow the proof of Theorem 3 of Feller (1966, p.517) to

observe that there exists n0 > 0 such that uniformly over α ∈ [ε, 1− ε],{∫ π
√
n

−π
√
n

∣∣E exp(ivVn(α))− exp(−αv2/2)
∣∣ dv +

∫
|v|>π

√
n

exp
(
−αv2/2

)
dv

}
< ε,

for all n > n0. Note that the distribution of Vn(αP ) depends on P ∈ P only through

αP ∈ [ε, 1− ε] and ε does not depend on P . Since there exists n1 such that for all n > n1,

sup
P∈P

∫
|v|>π

√
n

exp
(
−αPv2/2

)
dv < ε,

the previous inequality implies that for all n > max{n0, n1},

sup
P∈P

∫ π
√
n

−π
√
n

∣∣φn,P (t, u)
(
E exp(iuVn(αP ))− exp(−αPu2/2)

)∣∣ du(C.10)

≤ sup
P∈P

∫ π
√
n

−π
√
n

(
sup
P∈P
|φn,P (t, u)|

)
|E exp(iuVn(αP ))− exp(−αPu2/2)|du

≤ sup
P∈P

∫ π
√
n

−π
√
n

|E exp(iuVn(αP ))− exp(−αPu2/2)|du ≤ ε.

By (C.9) and (C.10),

sup
P∈P

∣∣∣∣∣
∫ π

√
n

−π
√
n

φn,P (t, u)E [exp(iuVn(αP ))] du−
∫ π

√
n

−π
√
n

φP (t, u) exp
(
−αPu2/2

)
du

∣∣∣∣∣
≤ sup

P∈P
sup

α∈[ε,1−ε]

∫ π
√
n

−π
√
n

∣∣φn,P (t, u)
(
E exp(iuVn(α))− exp(−αu2/2)

)∣∣ du
+

∫ π
√
n

−π
√
n

sup
P∈P

sup
α∈[ε,1−ε]

|φn,P (t, u)− φP (t, u)| exp(−αu2/2)du

≤ ε+

(
4Cd sup

P∈P
an,P (ε)

)
sup

α∈[ε,1−ε]

∫ π
√
n

−π
√
n

exp(−αu2/2)du

≤ ε+

(
4Cd sup

P∈P
an,P (ε)

)
sup

α∈[ε,1−ε]

√
2π

α
= ε+

(
4Cd sup

P∈P
an,P (ε)

)√
2π

ε

as n→∞. Since

exp

(
−σ

2
P t

2

2

)
=

1√
2π

∫ ∞
−∞

φP (t, u) exp

(
−αPu

2

2

)
du,
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and from some large n on that does not depend on P ∈ P ,∣∣∣∣∣
∫ ∞
−∞

φP (t, u) exp

(
−αPu

2

2

)
du−

∫ π
√
n

−π
√
n

φP (t, u) exp

(
−αPu

2

2

)
du

∣∣∣∣∣
= exp

(
−σ

2
P t

2

2

) ∣∣∣∣∣
∫ ∞
−∞

exp

(
−u

2

2

)
du−

∫ π
√
n

−π
√
n

exp

(
−u

2

2

)
du

∣∣∣∣∣ < ε,

we conclude that for each t ∈ R,∣∣∣∣ψn,P (t)− exp

(
−σ

2
P t

2

2

)∣∣∣∣ ≤ 2ε+

(
4Cd sup

P∈P
an,P (ε)

)√
2π

ε
,

as n → ∞. Since the right hand side does not depend on t ∈ R and P ∈ P , we obtain the

desired result.

(ii) By the condition of the lemma and Lemma C2(ii), we have for any t, u ∈ R,

sup
P∈P
|φn,P (t, u)− φP (0, u)| → 0,

as n→∞. The rest of the proof is similar to that of (i). We omit the details.

Define for x ∈ X , τ1, τ2 ∈ T , and j, k ∈ NJ ,

kn,τ,j,m(x) ≡ 1

hd
E

[∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣m] .
Lemma C4. Suppose that Assumption A6(i) holds. Then for all m ∈ [2,M ], (with M > 0

being the constant that appears in Assumption A6(i)), there exists C1 ∈ (0,∞) that does not

depend on n such that for each j ∈ NJ ,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

kn,τ,j,m(x) ≤ C1.

Proof of Lemma C4. The proof can be proceeded by using Assumption A6(i) and following

the proof of Lemma 4 of Lee, Song, and Whang (2013).

Let N be a Poisson random variable with mean n and independent of (Y >i , X
>
i )∞i=1.

Also, let βn,x,τ (Yi, (Xi − x)/h) be the J-dimensional vector whose j-th entry is equal to

βn,x,τ,j(Yij, (Xi − x)/h). We define

zN,τ (x) ≡ 1

nhd

N∑
i=1

βn,x,τ

(
Yi,

Xi − x
h

)
− 1

hd
Eβn,x,τ

(
Yi,

Xi − x
h

)
and

zn,τ (x) ≡ 1

nhd

n∑
i=1

βn,x,τ

(
Yi,

Xi − x
h

)
− 1

hd
Eβn,x,τ

(
Yi,

Xi − x
h

)
.
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Let N1 be a Poisson random variable with mean 1, independent of (Y >i , X
>
i )∞i=1. Define

qn,τ (x) ≡ 1√
hd

∑
1≤i≤N1

{
βn,x,τ

(
Yi,

Xi − x
h

)
− Eβn,x,τ

(
Yi,

Xi − x
h

)}
and

q̄n,τ (x) ≡ 1√
hd

{
βn,x,τ

(
Yi,

Xi − x
h

)
− Eβn,x,τ

(
Yi,

Xi − x
h

)}
.

Lemma C5. Suppose that Assumption A6(i) holds. Then for any m ∈ [2,M ] (with M > 0

being the constant in Assumption A6(i))

sup
(x,τ)∈S

sup
P∈P

E [||qn,τ (x)||m] ≤ C̄1h
d(1−(m/2)) and(C.11)

sup
(x,τ)∈S

sup
P∈P

E [||q̄n,τ (x)||m] ≤ C̄2h
d(1−(m/2)),

where C̄1, C̄2 > 0 are constants that depend only on m.

If furthermore, lim supn→∞ n
−(m/2)+1hd(1−(m/2)) < C for some constant C > 0, then

sup
(x,τ)∈S

sup
P∈P

E
[
||n1/2hd/2zN,τ (x)||m

]
≤

(
15m

logm

)m
max

{
C̄1, 2C̄1C

}
and(C.12)

sup
(x,τ)∈S

sup
P∈P

E
[
||n1/2hd/2zn,τ (x)||m

]
≤

(
15m

logm

)m
max

{
C̄2, 2C̄2C

}
,

where C̄1, C̄2 > 0 are the constants that appear in (C.11).

Proof of Lemma C5. Let qn,τ,j(x) be the j-th entry of qn,τ (x). For the first statement of the

lemma, it suffices to observe that for some positive constants C1 and C̄,

(C.13) sup
(x,τ)∈S

sup
P∈P

E [|qn,τ,j(x)|m] ≤ C1h
dkn,τ,j,m
hdm/2

≤ C̄hd(1−(m/2)),

where the first inequality uses the definition of kn,τ,j,m, and the last inequality uses Lemma

C4 and the fact that m ∈ [2,M ]. The second statement in (C.11) follows similarly.

We consider the statements in (C.12). We consider the first inequality in (C.12). Let

zN,τ,j(x) be the j-th entry of zN,τ (x). Then using Rosenthal’s inequality (e.g. (2.3) of Giné,

Mason, and Zaitsev (2003)), we find that

sup
(x,τ)∈S

sup
P∈P

E[|
√
nhdzN,τ,j(x)|m]

≤
(

15m

logm

)m
sup

(x,τ)∈S
sup
P∈P

max
{(

Eq2
n,τ,j(x)

)m/2
, n−m/2+1E|qn,τ,j(x)|m

}
.
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Since Eq2
n,τ,j(x) ≤ (E|qn,τ,j(x)|m)2/m, by (C.13), the last term is bounded by(

15m

logm

)m
max

{
C̄, C̄n−(m/2)+1hd(1−(m/2))

}
≤

(
15m

logm

)m
max

{
C̄, 2C̄C

}
,

from some large n on by the condition limsupn→∞n
−(m/2)+1hd(1−(m/2)) < C.

As for the second inequality in (C.12), for some C > 0, we use the second inequality in

(C.11) and use Rosenthal’s inequality in the same way as before, to obtain the inequality.

The following lemma offers a characterization of the scale normalizer of our test statistic.

For A,A′ ⊂ NJ , define ζn,τ (x) ≡
√
nhdzN,τ (x),

CR
n,τ,τ ′,A,A′(x, x

′) ≡ h−dCov (ΛA,p (ζn,τ (x)) ,ΛA′,p (ζn,τ ′(x
′))) , and(C.14)

Cn,τ,τ ′,A,A′(x, u) ≡ Cov
(

ΛA,p

(
W(1)

n,τ,τ ′(x, u)
)
,ΛA′,p

(
W(2)

n,τ,τ ′(x, u)
))

,

where we recall that [W(1)
n,τ1,τ2(x, u)>,W(2)

n,τ1,τ2(x, u)>]> is a mean zero R2J -valued Gaussian

random vector whose covariance matrix is given by (6.9).

Then for Borel sets B,B′ ⊂ S and A,A′ ⊂ NJ , let

σRn,A,A′(B,B
′) ≡

∫
B′

∫
B

CR
n,τ,τ ′,A,A′(x, x

′)dQ(x, τ)dQ(x′, τ ′)

and

(C.15) σn,A,A′(B,B
′) ≡

∫
T

∫
T

∫
Bτ∩B′τ ′

∫
U
Cn,τ,τ ′,A,A′(x, u)dudxdτdτ ′,

where Bτ ≡ {x ∈ X : (x, τ) ∈ B} and B′τ ′ ≡ {x ∈ X : (x, τ ′) ∈ B′}.
The lemma below shows that σRn,A,A′(B,B

′) and σn,A,A′(B,B
′) are asymptotically equiva-

lent uniformly in P ∈ P . We introduce some notation. Recall the definition of Σn,τ1,τ2(x, u),

which is found below (6.7). Define for ε̄ > 0,

Σ̃n,τ1,τ2,ε̄(x, u) ≡

[
Σn,τ1,τ1(x, 0) + ε̄IJ

Σn,τ1,τ2(x, u)

Σn,τ1,τ2(x, u)

Σn,τ2,τ2(x+ uh, 0) + ε̄IJ

]
,

where IJ is the J dimensional identity matrix. Certainly Σ̃n,τ1,τ2,ε̄(x, u) is positive definite.

We define

ξN,τ1,τ2(x, u; η1, η2) ≡
√
nhdΣ̃

−1/2
n,τ1,τ2,ε̄(x, u)

[
zN,τ1(x; η1)

zN,τ2(x+ uh; η2)

]
,

where η1 ∈ RJ and η2 ∈ RJ are random vectors that are independent, and independent of

(Y >i , X
>
i )∞i=1, each following N(0, ε̄IJ), and zN,τ (x; η1) ≡ zN,τ (x)+η1/

√
nhd. We are prepared

to state the lemma.
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Lemma C6. Suppose that Assumption A6(i) holds and that nhd →∞, as n→∞, and

limsup
n→∞

n−(m/2)+1hd(1−(m/2)) < C,

for some constant C > 0 and some m ∈ [2(p+ 1),M ].

Then for any sequences of Borel sets Bn, B
′
n ⊂ S and for any A,A′ ⊂ NJ ,

σRn,A,A′(Bn, B
′
n) = σn,A,A′(Bn, B

′
n) + o(1),

where o(1) vanishes uniformly in P ∈ P as n→∞.

Remark 3. The main innovative element of Lemma C6 is that the result does not require

that σn,A,A′(Bn, B
′
n) be positive for each finite n or positive in the limit. Hence the result

can be applied to the case where the scale normalizer σRn,A,A′(Bn, B
′
n) is degenerate (either

in finite samples or asymptotically).

Proof of Lemma C6. Define Bn,τ ≡ {x ∈ X : (x, τ) ∈ Bn}, wτ,Bn(x) ≡ 1Bn,τ (x). For a given

ε̄ > 0, let

g1n,τ1,τ2,ε̄(x, u) ≡ h−dCov(ΛA,p(
√
nhdzN,τ1(x; η1)),ΛA′,p(

√
nhdzN,τ2(x+ uh; η2))),

g2n,τ1,τ2,ε̄(x, u) ≡ Cov(ΛA,p(Zn,τ1,τ2,ε̄(x)),ΛA′,p(Zn,τ1,τ2,ε̄(x+ uh))),

and
(
Z>n,τ1,τ2,ε̄(x),Z>n,τ1,τ2,ε̄(v)

)>
is a centered normal R2J -valued random vector with the

same covariance matrix as that of [
√
nhdz>N,τ1(x; η1),

√
nhdz>N,τ2(v; η2)]>. Then we define

σRn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g1n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

and

σn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1∩B′n,τ2

∫
U
Cn,τ1,τ2,A,A′,ε̄(x, u)dudxdτ1dτ2,

where

(C.16) Cn,τ1,τ2,A,A′,ε̄(x, u) ≡ Cov
(

ΛA,p(W(1)
n,τ1,τ2,ε̄(x, u)),ΛA′,p(W(2)

n,τ1,τ2,ε̄(x, u))
)
,

and, with Z ∼ N(0, I2J),

(C.17)

[
W(1)

n,τ1,τ2,ε̄(x, u)

W(2)
n,τ1,τ2,ε̄(x, u)

]
≡ Σ̃

1/2
n,τ1,τ2,ε̄(x, u)Z.

Thus, σRn,A,A′,ε̄(Bn, B
′
n) and σn,A,A′,ε̄(Bn, B

′
n) are “regularized” versions of σRn,A,A′(Bn, B

′
n) and

σn,A,A′(Bn, B
′
n). We also define

τn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g2n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2.
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Then it suffices for the lemma to show the following two statements.

Step 1: As n→∞,

sup
P∈P

∣∣σRn,A,A′,ε̄(Bn, B
′
n)− τn,A,A′,ε̄(Bn, B

′
n)
∣∣ → 0, and

sup
P∈P
|τn,A,A′,ε̄(Bn, B

′
n)− σn,A,A′,ε̄(Bn, B

′
n)| → 0.

Step 2: For some C > 0 that does not depend on ε̄ or n,

sup
P∈P
|σRn,A,A′,ε̄(Bn, B

′
n)− σRn,A,A′(Bn, B

′
n)| ≤ C

√
ε̄, and

sup
P∈P
|σn,A,A′,ε̄(Bn, B

′
n)− σn,A,A′(Bn, B

′
n)| ≤ C

√
ε̄.

Then the desired result follows by sending n→∞ and then ε̄ ↓ 0, while chaining Steps 1

and 2.

Proof of Step 1: We first focus on the first statement. For any vector v = [v>1 ,v
>
2 ]> ∈ R2J ,

we define

Λ̃A,p,1 (v) ≡ ΛA,p

([
Σ̃

1/2
n,τ1,τ2,ε̄(x, u)v

]
1

)
,

Λ̃A′,p,2 (v) ≡ ΛA′,p

([
Σ̃

1/2
n,τ1,τ2,ε̄(x, u)v

]
2

)
,

and

(C.18) Cn,p(v) ≡ Λ̃A,p,1 (v) Λ̃A′,p,2 (v) ,

where [a]1 of a vector a ∈ R2J indicates the vector of the first J entries of a, and [a]2 the

vector of the remaining J entries of a. By Theorem 9 of Magnus and Neudecker (2001, p.

208),

λmin

(
Σ̃n,τ1,τ2,ε̄(x, u)

)
≥ λmin

([
Σn,τ1,τ2(x, 0)

Σ>n,τ1,τ2(x, u)

Σn,τ1,τ2(x, u)

Σn,τ2,τ2(x+ uh, 0)

])
(C.19)

+λmin

([
ε̄IJ

0

0

ε̄IJ

])

≥ λmin

([
ε̄IJ

0

0

ε̄IJ

])
= ε̄.

Let qn,τ,j(x; η1j) ≡ pn,τ,j(x) + η1j, where

pn,τ,j(x) ≡ 1√
hd

∑
1≤i≤N1

{
βn,x,τ,j

(
Yij,

Xi − x
h

)
− E

[
βn,x,τ,j

(
Yij,

Xi − x
h

)]}
,
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η1j is the j-th entry of η1, andN1 is a Poisson random variable with mean 1 and ((η1j)j∈NJ , N1)

is independent of {(Y >i , X>i )}∞i=1. Let pn,τ (x) be the column vector of entries pn,τ,j(x) with j

running in the set NJ . Let [p
(i)
n,τ1(x), p

(i)
n,τ2(x + uh)] be i.i.d. copies of [pn,τ1(x), pn,τ2(x + uh)]

and η
(i)
1 and η

(i)
2 be also i.i.d. copies of η1 and η2. Define

q
(i)
n,τ,1(x) ≡ p(i)

n,τ (x) + η
(i)
1 and q

(i)
n,τ,2(x+ uh) ≡ p(i)

n,τ (x+ uh) + η
(i)
2 .

Note that

1√
n

n∑
i=1

[
q

(i)
n,τ1,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]
=

1√
n

n∑
i=1

[
p

(i)
n,τ1(x)

p
(i)
n,τ2(x+ uh)

]
+

1√
n

n∑
i=1

[
η

(i)
1

η
(i)
2

]
.

The last sum has the same distribution as [η>1 , η
>
2 ]> and the leading sum on the right-hand

side has the same distribution as that of [z>N,τ1(x), z>N,τ2(x + uh)]>. Therefore, we conclude

that

ξN,τ1,τ2(x, u; η1, η2)
d
=

1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u),

where

W̃ (i)
n,τ1,τ2

(x, u) ≡ Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)

[
q

(i)
n,τ1,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]
.

Now we invoke the Berry-Esseen-type bound of Sweeting (1977, Theorem 1) to prove Step

1. By Lemma C5, we deduce that

(C.20) sup
(x,τ)∈S

sup
P∈P

E||q(i)
n,τ,1(x)||3 ≤ Ch−d/2,

for some C > 0. Also, recall the definition of ρn,τ1,τ1,j,j(x, 0) in (6.7) and note that

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

tr
(

Σ̃n,τ1,τ2,ε̄(x, u)
)

(C.21)

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

∑
j∈J

(ρn,τ1,τ1,j,j(x, 0) + ρn,τ2,τ2,j,j(x, 0) + 2ε̄) ≤ C,

for some C > 0 that depends only on J and ε̄ by Lemma C4. Observe that by the definition

of Cn,p in (C.18), and (C.21),

sup
v∈R2J

|Cn,p(v)− Cn,p(0)|
1 + ||v||2p+2 min {||v||, 1}

≤ C.
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We find that for each u ∈ U , ||W̃ (i)
n,τ1,τ2(x, u)||2 is equal to

tr

Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)

[
q

(i)
n,τ1,1

(x)

q
(i)
n,τ1,2

(x+ uh)

][
q

(i)
n,τ2,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]>
Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)

(C.22)

≤ λmax

(
Σ̃−1
n,τ1,τ2,ε̄

(x, u)
)
tr

[ q
(i)
n,τ1,1

(x)

q
(i)
n,τ1,2

(x+ uh)

][
q

(i)
n,τ2,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]> .

Therefore, E||W̃ (i)
n,τ1,τ2(x, u)||3 is bounded by

λ3/2
max

(
Σ̃−1
n,τ1,τ2,ε̄

(x, u)
)

E

∥∥∥∥∥
[

q
(i)
n,τ1,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]∥∥∥∥∥
3

.

From (C.19),

λ3/2
max(Σ̃−1

n,τ1,τ2,ε̄
(x, u)) = λ

−3/2
min (Σ̃n,τ1,τ2,ε̄(x, u)) ≤ ε̄−3/2.

Therefore, we conclude that

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

E||W̃ (i)
n,τ1,τ2

(x, u)||3

≤ C1ε̄
−3/2 · sup

τ∈T ,x∈Sτ (ε)

sup
P∈P

E||q(i)
n,τ1,1

(x)||3

+C1ε̄
−3/2 · sup

τ∈T
sup

(x,u)∈Sτ (ε)×U
sup
P∈P

E||q(i)
n,τ2,2

(x+ uh)||3 ≤ C2ε̄
−3/2/

√
hd,

where C1 > 0 and C2 > 0 are constants depending only on J , and the last bound follows

by (C.20). Therefore, by Theorem 1 of Sweeting (1977), we find that with ε̄ > 0 fixed and

n→∞,

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

∣∣∣∣∣ECn,p
(

1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u)

)
− ECn,p

(
Z̃n,τ1,τ2(x, u)

)∣∣∣∣∣(C.23)

= O
(
n−1/2h−d/2

)
= o(1),

where Z̃n,τ1,τ2(x, u) = [Zn,τ1,τ2,ε̄(x)>,Zn,τ1,τ2,ε̄(x+ uh)>]>.

Using similar arguments, we also deduce that for j = 1, 2, and A ⊂ NJ ,

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

∣∣∣∣∣EΛ̃A,p,j

(
1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u)

)
− EΛ̃A,p,j

(
Z̃n,τ1,τ2(x, u)

)∣∣∣∣∣ = o(1).

For some C > 0,

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

Cov (Λp(Zn,τ1,τ2,ε̄(x)),Λp(Zn,τ1,τ2,ε̄(x+ uh)))

≤ sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

√
E ‖Zn,τ1,τ2,ε̄(x)‖2p

√
E ‖Zn,τ1,τ2,ε̄(x+ uh)‖2p < C.
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The last inequality follows because Zn,τ1,τ2,ε̄(x) and Zn,τ1,τ2,ε̄(x + uh) are centered normal

random vectors with a covariance matrix that has a finite Euclidean norm by Lemma C4.

Hence we apply the Dominated Convergence Theorem to deduce the first statement of Step

1 from (C.23).

We turn to the second statement of Step 1. The statement immediately follows because for

each u ∈ U , the covariance matrix of Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)ξn,τ1,τ2,ε̄(x, u) is equal to the covariance

matrix of [W(1)>
n,τ1,τ2,ε̄(x, u),W(2)>

n,τ1,τ2,ε̄(x, u)]>and∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)− wτ1,Bn(x)wτ2,B′n(x)
∣∣→ 0,

as n→∞, for each u ∈ U , and for almost every x ∈ X (with respect to Lebesgue measure.)

Proof of Step 2: We consider the first statement. First, we write∣∣∣(σRn,A,A′,ε̄(Bn, B
′
n)
)2 −

(
σRn,A,A′(Bn, B

′
n)
)2
∣∣∣(C.24)

≤
∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
n,τ1,τ2,1

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2

+

∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
n,τ1,τ2,2

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

where

∆η
n,τ1,τ2,1

(x, u) = EΛA,p(
√
nhdzN,τ1(x))EΛA′,p(

√
nhdzN,τ2(x+ uh))

−EΛA,p(
√
nhdzN,τ1(x; η1))EΛA′,p(

√
nhdzN,τ2(x+ uh; η2)),

and

∆η
n,τ1,τ2,2

(x, u) = EΛA,p(
√
nhdzN,τ1(x))ΛA′,p(

√
nhdzN,τ2(x+ uh))

−EΛA,p(
√
nhdzN,τ1(x; η1))ΛA′,p(

√
nhdzN,τ2(x+ uh; η2)).

By Hölder inequality, for C > 0 that depends only on P ,∣∣∆η
n,τ1,τ2,2

(x, u)
∣∣ ≤ CA1n(x, u) + CA2n(x, u),

where, if p = 1 then we set s = 2, and q = 1, and if p > 1, we set s = (p + 1)/(p − 1) and

q = (1− 1/s)−1,

A1n(x, u) = (nhd)p
{
E ‖zN,τ1(x)− zN,τ1(x; η1)‖2q} 1

2q

×
({

E ‖zN,τ1(x)‖2s(p−1)
} 1

2s
+
{

E ‖zN,τ1(x; η1)‖2s(p−1)
} 1

2s

)
×
√

E
(
‖zN,τ2(x+ uh)‖2p),
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and

A2n(x, u) = (nhd)p
{
E ‖zN,τ2(x+ uh)− zN,τ2(x+ uh; η2)‖2q} 1

2q

×
({

E ‖zN,τ2(x+ uh)‖2s(p−1)
} 1

2s
+
{

E ‖zN,τ2(x+ uh; η2)‖2s(p−1)
} 1

2s

)
×
√

E
(
‖zN,τ1(x; η1)‖2p).

Now,

sup
(x,τ)∈S

sup
P∈P

E
∥∥∥√nhd{zN,τ (x)− zN,τ (x; η1)}

∥∥∥2q

= E
∥∥√ε̄Z∥∥2q

= Cε̄q,

where Z ∈ RJ is a centered normal random vector with identity covariance matrix IJ . Also,

we deduce that for some C > 0,

sup
(x,τ)∈S

sup
P∈P

E
∥∥∥√nhdzN,τ (x)

∥∥∥2s(p−1)

≤ C,

by (C.12) of Lemma C5 and by the fact that 2s(p − 1) = 2(p + 1) ≤ M . Similarly, from

some large n on,

sup
(x,τ)∈S

sup
P∈P

E

(∥∥∥√nhdzN,τ (x+ uh; η2)
∥∥∥2p
)

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

(∥∥∥√nhdzN,τ (x; η2)
∥∥∥2p
)
< C,

for some C > 0. Thus we conclude that for some C > 0,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

(A1n(x, u) + A2n(x, u)) ≤ C
√
ε̄,

and that for some C > 0,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

∣∣∆η
n,τ1,τ2,2

(x, u)
∣∣ ≤ C

√
ε̄.

Using similar arguments, we also find that for some C > 0,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

∣∣∆η
n,τ1,τ2,1

(x, u)
∣∣ ≤ C

√
ε̄.

Therefore, there exist C1 > 0 and C2 > 0 such that from some large n on,

sup
P∈P

∣∣σ2
n,A,A′,ε̄(Bn, B

′
n)− σ2

n,A,A′(Bn, B
′
n)
∣∣

≤ C1

√
ε̄

∫
T

∫
T

∫
Bn

∫
U
wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2.

Since the last multiple integral is finite, we obtain the first statement of Step 2.
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We turn to the second statement of Step 2. Similarly as before, we write∣∣σ2
n,A,A′,ε̄(Bn, B

′
n)− σ2

n,A,A′(Bn, B
′
n)
∣∣

≤
∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
1,τ1,τ2

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2

+

∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
2,τ1,τ2

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

where

∆η
1,τ1,τ2

(x, u) = EΛA,p(W(1)
n,τ1,τ2

(x, u))EΛA′,p(W(2)
n,τ1,τ2

(x, u))

−EΛA,p(W(1)
n,τ1,τ2,ε̄(x, u))EΛA′,p(W(2)

n,τ1,τ2,ε̄(x, u)),

and

∆η
2,τ1,τ2

(x, u) = EΛA,p(W(1)
n,τ1,τ2

(x, u))ΛA′,p(W(2)
n,τ1,τ2

(x, u))

−EΛA,p(W(1)
n,τ1,τ2,ε̄(x, u))ΛA′,p(W(2)

n,τ1,τ2,ε̄(x, u)).

Now, observe that for C > 0 that does not depend on ε̄, we have by Lemma C1(i),

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

∥∥∥∥∥∥Σ̃
1/2
n,τ1,τ2,ε̄(x, u)−

[
Σn,τ1(x, 0)

Σn,τ1,τ2(x, u)

Σn,τ1,τ2(x, u)

Σn,τ2(x+ uh)

]1/2
∥∥∥∥∥∥ ≤ C

√
ε̄.

Using this, recalling the definitions of W(1)
n,τ1,τ2(x, u) and W(2)

n,τ1,τ2(x, u) in (C.17), and following

the previous arguments, we obtain the second statement of Step 2.

Lemma C7. Suppose that for some small ν1 > 0, n−1/2h−d−ν1 → 0, as n → ∞ and the

conditions of Lemma C6 hold. Then there exists C > 0 such that for any sequence of Borel

sets Bn ⊂ S, and A ⊂ NJ , from some large n on,

sup
P∈P

E

[∣∣∣∣h−d/2 ∫
Bn

{
ΛA,p(

√
nhdzn,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

]}
dQ(x, τ)

∣∣∣∣]
≤ C

√
Q(Bn).

Remark 4. The result is in the same spirit as Lemma 6.2 of Giné, Mason, and Zaitsev (2003).

(Also see Lemma A8 of Lee, Song and Whang (2013).) However, unlike these results, the

location normalization here involves E[ΛA,p(
√
nhdzN,τ (x))] instead of E[ΛA,p(

√
nhdzn,τ (x))].

We can obtain the same result with E[ΛA,p(
√
nhdzN,τ (x))] replaced by E[ΛA,p(

√
nhdzn,τ (x))],

but with a stronger bandwidth condition.

Like Lemma C6, the result of Lemma C7 does not require that the quantities
√
nhdzn,τ (x)

and
√
nhdzN,τ (x) have a (pointwise in x) nondegenerate limit distribution.
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Proof of Lemma C7. As in the proof of Lemma A8 of Lee, Song, and Whang (2013), it

suffices to show that there exists C > 0 such that C does not depend on n and for any Borel

set B ⊂ R,

Step 1:

sup
P∈P

E

[∣∣∣∣h−d/2 ∫
Bn

{
ΛA,p(

√
nhdzn,τ (x))− ΛA,p(

√
nhdzN,τ (x))

}
dQ(x, τ)

∣∣∣∣] ≤ CQ(Bn), and

Step 2:

sup
P∈P

E

[∣∣∣∣h−d/2 ∫
Bn

{
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

]}
dQ(x, τ)

∣∣∣∣] ≤ C
√
Q(Bn).

By chaining Steps 1 and 2, we obtain the desired result.

Proof of Step 1: Similarly as in (2.13) of Horváth (1991), we first write

(C.25) zn,τ (x) = zN,τ (x) + vn,τ (x) + sn,τ (x),

where, for βn,x,τ (Yi, (Xi − x)/h) defined prior to Lemma C5,

vn,τ (x) ≡
(
n−N
n

)
· 1

hd
E

[
βn,x,τ

(
Yi,

Xi − x
h

)]
and

sn,τ (x) ≡ 1

nhd

n∑
i=N+1

{
βn,x,τ

(
Yi,

Xi − x
h

)
− E

[
βn,x,τ

(
Yi,

Xi − x
h

)]}
,

and we write N = n,
∑n

i=N+1 = 0, and if N > n,
∑n

i=N+1 = −
∑N

i=n+1.

Using (C.25), we deduce that for some C1, C2 > 0 that depend only on P ,∫
Bn

|ΛA,p (zn,τ (x))− ΛA,p (zN,τ (x))| dQ(x, τ)(C.26)

≤ C1

∫
Bn

‖vn,τ (x)‖
(
‖zn,τ (x)‖p−1 + ‖zN,τ (x)‖p−1) dQ(x, τ)

+C2

∫
Bn

‖sn,τ (x)‖
(
‖zn,τ (x)‖p−1 + ‖zN,τ (x)‖p−1) dQ(x, τ)

≡ D1n +D2n, say.

To deal with D1n and D2n, we first show the following:

Claim 1: sup(x,τ)∈S supP∈P E[||vn,τ (x)||2] = O(n−1), and

Claim 2: sup(x,τ)∈S supP∈P E[||sn,τ (x)||2] = O(n−3/2h−d).

Proof of Claim 1: First, note that

sup
(x,τ)∈S

E
[
||vn,τ (x)||2

]
≤ E

∣∣∣∣n−Nn
∣∣∣∣2 · sup

(x,τ)∈S

∥∥∥∥ 1

hd
E

[
βn,x,τ

(
Yi,

Xi − x
h

)]∥∥∥∥2

.
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Since E|n−1/2(n−N)|2 does not depend on the joint distribution of (Yi, Xi), E|n−1/2(n−
N)|2 ≤ O(1) uniformly over P ∈ P . Combining this with the second statement of (C.12),

the product on the right hand side becomes O(n−1) uniformly over P ∈ P .

Proof of Claim 2: Let η1 ∈ RJ be the random vector defined prior to Lemma C6, and

define

sn,τ (x; η1) ≡ sn,τ (x) +
(N − n)η1

n3/2hd/2
.

Note that

(C.27) E ‖sn,τ (x)‖2 ≤ 2E ‖sn,τ (x; η1)‖2 +
2

n2hd
E

∥∥∥∥(N − n)η1√
n

∥∥∥∥2

.

As for the last term, since N and η1 are independent, it is bounded by

1

n2hd

(
E

∣∣∣∣N − n√
n

∣∣∣∣2
)
· E ‖η1‖2 ≤ Cε̄

n2hd
= O(n−2h−d−ν1),

from some large n on.

As for the leading expectation on the right hand side of (C.27), we write

E
∥∥∥√nhdsn,τ (x; η1)

∥∥∥2

= E

∥∥∥∥∥ 1√
n

n∑
i=N+1

q
(i)
n,τ,1(x)

∥∥∥∥∥
2

=
1

n

J∑
j=1

σ̄2
n,τ,j(x)E

(
n∑

i=N+1

q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

)2

,

where q
(i)
n,τ,1(x)’s (i = 1, 2, · · · ) are i.i.d. copies of qn,τ (x) + η1 and q

(i)
n,τ,1,j(x) is the j-th entry

of q
(i)
n,τ,1(x), and σ̄2

n,τ,j(x) ≡ V ar(q
(i)
n,τ,1,j(x)). Recall that qn,τ (x) was defined prior to Lemma

C5. Now we apply Lemma 1(i) of Horváth (1991) to deduce that

sup
(x,τ)∈S

sup
P∈P

E

(
n∑

i=N+1

q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

)2

≤ E|N − n| · E|Z1|2 + CE |N − n|1/2 · sup
(x,τ)∈S

sup
P∈P

E

∣∣∣∣∣q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

∣∣∣∣∣
3

+C sup
(x,τ)∈S

sup
P∈P

E

∣∣∣∣∣q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

∣∣∣∣∣
4

,

for some C > 0, where Z1 ∼ N(0, 1).

First, observe that sup(x,τ)∈S supP∈P σ̄n,τ,j(x) <∞ by Lemma C5, and

(C.28) inf
(x,τ)∈S

inf
P∈P

σ̄n,τ,j(x) > ε̄ > 0,
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due to the additive term η1 in qn,τ (x) + η1. Let η1j be the j-th entry of η1. We apply Lemma

C5 to deduce that for some C > 0, from some large n on,

sup
(x,τ)∈S

sup
P∈P

E|(qn,τ,j(x) + η1j)/σ̄n,τ,j(x)|3 ≤ Ch−(d/2)−(ν1/2) and(C.29)

sup
(x,τ)∈S

sup
P∈P

E|(qn,τ,j(x) + η1j)/σ̄n,τ,j(x)|4 ≤ Ch−d−ν1 .

Since E|N − n| = O(n1/2) and E |N − n|1/2 = O(n1/4) (e.g. (2.21) and (2.22) of Horváth

(1991)), there exists C > 0 such that

(C.30) sup
(x,τ)∈S

sup
P∈P

E

(
n∑

i=N+1

q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

)2

≤ C

ε̄4

{
n1/2 + n1/4h−(d/2)−(ν1/2) + h−d−ν1

}
.

This implies that for some C > 0, (with ε̄ > 0 fixed while n→∞)

sup
(x,τ)∈S

sup
P∈P

E
∥∥∥√nhdsn,τ (x)

∥∥∥2

(C.31)

≤ O
(
n−1h−ν1

)
+O

(
n−1/2 + n−3/4h−(d/2)−(ν1/2) + n−1h−d−ν1

)
= O

(
n−1h−ν1

)
+O(n−1/2) = O(n−1/2),

since n−1/2h−d−ν1 → 0. Hence, we obtain Claim 2.

Using Claim 1 and the second statement of Lemma C5, we deduce that

sup
P∈P

E
[
np/2hd(p−1)/2D1n

]
≤ C1Q(Bn) sup

(x,τ)∈S
sup
P∈P

√
E
∥∥√nvn,τ (x)

∥∥2

×
√

E
∥∥∥√nhdzn,τ (x)

∥∥∥2p−2

+ E
∥∥∥√nhdzN,τ (x)

∥∥∥2p−2

≤ C2Q(Bn),

for C1, C2 > 0. Similarly, we can see that

sup
P∈P

E
[
np/2hd(p−1)/2D2n

]
= O(n−1/2h−d) = o(1),

using Claim 2 and the second statement of Lemma C5. Thus, we obtain Step 1.

Proof of Step 2: We can follow the proof of Lemma C6 to show that

E

[
h−d/2

∫
Bn

(
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

])
dQ(x, τ)

]2

=

∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

∫
U
Cn,τ1,τ2,A,A′(x, u)dudxdτ1dτ2 + o(1),
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where Cn,τ1,τ2,A,A′(x, u) is defined in (C.14) and o(1) is uniform over P ∈ P . Now, observe

that

sup
(τ1,τ2)∈T ×T

sup
u∈U

sup
x∈X

sup
P∈P
|Cn,τ1,τ2,A,A′(x, u)|

≤ sup
(τ1,τ2)∈T ×T

sup
u∈U

sup
x∈X

sup
P∈P

√
E||W(1)

n,τ1,τ2(x, u)||2pE||W(2)
n,τ1,τ2(x, u)||2p <∞.

Therefore,

E

[∣∣∣∣h−d/2 ∫
Bn

(
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

])
dQ(x, τ)

∣∣∣∣]
≤

√∫
T

∫
T

∫
U

∫
Bn,τ1∩Bn,τ2

Cn,τ1,τ2,A,A′(x, u)dxdudτ1dτ2 + o(1)

≤ C

√∫
T

∫
T

∫
U

∫
Bn,τ1∩Bn,τ2

dxdudτ1dτ2 + o(1),

for some C > 0. Now, observe that∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

dxdτ1dτ2 ≤
∫
T
dτ2 ·

(∫
T

∫
Bn,τ1

dxdτ1

)
≤ CQ(Bn),

because T is a bounded set. Thus the proof of Step 2 is completed.

The next lemma shows the joint asymptotic normality of a Poissonized version of a nor-

malized test statistic and a Poisson random variable. Using this result, we can apply the

de-Poissonization lemma in Lemma C3. To define a Poissonized version of a normalized test

statistic, we introduce some notation.

Let C ⊂ Rd be a compact set such that C does not depend on P ∈ P and αP ≡ P{X ∈
Rd\C} satisfies that 0 < infP∈P αP ≤ supP∈P αP < 1. Existence of such C is assumed in

Assumption A6(ii). For cn → ∞, we let Bn,A(cn; C) ≡ Bn,A(cn) ∩ (C × T ), where we recall

the definition of Bn,A(cn) = Bn,A(cn, cn). (See the definition of Bn,A(cn,1, cn,2) before Lemma

1.) Define

ζn,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdzn,τ (x))dQ(x, τ), and

ζN,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdzN,τ (x))dQ(x, τ).

Let µA’s be real numbers indexed by A ∈ NJ , and define

σ2
n(C) ≡

∑
A∈NJ

∑
A′∈NJ

µAµA′σn,A,A′(Bn,A(cn; C), Bn,A′(cn; C)),
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where we recall the definition of σn,A,A′(·, ·) prior to Lemma C6. Define

Sn ≡ h−d/2
∑
A∈NJ

µA {ζN,A − EζN,A} .

Also define

Un ≡
1√
n

{
N∑
i=1

1{Xi ∈ C} − nP {Xi ∈ C}

}
, and

Vn ≡
1√
n

{
N∑
i=1

1{Xi ∈ Rd\C} − nP
{
Xi ∈ Rd\C

}}
.

Let

Hn ≡
[

Sn
σn(C)

,
Un√

1− αP

]>
.

The following lemma establishes the joint convergence of Hn. In doing so, we need to be

careful in dealing with uniformity in P ∈ P , and potential degeneracy of the normalized test

statistic Sn.

Lemma C8. Suppose that the conditions of Lemma C6 hold and that cn →∞ as n→∞.
(i) If lim infn→∞ infP∈P σ

2
n(C) > 0, then

sup
P∈P

sup
t∈R2

|P {Hn ≤ t} − P {Z ≤ t}| → 0,

where Z ∼ N(0, I2).

(ii) If lim supn→∞ σ
2
n(C) = 0, then for each (t1, t2) ∈ R2,∣∣∣∣P {Sn ≤ t1 and

Un√
1− αP

≤ t2

}
− 1{0 ≤ t1}P {Z1 ≤ t2}

∣∣∣∣→ 0,

where Z1 ∼ N(0, 1).

Remark 5. The joint convergence result is divided into two separate results. The first case

is a situation where Sn is asymptotically nondegenerate uniformly in P ∈ P . The second

case deals with a situation where Sn is asymptotically degenerate for some P ∈ P .

Proof of Lemma C8. (i) Define ε̄ > 0 and let

Hn,ε̄ ≡
[

Sn,ε̄
σn,ε̄(C)

,
Un√

1− αP

]>
,

where Sn,ε̄ is equal to Sn, except that ζN,A is replaced by

ζN,A,ε̄ ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdzN,τ (x; η1))dQ(x, τ),
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and zN,τ (x; η1) is as defined prior to Lemma C6, and σn,ε̄(C) is σn(C) except that Σ̃n,τ1,τ2(x, u)

is replaced by Σ̃n,τ1,τ2,ε̄(x, u). Also let

Cn ≡ EHnH
>
n and Cn,ε̄ ≡ EHn,ε̄H

>
n,ε̄.

First, we show the following statements.

Step 1: For some C > 0, supP∈P |Cov(Sn,ε̄ − Sn, Un)| ≤ C
√
ε̄, for each fixed ε̄ > 0.

Step 2: supP∈P |Cov(Sn,ε̄, Un)| = o(hd/2), as n→∞.

Step 3: There exists c > 0 such that from some large n on,

inf
P∈P

λmin(Cn) > c.

Step 4: As n→∞,

sup
P∈P

sup
t∈R2

∣∣P {C−1/2
n Hn ≤ t

}
→ P {Z ≤ t}

∣∣→ 0.

From Steps 1-3, we find that supP∈P ‖Cn − I2‖ → 0, as n → ∞ and as ε̄ → 0. By Step 4,

we obtain (i) of Lemma C8.

Proof of Step 1: Observe that from an inequality similar to (C.26) in the proof of Lemma

C7,

|ζN,A,ε̄ − ζN,A| ≤ C||η1||
∫
Bn,A(cn;C)

∥∥∥√nhdzN,τ (x)
∥∥∥p−1

dQ(x, τ).

Using the fact that S is compact and does not depend on P ∈ P , for some constants

C1, C2, C3 > 0 that do not depend on P ∈ P ,

E |ζN,A,ε̄ − ζN,A|2 ≤ C1E
[
||η1||2

]
·
∫
Bn,A(cn;C)

E
∥∥∥√nhdzN,τ (x)

∥∥∥2p−2

dQ(x, τ)

≤ C2ε̄ ·
∫
Bn,A(cn;C)

E
∥∥∥√nhdzN,τ (x)

∥∥∥2p−2

dQ(x, τ) ≤ C3ε̄,

by the independence between η1 and {zN,τ (x) : (x, τ) ∈ S}, and by the second statement of

Lemma C5. From the fact that

sup
P∈P

EU2
n ≤ sup

P∈P
(1− αP ) ≤ 1,

we obtain the desired result.

Proof of Step 2: Let Σ2n,τ,ε̄ be the covariance matrix of [(qn,τ (x) + η1)>, Ũn]>, where
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Ũn = Un/
√
P{X ∈ C}. We can write Σ2n,τ,ε̄ as[

Σn,τ,τ (x, 0) + ε̄IJ

E[(qn,τ (x) + η1)>Ũn]

E[(qn,τ (x) + η1)Ũn]

1

]

=

[
Σn,τ,τ (x, 0)√

1− ε̄E[q>n,τ (x)Ũn]

√
1− ε̄E[qn,τ (x)Ũn]

1− ε̄

]
+

[
ε̄IJ

0>
0

ε̄

]
+ An,τ (x),

where

An,τ (x) ≡

[
0(

1−
√

1− ε̄
)

E[q>n,τ (x)Ũn]

(
1−
√

1− ε̄
)
E[qn,τ (x)Ũn]

0

]
.

The first matrix on the right hand side is certainly positive semidefinite. Note that(
qn,τ,j(x), Ũn

)
d
=

(
1√
n

n∑
k=1

q
(k)
n,τ,j(x),

1√
n

n∑
k=1

Ũ (k)
n

)
,

where (q
(k)
n,τ,j(x), Ũ

(k)
n )’s with k = 1, · · ·, n are i.i.d. copies of (qn,τ,j(x), Ūn), where

Ūn ≡
1√

P{X ∈ C}

{ ∑
1≤i≤N1

1{Xi ∈ C} − P {Xi ∈ C}

}
,

where N1 is the Poisson random variable with mean 1 that is involved in the definition of

qn,τ,j(x). Hence as for An,τ (x), note that for C1, C2 > 0,

sup
(x,τ)∈S

sup
P∈P

∣∣∣E [qn,τ,j(x)Ũn

]∣∣∣ ≤ sup
(x,τ)∈S

sup
P∈P

∣∣∣E [q(k)
n,τ,j(x)Ũ (k)

n

]∣∣∣(C.32)

≤ sup
(x,τ)∈S

sup
P∈P

E [|qn,τ,j(x)|]√
P{Xi ∈ C}

≤
C1h

d sup(x,τ)∈S supP∈P kn,τ,j,1

hd/2 (1− αP )
≤ C2h

d/2.

We conclude that

sup
(x,τ)∈S

sup
P∈P
||An,τ (x)|| = O(hd/2).

Therefore, from some large n on,

(C.33) inf
(x,τ)∈S

inf
P∈P

λmin (Σ2n,τ,ε̄) ≥ ε̄/2.

Let

Wn,τ (x; η1) ≡ Σ
−1/2
2n,τ,ε̄

[
qn,τ (x) + η1

Ũn

]
.
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Similarly as in (C.22), we find that for some C > 0, from some large n on,

sup
(x,τ)∈S

sup
P∈P

E ‖Wn,τ (x; η1)‖3

≤ C sup
(x,τ)∈S

sup
P∈P

λ3/2
max

(
Σ−1

2n,τ,ε̄

)
sup

(x,τ)∈S
sup
P∈P

{
E
[
||qn,τ (x) + η1||3

]
+ E

[
|Ũn|3

]}
≤ C

( ε̄
2

)−3/2

sup
(x,τ)∈S

sup
P∈P

{
E
[
||qn,τ (x) + η1||3

]
+ E

[
|Ũn|3

]}
,

where the last inequality uses (C.33). As for the last expectation, note that by Rosenthal’s

inequality, we have

sup
(x,τ)∈S

sup
P∈P

E
[
|Ũn|3

]
≤ C

for some C > 0. We apply the first statement of Lemma C5 to conclude that

sup
(x,τ)∈S

sup
P∈P

E ‖Wn,τ (x; η1)‖3 ≤ Cε̄−3/2h−d/2,

for some C > 0. For any vector v = [v>1 , v2]> ∈ RJ+1, we define

Dn,τ,p(v) ≡ ΛA,p

([
Σ

1/2
2n,τ,ε̄v

]
1

) [
Σ

1/2
2n,τ,ε̄v

]
2
,

where [a]1 of a vector a ∈ RJ+1 indicates the vector of the first J entries of a, and [a]2 the

last entry of a. By Theorem 1 of Sweeting (1977), we find that (with ε̄ > 0 fixed)

E

[
Dn,τ,p

(
1√
n

n∑
i=1

W (i)
n,τ (x; η1)

)]
= E [Dn,τ,p (ZJ+1)] +O(n−1/2h−d/2),

where ZJ+1 ∼ N(0, IJ+1) andW
(i)
n,τ (x; η1)’s are i.i.d. copies ofWn,τ (x; η1). SinceO(n−1/2h−d/2) =

o(hd/2) (by the condition that n−1/2h−d−ν → 0, as n→∞),

Cov
(

ΛA,p

(√
nhdzN,τ (x; η1)

)
, Un

)
= E

[
Dn,τ,p

(
1√
n

n∑
i=1

W (i)
n,τ (x; η1)

)]
+ o(hd/2).

Noting that E[Dn,τ,p (ZJ+1)] = 0, we conclude that

sup
(x,τ)∈S

sup
P∈P

∣∣∣Cov (ΛA,p

(√
nhdzN,τ (x; η1)

)
, Un

)∣∣∣ = o(hd/2).

By applying the Dominated Convergence Theorem, we obtain Step 2.

Proof of Step 3: First, we show that

(C.34) V ar (Sn) = σ2
n(C) + o(1),
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where o(1) is an asymptotically negligible term uniformly over P ∈ P . Note that

V ar (Sn) =
∑
A∈NJ

∑
A′∈NJ

µAµA′Cov(ψn,A, ψn,A′),

where ψn,A ≡ h−d/2(ζN,A − EζN,A). By Lemma C6, we find that for A,A′ ∈ NJ ,

Cov(ψn,A, ψn,A′) = σn,A,A′(Bn,A(cn; C), Bn,A′(cn; C)) + o(1),

uniformly in P ∈ P , yielding the desired result.

Combining Steps 1 and 2, we deduce that

(C.35) sup
P∈P
|Cov(Sn, Un)| ≤ C

√
ε̄+ o(hd/2).

Let σ̄2
1 ≡ infP∈P σ

2
n(C) and σ̄2

2 ≡ infP∈P(1− αP ). Note that for some C1 > 0,

(C.36) inf
P∈P

σ̄2
1σ̄

2
2 > C1,

by the condition of the lemma. A simple calculation gives us

λmin(Cn) =
σ̄2

1 + σ̄2
2

2
− 1

2

(√
(σ̄2

1 + σ̄2
2)

2 − 4 {σ̄2
1σ̄

2
2 − Cov(Sn, Un)2}

)
(C.37)

≥ 1

2

{√
(σ̄2

1 + σ̄2
2)

2 −
(√

(σ̄2
1 + σ̄2

2)
2 − 4σ̄2

1σ̄
2
2

)}
− |Cov(Sn, Un)|

≥ σ̄2
1σ̄

2
2 − |Cov(Sn, Un)| ≥ C1 − C

√
ε̄+ o(hd/2),

where the last inequality follows by (C.35) and (C.36). Taking ε̄ small enough, we obtain

the desired result.

Proof of Step 4: Suppose that liminfn→∞ infP∈P σ
2
n(C) > 0. Let κ be the diameter of

the compact set K0 introduced in Assumption A2. Let C be given as in the lemma. Let

Zd be the set of d-tuples of integers, and let {Rn,i : i ∈ Zd} be the collection of rectangles

in Rd such that Rn,i = [an,i1 , bn,i1 ] × · · · · ×[an,id , bn,id ], where ij is the j-th entry of i, and

hκ ≤ bn,ij − an,ij ≤ 2hκ, for all j = 1, · · ·, d, and two different rectangles Rn,i and Rn,j do

not have intersection with nonempty interior, and the union of the rectangles Rn,i, i ∈ Zdn,

cover X , from some sufficiently large n on, where Zdn be the set of d-tuples of integers whose

absolute values less than or equal to n.

We let

Bn,A,x(cn) ≡ {τ ∈ T : (x, τ) ∈ BA(cn)} ,

Bn,i ≡ Rn,i ∩ C,

and In ≡ {i ∈ Zdn : Bn,i 6= ∅}. Then Bn,i has Lebesgue measure m(Bn,i) bounded by C1h
d

and the cardinality of the set In is bounded by C2h
−d for some positive constants C1 and
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C2. Now let us define

∆n,A,i ≡ h−d/2
∫
Bn,i

∫
Bn,A,x(cn)

{
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

]}
dτdx.

And also define Bn,A,i(cn) ≡ (Bn,i × T ) ∩Bn,A(cn),

αn,i ≡
∑

A∈NJ µA∆n,A,i

σn(C)
and

un,i ≡
1√
n

{
N∑
i=1

1 {Xi ∈ Bn,i} − nP{Xi ∈ Bn,i}

}
.

Then, we can write
Sn

σn(C)
=
∑
i∈In

αn,i and Un =
∑
i∈In

un,i.

By the definition of K0 in Assumption A2, by the definition of Rn,i and by the properties

of Poisson processes, one can see that the array {(αn,i, un,i)}i∈In is an array of 1-dependent

random field. (See Mason and Polonik (2009) for details.) For any q1, q2 ∈ R, let yn,i ≡
q1αn,i + q2un,i. The focus is on the convergence in distribution of

∑
i∈In yn,i uniform over

P ∈ P . Without loss of generality, we choose q1, q2 ∈ R\{0}. Define

V arP

(∑
i∈In

yn,i

)
= q2

1 + q2
2(1− αP ) + 2q1q2cn,P ,

uniformly over P ∈ P , where cn,P = Cov(Sn, Un). On the other hand, using Lemma C4 and

following the proof of Lemma A8 of Lee, Song, and Whang (2013), we deduce that

(C.38) sup
P∈P

∑
i∈In

E|yn,i|r = o(1)

as n→∞, for any r ∈ (2, (2p+ 2)/p]. By Theorem 1 of Shergin (1993), we have

sup
P∈P

sup
t∈R

∣∣∣∣∣P
{

1√
q2

1 + q2
2(1− αP ) + 2q1q2cn,P

∑
i∈In

yn,i ≤ t

}
− Φ (t)

∣∣∣∣∣
≤ sup

P∈P

C

{q2
1 + q2

2(1− αP ) + 2q1q2cn,P}r/2

{∑
i∈In

E|yn,i|r
}1/2

= o(1),

for some C > 0, by (C.38). Therefore, by Lemma C2(i), we have for each t ∈ R, and each

q ∈ R2\{0}, as n→∞,

sup
P∈P

∣∣∣∣∣E
[

exp

(
it

q>Hn√
q>Cnq

)]
− exp

(
−t

2

2

)∣∣∣∣∣→ 0.
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Thus by Lemma C2(ii), for each t ∈ R2, we have

sup
P∈P

∣∣P {C−1/2
n Hn ≤ t

}
− P {Z ≤ t}

∣∣→ 0.

Since the limit distribution of C
−1/2
n Hn is continuous, the convergence above is uniform in

t ∈ R2.

(ii) We fix P ∈ P such that limsupn→∞σ
2
n(C) = 0. Then by (C.34) above,

V ar (Sn) = σ2
n(C) + o(1) = o(1).

Hence, we find that Sn = oP (1). The desired result follows by applying Theorem 1 of Shergin

(1993) to the sum Un =
∑

i∈In un,i, and then applying Lemma C2(ii).

Lemma C9. Let C be the Borel set in Lemma C8.

(i) Suppose that the conditions of Lemma C8(i) are satisfied. Then for each t ∈ R, as

n→∞,

sup
P∈P

sup
t∈R

∣∣∣∣∣P
{
h−d/2

∑
A∈NJ µA {ζn,A − EζN,A}

σn(C)
≤ t

}
− Φ(t)

∣∣∣∣∣→ 0.

(ii) Suppose that the conditions of Lemma C8(ii) are satisfied. Then as n→∞,

h−d/2
∑
A∈NJ

µA {ζn,A − EζN,A}
p→ 0.

Note that in both statements, the location normalization has EζN,A instead of Eζn,A.

Proof of Lemma C9. (i) The conditional distribution of Sn/σn(C) given N = n is equal to

that of∑
A∈NJ µA

∫
Bn,A(cn;C)∩C

{
ΛA,p(

√
nhdzn,τ (x))− EΛA,p(

√
nhdzN,τ (x))

}
dQ(x, τ)

hd/2σn(C)
.

Using Lemmas C3(i) and C8(i), we find that

h−d/2
∑

A∈NJ µA {ζn,A − EζN,A}
σn(C)

d→ N(0, 1).

Since the limit distribution N(0, 1) is continuous and the convergence is uniform in P ∈ P ,

we obtain the desired result.

(ii) Similarly as before, the result follows from Lemmas C3(ii), C2(ii), and C8(ii).

Appendix D. Proofs of Auxiliary Results for Lemmas A2(ii), Lemma A4(ii),

and Theorem 1

The auxiliary results in this section are mostly bootstrap versions of the results in Appen-

dix C. To facilitate comparison, we name the first lemma to be Lemma D3, which is used
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to control the discrepancy between the sample version of the scale normalizer σn, and its

population version. Then we proceed to prove Lemmas D4-D9 which run in parallel with

Lemmas C4-C9 as their bootstrap counterparts. We finish this subsection with Lemmas

D10-D12 which are crucial for dealing with the bootstrap test statistic’s location normal-

ization. More specifically, Lemmas D10 and D11 are auxiliary moment bound results that

are used for proving Lemma D12. Lemma D12 essentially delivers the result of Lemma A1

in Appendix A. This lemma is used to deal with the discrepancy between the population

location normalizer and the sample location normalizer. Controlling this discrepancy to the

rate oP (hd/2) is crucial for our purpose, because our bootstrap test statistic does not involve

the sample version of the location normalizer an for computational reasons. Lemmas D10

and D11 provide necessary moment bounds to achieve this convergence rate.

The random variables N and N1 represent Poisson random variables with mean n and

1 respectively. These random variables are independent of
(
(Y ∗>i , X∗>i )∞i=1, (Y

>
i , X

>
i )∞i=1

)
.

Let η1 and η2 be centered normal random vectors that are independent of each other and

independent of (
(Y ∗>i , X∗>i )∞i=1, (Y

>
i , X

>
i )∞i=1, N,N1

)
.

We will specify their covariance matrices in the proofs below. Throughout the proofs, the

bootstrap distribution P ∗ and expectations E∗ are viewed as the distribution of

((Y ∗i , X
∗
i )ni=1, N,N1, η1, η2) ,

conditional on (Yi, Xi)
n
i=1.

Define

ρ̃n,τ1,τ2,j,k(x, u) ≡ 1

hd
E∗
[
βn,x,τ1,j

(
Y ∗ij ,

X∗i − x
h

)
βn,x,τ2,k

(
Y ∗ik,

X∗i − x
h

+ u

)]
and

k̃n,τ,j,m(x) ≡ 1

hd
E∗
[∣∣∣∣βn,x,τ,j (Y ∗ij , X∗i − xh

)∣∣∣∣m] .
Note that ρ̃n,τ1,τ2,j,k(x, u) and k̃n,τ,j,m(x) are bootstrap versions of ρn,τ1,τ2,j,k(x, u) and k̃n,τ,j,m(x).

The lemma below establishes that the bootstrap version ρ̃n,τ1,τ2,j,k(x, u) is consistent for

ρn,τ1,τ2,j,k(x, u).

Lemma D3. Suppose that Assumption A6(i) holds and that n−1/2h−d/2 → 0, as n → ∞.

Then for each ε ∈ (0, ε1), with ε1 > 0 as in Assumption A6(i), as n→∞,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
(
|ρ̃n,τ1,τ2,j,k(x, u)− ρn,τ1,τ2,j,k(x, u)|2

)
→ 0.
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Proof of Lemma D3. Define πn,x,u,τ1,τ2(y, z) = βn,x,τ1,j(yj, (z−x)/h)βn,x,τ2,k(yk, (z−x)/h+u)

for y = (y1, · · ·, yJ)> ∈ RJ , and write

ρ̃n,τ1,τ2,j,k(x, u)− ρn,τ1,τ2,j,k(x, u) =
1

nhd

n∑
i=1

{πn,x,u,τ1,τ2(Yi, Xi)− E [πn,x,u,τ1,τ2(Yi, Xi)]} .

First, we note that

E

(
1√
n

n∑
i=1

{πn,x,u,τ1,τ2(Yi, Xi)− E [πn,x,u,τ1,τ2(Yi, Xi)]}

)2

≤ E
[
π2
n,x,u,τ1,τ2

(Yi, Xi)
]
.

By change of variables and Assumption A6(i), we have E
[
π2
n,x,u,τ1,τ2

(Yi, Xi)
]

= O(hd) uni-

formly over (τ1, τ2) ∈ T × T , (x, u) ∈ (Sτ1(ε) ∪ Sτ2(ε))× U and over P ∈ P . Hence

E
(
|ρ̃n,τ1,τ2,j,k(x, u)− ρn,τ1,τ2,j,k(x, u)|2

)
= O

(
n−1h−d

)
,

uniformly over (τ1, τ2) ∈ T × T , (x, u) ∈ (Sτ1(ε) ∪ Sτ2(ε)) × U and over P ∈ P . Since we

have assumed that n−1/2h−d/2 → 0 as n→∞, we obtain the desired result.

Lemma D4. Suppose that Assumption A6(i) holds and that for some C > 0,

limsupn→∞n
−1/2h−d/2 ≤ C.

Then for all m ∈ [2,M ] and all ε ∈ (0, ε1), with M > 0 and ε1 > 0 being the constants that

appear in Assumption A6(i)), there exists C1 ∈ (0,∞) that does not depend on n such that

for each j ∈ NJ ,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E
[
k̃2
n,τ,j,m(x)

]
≤ C1.

Proof of Lemma D4. Since E∗[|βn,x,τ,j(Y ∗ij , (X∗i−x)/h)|m] = 1
n

∑n
i=1 |βn,x,τ,j(Yij, (Xi−x)/h)|m,

we find that

k̃2
n,τ,j,m(x) ≤ 2k2

n,τ,j,m(x) + 2e2
n,τ,j,m(x),

where

en,τ,j,m(x) ≡

∣∣∣∣∣ 1

nhd

n∑
i=1

∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣m − 1

hd
E

(∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣m)
∣∣∣∣∣ .

Similarly as in the proof of Lemma D3, we note that

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E
[∣∣e2

n,τ,j,m(x)
∣∣]

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

1

nh2d
E

[∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣2m
]

= O(n−1h−d) = o(1), as n→∞.

Hence the desired statement follows from Lemma C4.
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Let

z∗n,τ (x) ≡ 1

nhd

n∑
i=1

βn,x,τ

(
Y ∗i ,

X∗i − x
h

)
− 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]
, and

z∗N,τ (x) ≡ 1

nhd

N∑
i=1

βn,x,τ

(
Y ∗i ,

X∗i − x
h

)
− 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]
.

We also let

q∗n,τ (x) ≡ 1√
hd

∑
i≤N1

{βn,x,τ (Y ∗i , (X∗i − x)/h)− E∗βn,x,τ (Y
∗
i , (X

∗
i − x)/h)} and

q̄∗n,τ (x) ≡ 1√
hd
{βn,x,τ (Y ∗i , (X∗i − x)/h)− E∗βn,x,τ (Y

∗
i , (X

∗
i − x)/h)} .

Lemma D5. Suppose that Assumption A6(i) holds and that for some C > 0,

limsupn→∞n
−1/2h−d/2 ≤ C.

Then for any m ∈ [2,M ] (with M being the constant M in Assumption A6(i)),

sup
(x,τ)∈S

sup
P∈P

√
E
[(

E∗
[
||q∗n,τ (x)||m

])2
]
≤ C̄1h

d(1−(m/2)), and(D.1)

sup
(x,τ)∈S

sup
P∈P

√
E
[(

E∗
[
||q̄∗n,τ (x)||m

])2
]
≤ C̄2h

d(1−(m/2)),

where C̄1, C̄2 > 0 are constants that depend only on m. If furthermore,

lim sup
n→∞

n−(m/2)+1hd(1−(m/2)) < C,

for some constant C > 0, then

sup
(x,τ)∈S

sup
P∈P

E
[
E∗
[
||
√
nhdz∗N,τ (x)||m

]]
≤

(
15m

logm

)m
max

{
C̄1, 2C̄1C

}
, and(D.2)

sup
(x,τ)∈X ε/2×T

sup
P∈P

E
[
E∗
[
||
√
nhdz∗n,τ (x)||m

]]
≤

(
15m

logm

)m
max

{
C̄2, 2C̄2C

}
,

where C̄1, C̄2 > 0 are the constants that appear in (D.1).

Proof of Lemma D5. Let q∗n,τ,j(x) be the j-th entry of q∗n,τ (x). For the first statement of the

lemma, it suffices to observe that for each ε ∈ (0, ε1), there exist C1 > 0 and C̄1 > 0 such

that

sup
τ∈T ,x∈Sτ (ε)

E
[(

E∗
[
|q∗n,τ,j(x)|m

])2
]
≤
C1h

2d
∑J

j=1 supτ∈T ,x∈Sτ (ε) supP∈P E
[
k̃2
n,τ,j,m(x)

]
hdm

≤ C̄1h
2d(1−(m/2)),

where the last inequality uses Lemma D4. The second inequality in (D.1) follows similarly.
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Let us consider (D.2). Let z∗N,τ,j(x) be the j-th entry of z∗N,τ (x). Then using Rosenthal’s

inequality (e.g. (2.3) of Giné, Mason, and Zaitsev (2003)), for some constant C1 > 0,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E
[
E∗[|
√
nhdz∗N,τ,j(x)|m]

]
≤

(
15m

logm

)2m

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

{(
E
[
E∗
(
q∗2n,τ,j(x)

)])m/2
+ E

[
n−(m/2)+1E∗|q∗n,τ,j(x)|m

]}
.

The first expectation is bounded by C̄1 by (D.1).

The second expectation is bounded by C̄1n
−(m/2)+1hd(1−(m/2)). This gives the first bound

in (D.2). The second bound in (D.2) can be obtained similarly.

For any Borel sets B,B′ ⊂ S and A,A′ ⊂ NJ , let

σ̃Rn,A,A′(B,B
′) ≡

∫
T

∫
T

∫
B′τ2

∫
Bτ1

C∗n,τ1,τ2,A,A′(x, v)dxdvdτ1dτ2,

where Bτ ≡ {x ∈ X : (x, τ) ∈ B},

(D.3) C∗n,τ1,τ2,A,A′(x, v) ≡ h−dCov∗
(

ΛA,p(
√
nhdz∗N,τ1(x)),ΛA′,p(

√
nhdz∗N,τ2(v))

)
,

and Cov∗ represents covariance under P ∗. We also define

(D.4) σ̃Rn,A(B) ≡ σ̃Rn,A,A(B,B),

for brevity. Also, let Σ∗n,τ1,τ2(x, u) be a J × J matrix whose (j, k)-th entry is given by

ρ̃n,τ1,τ2,j,k(x, u). Fix ε̄ > 0 and define

Σ̃∗n,τ1,τ2,ε̄(x, u) ≡

[
Σ∗n,τ1,τ1(x, 0) + ε̄IJ

Σ∗n,τ1,τ2(x, u)

Σ∗n,τ1,τ2(x, u)

Σ∗n,τ2,τ2(x, 0) + ε̄IJ

]
.

We also define

ξ∗N,τ1,τ2(x, u; η1, η2) ≡
√
nhdΣ

∗−1/2
n,τ1,τ2,ε̄(x, u)

[
z∗N,τ1(x; η1)

z∗N,τ2(x+ uh; η2)

]
,

where η1 ∈ RJ and η2 ∈ RJ are random vectors that are independent, and independent of

((Y ∗i , X
∗
i )∞i=1, (Yi, Xi)

∞
i=1, N,N1), each following N(0, ε̄IJ), and define z∗N,τ (x; η1) ≡ z∗N,τ (x) +

η1/
√
nhd.

Lemma D6. Suppose that Assumption A6(i) holds and that nhd →∞, and

limsupn→∞n
−(m/2)+1hd(1−(m/2)) < C,

for some C > 0 and some m ∈ [2(p+ 1),M ].
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Then for any sequences of Borel sets Bn, B
′
n ⊂ S and for any A,A′ ⊂ NJ ,

sup
P∈P

E
(∣∣∣(σ̃Rn,A,A′(Bn, B

′
n)
)2 − σ2

n,A,A′(Bn, B
′
n)
∣∣∣)→ 0,

where σ2
n,A,A′(Bn, B

′
n) is as defined in (C.15).

Proof of Lemma D6. The proof is very similar to that of Lemma C6. For brevity, we sketch

the proof here. Define for ε̄ > 0,

σ̃Rn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g̃1n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

τ̃n,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g̃2n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

where

g̃1n,τ1,τ2,ε̄(x, u) ≡ h−dCov∗(ΛA,p(
√
nhdz∗N,τ1(x; η1)),ΛA′,p(

√
nhdz∗N,τ2(x+ uh; η2))), and

g̃2n,τ1,τ2,ε̄(x, u) ≡ Cov∗(ΛA,p(Z̃n,τ1,τ2,ε̄(x)),ΛA′,p(Z̃n,τ1,τ2,ε̄(x+ uh))),

and [Z̃>n,τ1,τ2,ε̄(x), Z̃>n,τ1,τ2,ε̄(z)]> is a centered normal R2J -valued random vector with the same

covariance matrix as the covariance matrix of [
√
nhdz∗>N,τ1(x; η1),

√
nhdz∗>N,τ2(z; η2)]> under the

product measure of the bootstrap distribution P ∗ and the distribution of (η>1 , η
>
2 )>. As in

the proof of Lemma C6, it suffices for the lemma to show the following two statements.

(Step 1 ): As n→∞,

sup
P∈P

E
(∣∣σ̃Rn,A,A′,ε̄(Bn, B

′
n)− τ̃n,A,A′,ε̄(Bn, B

′
n)
∣∣) → 0, and

sup
P∈P

E (|τ̃n,A,A′,ε̄(Bn, B
′
n)− σn,A,A′,ε̄(Bn, B

′
n)|) → 0.

(Step 2 ): For some C > 0 that does not depend on ε̄ or n,

sup
P∈P
|σ̃Rn,A,A′,ε̄(Bn, B

′
n)− σ̃Rn,A,A′(Bn, B

′
n)| ≤ C

√
ε̄.

Then the desired result follows by sending n → ∞ and ε̄ ↓ 0, while chaining Steps 1 and 2

and the second convergence in Step 2 in the proof of Lemma C6.

We first focus on the first statement of (Step 1). For any vector v = [v>1 ,v
>
2 ]> ∈ R2J , we

define

(D.5) C̃n,p(v) ≡ ΛA,p

([
Σ̃
∗1/2
n,τ1,τ2,ε̄(x, u)v

]
1

)
ΛA′,p

([
Σ̃
∗1/2
n,τ1,τ2,ε̄(x, u)v

]
2

)
,

where [a]1 of a vector a ∈ R2J indicates the vector of the first J entries of a, and [a]2 the

vector of the remaining J entries of a. Also, similarly as in (C.19),

(D.6) λmin

(
Σ̃∗n,τ1,τ2,ε̄(x, u)

)
≥ ε̄.
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Let q̄∗n,τ (x; η1) be the column vector of entries q̄∗n,τ,j(x; η1j) with j running in the set NJ ,

and with

q̄∗n,τ,j(x; η1j) ≡ p∗n,τ,j(x) + η1j,

where

p∗n,τ,j(x) =
1√
hd

∑
1≤i≤N1

{
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)
− E

[
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)]}
,

η1j is the j-th entry of η1, and N1 is a Poisson random variable with mean 1 and ((η1j)j∈A, N1)

is independent of {(Y >i , X>i , Y ∗>i , X∗>i )}ni=1. Let [p
∗(i)
n,τ1(x), p

∗(i)
n,τ2(x + uh)] be the i.i.d. copies

of [p∗n,τ1(x), p∗n,τ2(x + uh)] conditional on the observations {(Yi, Xi)}ni=1, and η
(i)
1 and η

(i)
2 be

i.i.d. copies of η1 and η2. Define

q∗(i)n,τ1
(x; η

(i)
1 ) = p∗(i)n,τ1

(x) + η
(i)
1 and q∗(i)n,τ2

(x+ uh; η
(i)
2 ) = p∗(i)n,τ2

(x+ uh) + η
(i)
2 .

Note that

1√
n

n∑
i=1

[
q
∗(i)
n,τ1(x; η

(i)
1 )

q
∗(i)
n,τ2(x+ uh; η

(i)
2 )

]
=

1√
n

n∑
i=1

[
p
∗(i)
n,τ1(x)

p
∗(i)
n,τ2(x+ uh)

]
+

1√
n

n∑
i=1

[
η

(i)
1

η
(i)
2

]
.

The last sum has the same distribution as [η>1 , η
>
2 ]> and the leading sum on the right-hand

side has the same bootstrap distribution as that of [z∗>N,τ1(x), z∗>N,τ2(x+uh)]>, P -a.e. Therefore,

we conclude that

ξ∗N,τ1,τ2(x, u; η
(i)
1 , η

(i)
2 )

d∗
=

1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u; η
(i)
1 , η

(i)
2 ),

where
d∗
= indicates the distributional equivalence with respect to the product measure of the

bootstrap distribution P ∗ and the joint distribution of (η
(i)
1 , η

(i)
2 ), P -a.e, and

W̃ (i)
n,τ1,τ2

(x, u; η
(i)
1 , η

(i)
2 ) ≡ Σ̃

∗−1/2
n,τ1,τ2,ε̄(x, u)

[
q

(i)
n (x; η

(i)
1 )

q
(i)
n (x+ uh; η

(i)
2 )

]
.

Following the arguments in the proof of Lemma C6, we find that for each u ∈ U , and for

ε ∈ (0, ε1) with ε1 as in Assumption A6(i),

sup
(x,u)∈(Sτ1∪Sτ2 )×U

sup
P∈P

E
[
E∗||W̃ (i)

n,τ1,τ2
(x, u; η

(i)
1 , η

(i)
2 )||3

]
≤ C1 sup

(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U
sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ1

(x; η
(i)
1 )||3

]
+C1 sup

(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U
sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ2

(x+ uh; η
(i)
2 )||3

]
,
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for some C1 > 0. As for the leading term,

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ1

(x; η
(i)
1 )||3

]
≤ sup

(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U
sup
P∈P

√
E

[(
E∗||q∗(i)n,τ1(x; η

(i)
1 )||3

)2
]

× sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

√
E
[
λ6

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)]
≤ C2ε̄

−3

√
hd

,

by Lemma D5 and (D.6). Similarly, we observe that

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ2

(x+ uh; η
(i)
2 )||3

]
≤ C2ε̄

−3

√
hd

.

Define

cn,τ1,τ2(x, u) = C̃n,p

(
1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u; η
(i)
1 , η

(i)
2 )

)
.

Let Φn,τ1,τ2(·;x, u) be the joint CDF of the random vector (Z̃>n,τ1,τ2,ε̄(x), Z̃>n,τ1,τ2,ε̄(x + uh))>.

By Theorem 1 of Sweeting (1977),

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E

[∣∣∣∣cn,τ1,τ2(x, u)−
∫
C̃n,p(ζ)dΦn,τ1,τ2(ζ;x, u)

∣∣∣∣](D.7)

≤ C1√
n

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
[
E∗||W̃ (i)

n,τ1,τ2
(x, u; η

(i)
1 , η

(i)
2 )||3

]
≤ C2ε̄

−3

√
nhd

.

Hence

E

[∣∣∣∣∣
∫
Bτ1

∫
U
{g̃1n,τ1,τ2,ε̄(x, u)− g̃2n,τ1,τ2,ε̄(x, u)}wτ1,B(x)wτ2,B′(x+ uh)dudx

∣∣∣∣∣
]

≤
∫
Bτ1

∫
U

E |g̃1n,τ1,τ2,ε̄(x, u)− g̃2n,τ1,τ2,ε̄(x, u)|wτ1,B(x)wτ2,B′(x+ uh)dudx

≤
∫
Bτ1

wτ1,B(x)wτ2,B′(x)dx

× sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E |g̃1n,τ1,τ2,ε̄(x, u)− g̃2n,τ1,τ2,ε̄(x, u)|

→ 0,

as n → ∞. The last convergence is due to (D.7) and hence uniform over (τ1, τ2) ∈ T × T .

The proof of (Step 1) is thus complete.

We turn to the second statement of (Step 1). Similarly as in the proof of Step 1 in the

proof of Lemma C6, the second statement of Step 1 follows by Lemma D4.
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Now we turn to (Step 2). In view of the proof of Step 2 in the proof of Lemma C6, it

suffices to show that with s = (p+ 1)/(p− 1) if p > 1 and s = 2 if p = 1,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2s(p−1)
]

< C and(D.8)

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x; η1)

∥∥∥2s(p−1)
]

< C,

for some C > 0. First note that for any q > 0,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhd{z∗N,τ (x)− z∗N,τ (x; η1)}

∥∥∥2q
]

= E
∥∥√ε̄Z∥∥2q

= Cε̄q,

where Z ∈ RJ is a centered normal random vector with covariance matrix IJ . Also, we

deduce that for some constants C1, C2 > 0,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2s(p−1)
]

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x; η1)

∥∥∥2s(p−1)
]

+ C1ε̄
s(p−1) ≤ C1 + C2ε̄

s(p−1),

by the third statement of Lemma D5. This leads to the first and second statements of (D.8).

Thus the proof of the lemma is complete.

Lemma D7. Suppose that for some small ν1 > 0, n−1/2h−d−ν1 → ∞, as n → ∞ and the

conditions of Lemma C6 hold. Then there exists C > 0 such that for any sequence of Borel

sets Bn ⊂ S, and A ⊂ NJ , from some large n on,

sup
P∈P

E

(
E∗
[∣∣∣∣h−d/2 ∫

Bn

{
ΛA,p(

√
nhdz∗n,τ (x))− E∗

[
ΛA,p(

√
nhdz∗N,τ (x))

]}
dQ(x, τ)

∣∣∣∣])
≤ C

√
Q(Bn).

Proof of Lemma D7. We follow the proof of Lemma C7 and show that for some C > 0, we

have the following:

Step 1: supP∈P E
(
E∗
[∣∣∣h−d/2 ∫Bn {ΛA,p(

√
nhdz∗n,τ (x))− ΛA,p(

√
nhdz∗N,τ (x))

}
dQ(x, τ)

∣∣∣]) ≤
CQ(Bn),

Step 2:

sup
P∈P

E

(
E∗
[∣∣∣∣h−d/2 ∫

Bn

{
ΛA,p(

√
nhdz∗n,τ (x))− ΛA,p(

√
nhdz∗N,τ (x))

}
dQ(x, τ)

∣∣∣∣])
≤ C

√
Q(Bn).
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Proof of Step 1: Similarly as in the proof of Step 1 in the proof of Lemma C7, we first

write

z∗n,τ (x) = z∗N,τ (x) + v∗n,τ (x) + s∗n,τ (x),

where

v∗n,τ (x) ≡
(
n−N
n

)
· 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]
and

s∗n,τ (x) ≡ 1

nhd

n∑
i=N+1

{
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)
− E∗

[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]}
.

Similarly as in the proof of Lemma C7, we deduce that for some C1, C2 > 0,∣∣∣∣∫
Bn

{
ΛA,p

(
z∗n,τ (x)

)
− ΛA,p

(
z∗N,τ (x)

)}
dQ(x, τ)

∣∣∣∣
≤ C1

∫
Bn

∥∥v∗n,τ (x)
∥∥(∥∥z∗n,τ (x)

∥∥p−1
+
∥∥z∗N,τ (x)

∥∥p−1
)
dQ(x, τ)

+C2

∫
Bn

∥∥s∗n,τ (x)
∥∥(∥∥z∗n,τ (x)

∥∥p−1
+
∥∥z∗N,τ (x)

∥∥p−1
)
dQ(x, τ)

= D∗1n +D∗2n, say.

To deal with D∗1n and D∗2n, we first show the following:

Claim 1: sup(x,τ)∈S supP∈P E
(
E∗[||v∗n,τ (x)||2]

)
= O(n−1).

Claim 2: sup(x,τ)∈S supP∈P E
(
E∗[||s∗n,τ (x)||2]

)
= O(n−3/2h−d).

Proof of Claim 1: Similarly as in the proof of Lemma C7, we note that

E
(
E∗[||v∗n,τ (x)||2]

)
≤ E

∣∣∣∣(n−Nn
)∣∣∣∣2 E

[∥∥∥∥ 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]∥∥∥∥2
]
.

By the first statement of Lemma D5, we have

sup
(x,τ)∈S

sup
P∈P

E

[∥∥∥∥ 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]∥∥∥∥2
]

= O(1).

Since E |(n−N)/n|2 = O(n−1), we obtain Claim 1.

Proof of Claim 2: Let

s∗n,τ (x; η1) = s∗n,τ (x) +
(N − n)η1

n3/2hd/2
,
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where η1 is a random vector independent of ((Y ∗i , X
∗
i )ni=1, (Yi, Xi)

n
i=1, N) and followsN(0, ε̄IJ).

Note that

sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x)

∥∥∥2
)

≤ 2 sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x; η1)

∥∥∥2
)

+
2

n
E

∥∥∥∥(N − n)η1√
n

∥∥∥∥2

≤ 2 sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x; η1)

∥∥∥2
)

+
Cε̄2

n
,

as in the proof of Lemma C7. As for the leading expectation on the right hand side of (C.27),

we let C1 > 0 be as in Lemma D4 and note that

E

(
E∗
∥∥∥√nhds∗n,τ (x; η1)

∥∥∥2
)

=
∑
j∈NJ

E

E∗

(
1√
n

n∑
i=N+1

q
∗(i)
n,τ,j(x; η

(i)
1j )

)2


=
1

n

∑
j∈NJ

E

σ̃2
n,τ,j(x)E∗

(
n∑

i=N+1

q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

)2
 ,

where q
∗(i)
n,τ (x; η

(i)
1 )’s (i = 1, 2, · · · ) are as defined in the proof of Lemma D6 and q

∗(i)
n,τ,j(x; η

(i)
1j )

is the j-th entry of q
∗(i)
n,τ (x; η

(i)
1 ) and σ̃2

n,τ,j(x) = V ar∗(q
∗(i)
n,τ,j(x; η

(i)
1j )) > 0 and V ar∗ denotes the

variance with respect to the joint distribution of ((Y ∗i , X
∗
i )ni=1, η

(i)
1j ) conditional on (Yi, Xi)

n
i=1.

We apply Lemma 1(i) of Horváth (1991) to deduce that

E∗

(
n∑

i=N+1

q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

)2

≤ C
√
n+ CE∗

∣∣∣∣∣q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

∣∣∣∣∣
3
(D.9)

+CE∗

∣∣∣∣∣q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

∣∣∣∣∣
4
 ,

for some C > 0. Using this, Lemma D5, and following arguments similarly as in (C.29),

(C.30) and (C.31), we conclude that

sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x)

∥∥∥2
)
≤ O

(
n−1h−ν1

)
+O

(
n−1/2 + n−3/4h−d/2−ν1 + n−1h−d−ν1

)
= O

(
n−1h−ν1

)
+O

(
n−1/2

)
,

since n−1/2h−d−ν1 → 0. This delivers Claim 2.

Using Claims 1 and 2, and following the arguments in the proof of Lemma C7, we obtain

(Step 1).
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Proof of Step 2: We can follow the proof of Lemma C6 to show that

E

[
E∗
[
h−d/2

∫
Bn

(
ΛA,p(

√
nhdz∗N,τ (x))− E∗

[
ΛA,p(

√
nhdz∗N,τ (x))

])
dQ(x, τ)

]2
]

= E

[∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

∫
U
C∗n,τ1,τ2,A,A′(x, u)dudxdτ1dτ2

]
+ o(1)

≤ C

∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

dxdτ1dτ2 + o(1) ≤ CQ(Bn),

where C∗n,τ1,τ2,A,A′(x, v) is as defined in (D.3). We obtain the desired result of Step 2.

Let C ⊂ Rd, αP ≡ P{X ∈ Rd\C} and Bn,A(cn; C) be as introduced prior to Lemma C8.

Define

ζ∗n,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdz∗n,τ (x))dQ(x, τ), and

ζ∗N,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdz∗N,τ (x))dQ(x, τ).

Let µA’s be real numbers indexed by A ⊂ NJ . We also define Bn,A(cn; C) as prior to Lemma

C8 and let

S∗n ≡ h−d/2
∑
A∈NJ

µA
{
ζ∗N,A − E∗ζ∗N,A

}
,

U∗n ≡
1√
n

{
N∑
i=1

1{X∗i ∈ C} − nP ∗ {X∗i ∈ C}

}
, and

V ∗n ≡ 1√
n

{
N∑
i=1

1{X∗i ∈ Rd\C} − nP ∗
{
X∗i ∈ Rd\C

}}
.

We let

H∗n ≡
[

S∗n
σn(C)

,
U∗n√

1− αP

]
.

The following lemma is a bootstrap counterpart of Lemma C8.

Lemma D8. Suppose that the conditions of Lemma D6 hold and that cn →∞, as n→∞.
(i) If lim infn→∞ infP∈P σ

2
n(C) > 0, then for all a > 0,

sup
P∈P

P

{
sup
t∈R2

|P ∗ {H∗n ≤ t} − P {Z ≤ t}| > a

}
→ 0.

(ii) If lim supn→∞ σ
2
n(C) = 0, then, for each (t1, t2) ∈ R2 and a > 0,

sup
P∈P

P

{∣∣∣∣P ∗{S∗n ≤ t1 and
U∗n√

1− αP
≤ t2

}
− 1 {0 ≤ t1}P {Z1 ≤ t2}

∣∣∣∣ > a

}
→ 0.
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Proof of Lemma D8. Similarly as in the proof of Lemma D8, we fix ε̄ > 0 and let

H∗n,ε̄ ≡
[

S∗n,ε̄
σn,ε̄(C)

,
U∗n√

1− αP

]>
,

where S∗n,ε̄ is equal to S∗n, except that ζ∗N,A is replaced by

ζ∗N,A,ε̄ ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdz∗N,τ (x; η1))dQ(x, τ),

and z∗N,τ (x; η1) is as defined prior to Lemma D6. Also let

C̃n ≡ E∗H∗nH
∗>
n and C̃n,ε̄ ≡ E∗H∗n,ε̄H

∗>
n,ε̄.

First, we show the following statements.

Step 1: supP∈PP
{
|Cov∗(S∗n,ε̄ − S∗n, U∗n)| > M

√
ε̄
}
→ 0, as n→∞ and M →∞.

Step 2: For any a > 0, supP∈PP
{∣∣Cov(S∗n,ε̄, U

∗
n)
∣∣ > ahd/2

}
→ 0, as n→∞.

Step 3: There exists c > 0 such that from some large n on,

inf
P∈P

λmin(C̃n) > c.

Step 4: For any a > 0, as n→∞,

sup
P∈P

P

{
sup
t∈R2

∣∣∣P ∗ {C̃−1/2
n H∗n ≤ t

}
→ P {Z ≤ t}

∣∣∣ > a

}
→ 0.

Combining Steps 1-4, we obtain (i) of Lemma C8.

Proof of Step 1: Observe that∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣ ≤ C||η1||
∫
Bn,A(cn;C)

∥∥∥√nhdz∗N,τ (x)
∥∥∥p−1

dQ(x, τ).

As in the proof of Step 1 in the proof of Lemma C8, we deduce that

E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2] ≤ Cε̄

∫
Bn,A(cn;C)

E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2p−2

dQ(x, τ).

Hence for some C1, C2 > 0,

E
(
E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2])(D.10)

≤ Cε̄

∫
Bn,A(cn;C)

E

(
E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2p−2
)
dQ(x, τ) ≤ C2ε̄

by the second statement of Lemma D5.
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On the other hand, observe that E∗U∗2n ≤ 1. Hence

P
{
|Cov∗(S∗n,ε̄ − S∗n, U∗n)| > M

√
ε̄
}
≤ |NJ | · P

{
max
A∈NJ

E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2] > M2ε̄

}
.

By Chebychev’s inequality, the last probability is bounded by (for some C > 0 that does not

depend on P ∈ P)

M−2ε̄−1
∑
A∈NJ

E
(
E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2]) ≤ CM−2,

by (D.10). Hence we obtain the desired result.

Proof of Step 2: Let Σ̃∗2n,τ,ε̄ be the covariance matrix of [(q∗n,τ (x) + η1)>, Ũ∗n]> under P ∗,

where Ũ∗n = U∗n/
√
P{X ∈ C}. Using Lemma D4 and following the same arguments in (C.32),

we find that

sup
(x,τ)∈S

sup
P∈P

E
[
E∗
[
q∗n,τ,j(x)Ũ∗n

]]
≤ C2h

d/2,

for some C2 > 0. Therefore, using this result and following the proof of Step 3 in the proof

of Lemma C8, we deduce that (everywhere)

(D.11) λmin

(
Σ̃∗2n,τ,ε̄

)
≥ ε̄−

∥∥A∗n,τ (x)
∥∥ ,

for some random matrix A∗n,τ (x) such that

sup
(x,τ)∈S

sup
P∈P

E
[∥∥A∗n,τ (x)

∥∥] = O(hd/2).

Hence by (D.11),

inf
(x,τ)∈S

inf
P∈P

P
{
λmin

(
Σ̃∗2n,τ,ε̄

)
≥ ε̄/2

}
(D.12)

≥ inf
(x,τ)∈S

inf
P∈P

P
{∥∥A∗n,τ (x)

∥∥ ≤ ε̄/2
}

≥ 1− 2

ε̄
sup

(x,τ)∈S
sup
P∈P

E
[∥∥A∗n,τ (x)

∥∥]→ 1,

as n→∞.

Now note that (
q∗n,τ,j(x), Ũ∗n

)
d∗
=

(
1√
n

n∑
k=1

q
(k)∗
n,τ,j(x),

1√
n

n∑
k=1

Ũ (k)∗
n

)
,

where (q
(k)∗
n,τ,j(x), Ũ

(k)∗
n )’s with k = 1, · · ·, n are i.i.d. copies of (q∗n,τ,j(x), Ū∗n), and

Ū∗n ≡
1√

nP{X ∈ C}

{ ∑
1≤i≤N1

1{X∗i ∈ C} − P ∗ {X∗i ∈ C}

}
.
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Note also that by Rosenthal’s inequality,

limsupn→∞ sup
P∈P

P
{

E∗
[
|Ũ (k)∗

n |3
]
> M

}
→ 0,

as M →∞. Define

W ∗
n,τ (x; η1) ≡ Σ̃

∗−1/2
2n,τ,ε̄

[
q∗n,τ (x) + η1

Ũ∗n

]
.

Using (D.12) and Lemma D5, and following the same arguments in the proof of Step 2 in

the proof of Lemma C8, we deduce that

limsupn→∞ sup
(x,τ)∈S

sup
P∈P

P
{

E∗
∥∥W ∗

n,τ (x; η1)
∥∥3
> Mε̄−3/2h−d/2

}
→ 0,

as M →∞. For any vector v = [v>1 , v2]> ∈ RJ+1, we define

D̃n,τ,p(v) ≡ Λp

([
Σ̃
∗1/2
2n,τ,ε̄v

]
1

) [
Σ̃
∗1/2
2n,τ,ε̄v

]
2
,

where [a]1 of a vector a ∈ RJ+1 indicates the vector of the first J entries of a, and [a]2 the

last entry of a. By Theorem 1 of Sweeting (1977), we find that (with ε̄ > 0 fixed)

E∗

[
D̃n,τ,p

(
1√
n

n∑
i=1

W (i)∗
n,τ (x; η1)

)]
= E

[
D̃n,τ,p (ZJ+1)

]
+OP (n−1/2h−d/2), P-uniformly,

where ZJ+1 ∼ N(0, IJ+1) and W
(i)∗
n,τ (x; η1)’s are i.i.d. copies of W ∗

n,τ (x; η1) under P ∗. Since

O(n−1/2h−d/2) = o(hd/2),

Cov∗
(

ΛA,p

(√
nhdz∗N,τ (x; η1)

)
, U∗n

)
= E∗

[
D̃n,τ,p

(
1√
n

n∑
i=1

W (i)∗
n,τ (x)

)]
+ oP (hd/2),

uniformly in P ∈ P , and that E∗[D̃n,τ,p (ZJ+1)] = 0, we conclude that

(D.13) sup
(x,τ)∈S

∣∣∣Cov∗ (ΛA,p

(√
nhdz∗N,τ (x; η1)

)
, U∗n

)∣∣∣ = oP (hd/2),

uniformly in P ∈ P .

Now for some C > 0,

P
{∣∣Cov(S∗n,ε̄, U

∗
n)
∣∣ > ahd/2

}
≤ P

{
C sup

(x,τ)∈S

∣∣∣Cov∗ (ΛA,p

(√
nhdz∗N,τ (x; η1)

)
, U∗n

)∣∣∣ > ahd/2

}
.

The last probability vanishes uniformly in P ∈ P by (D.13). By applying the Dominated

Convergence Theorem, we obtain (Step 2).

Proof of Step 3: First, we show that

(D.14) V ar∗ (S∗n) = σ2
n(C) + oP (1),
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where oP (1) is uniform over P ∈ P . Note that

V ar∗ (S∗n) =
∑
A∈NJ

∑
A′∈NJ

µAµA′Cov
∗(ψ∗n,A, ψ

∗
n,A′),

where ψ∗n,A ≡ h−d/2(ζ∗N,A − E∗ζ∗N,A). By Lemma D6, we find that for A,A ∈ NJ ,

Cov∗(ψ∗n,A, ψ
∗
n,A′) = σn,A,A′(Bn,A(cn; C), Bn,A′(cn; C)) + oP (1),

uniformly in P ∈ P , yielding the desired result of (D.14).

Combining Steps 1 and 2, we deduce that for some C > 0,

sup
P∈P
|Cov∗(S∗n, U∗n)| ≤

√
ε̄ ·OP (1) + oP (hd/2).

Let σ̃2
1 ≡ V ar∗(S∗n) and σ̃2

2 ≡ 1− α̃P , where α̃P ≡ P ∗
{
X∗i ∈ Rd\C

}
. Observe that

σ̃2
1 = σn(C) + oP (1) > C1 + oP (1), P-uniformly,

for some C1 > 0 that does not depend on n or P by the assumption of the lemma. Also note

that

α̃P = αP + oP (1) < 1− C2 + oP (1), P-uniformly,

for some C2 > 0. Therefore, following the same arguments as in (C.37), we obtain the desired

result.

Proof of Step 4: We take {Rn,i : i ∈ Zd}, and define

BA,x(cn) ≡ {τ ∈ T : (x, τ) ∈ BA(cn)} ,

Bn,i ≡ Rn,i ∩ C,

Bn,A,i(cn) ≡ (Bn,i × T ) ∩BA(cn),

and In ≡ {i ∈ Zdn : Bn,i 6= ∅} as in the proof of Step 4 in the proof of Lemma C8. Also,

define

∆∗n,A,i ≡ h−d/2
∫
Bn,i

∫
BA,x(cn)

{
ΛA,p(z

∗
N,τ (x))− E∗

[
ΛA,p(z

∗
N,τ (x))

]}
dτdx.

Also, define

α∗n,i ≡
∑

A∈NJ µA∆∗n,A,i√
V ar∗ (S∗n)

and

u∗n,i ≡
1√
n

{
N∑
i=1

1 {X∗i ∈ Bn,i} − nP ∗{X∗i ∈ Bn,i}

}
and write

S∗n√
V ar∗ (S∗n)

=
∑
i∈In

α∗n,i and U∗n =
∑
i∈In

u∗n,i.
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By the properties of Poisson processes, one can see that the array {(α∗n,i, u∗n,i)}i∈In is an array

of 1-dependent random field under P ∗. For any q = (q1, q2) ∈ R2\{0}, let y∗n,i ≡ q1α
∗
n,i+q2u

∗
n,i

and write

V ar∗

(∑
i∈In

y∗n,i

)
= q2

1 + q2
2(1− α̃P ) + 2q1q2c̃n,P ,

uniformly over P ∈ P , where c̃n,P = Cov∗(S∗n, U
∗
n). On the other hand, following the proof

of Lemma A8 of Lee, Song, and Whang (2013) using Lemma D4, we deduce that

(D.15)
∑
i∈In

E∗|y∗n,i|r = oP (1), P-uniformly,

as n → ∞, for any r ∈ (2, (2p + 2)/p], uniformly over P ∈ P . By Theorem 1 of Shergin

(1993), we have

sup
t∈R

∣∣∣∣∣P ∗
{

1√
q2

1 + q2
2(1− α̃P ) + 2q1q2c̃n,P

∑
i∈In

y∗n,i ≤ t

}
− Φ∗ (t)

∣∣∣∣∣
≤ C

{q2
1 + q2

2(1− α̃P ) + 2q1q2c̃n,P}r/2

{∑
i∈In

E∗|y∗n,i|r
}1/2

= oP (1),

for some C > 0 uniformly in P ∈ P , by (D.15). By Lemma C2(i), we have for each t ∈ R

and q ∈ R2\{0} as n→∞,∣∣∣∣∣∣E∗
exp

it q>H∗n√
q>C̃nq

− exp

(
−t

2

2

)∣∣∣∣∣∣ = oP (1),

uniformly in P ∈ P . Thus by Lemma C2(ii), for each t ∈ R2, we have∣∣∣P ∗ {C̃−1/2
n H∗n ≤ t

}
− P {Z ≤ t}

∣∣∣ = oP (1).

Since the limit distribution of C̃
−1/2
n H∗n is continuous, the convergence above is uniform in

t ∈ R2.

(ii) We fix P ∈ P such that limsupn→∞σ
2
n(C) = 0. Then by (D.14) above and Lemma D6,

V ar∗ (S∗n) = σ2
n(C) + oP (1) = oP (1).

Hence, we find that S∗n = oP ∗(1) in P . The desired result follows by applying Theorem 1 of

Shergin (1993) to the sum U∗n =
∑

i∈In u
∗
n,i, and then applying Lemma C2.

Lemma D9. Let C be the Borel set in Lemma D8.
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(i) Suppose that the conditions of Lemma D8(i) are satisfied. Then for each a > 0, as

n→∞,

sup
P∈P

P

{
sup
t∈R

∣∣∣∣∣P
{
h−d/2

∑
A∈NJ µA

{
ζ∗n,A − E∗ζ∗N,A

}
σn(C)

≤ t

}
− Φ(t)

∣∣∣∣∣ > a

}
→ 0.

(ii) Suppose that the conditions of Lemma D8(ii) are satisfied. Then for each a > 0, as

n→∞,

sup
P∈P

P

{∣∣∣∣∣h−d/2 ∑
A∈NJ

µA
{
ζ∗n,A − E∗ζ∗N,A

}∣∣∣∣∣ > a

}
→ 0.

Proof of Lemma D9. The proofs are precisely the same as those of Lemma C9, except that

we use Lemma D8 instead of Lemma C8 here.

Lemma D10. Suppose that the conditions of Lemma C5 hold. Then for any small ν > 0,

there exists a positive sequence εn = o(hd) such that for all r ∈ [2,M/2] (with M > 0 being

as in Assumption A6(i)),

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r = O

(
h−(r−2)(M−1

M−2)d−ν
)
,

where ηn ∈ RJ is distributed as N(0, εnIJ) and independent of ((Y >i , X
>
i )∞i=1, N) in the

definition of qn,τ (x), and

(D.16) Σn,τ,εn(x) ≡ Σn,τ,τ (x, 0) + εnIJ and qn,τ (x; ηn) ≡ qn,τ (x) + ηn.

Suppose furthermore that λmin(Σn,τ,τ (x, 0)) > c > 0 for some c > 0 that does not depend on

n or P ∈ P. Then

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r = O

(
h−(r−2)d/2

)
.

Proof of Lemma D10. We first establish the following fact.

Fact: Suppose that W is a random vector such that E||W ||2 ≤ cW for some constant cW > 0.

Then, for any r ≥ 2 and a positive integer m ≥ 1,

E [||W ||r] ≤ Cm
(
E
[
||W ||am(r)

])1/(2m)
,

where am(r) = 2m(r − 2) + 2, and Cm > 0 is a constant that depends only on m and cW .

Proof of Fact: The result follows by repeated application of Cauchy-Schwarz inequality:

E||W ||r ≤
(
E||W ||2(r−1)

)1/2 (
E||W ||2

)1/2 ≤ c
1/2
W

(
E||W ||2(r−1)

)1/2
,

where we replace r on the left hand side by 2(r − 1), and repeat the procedure to obtain

Fact.

Let us consider the first statement of the lemma. Using Fact, we take a small ν1 > 0 and
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εn = hd+ν1 , and choose a largest integer m ≥ 1 such that am(r) ≤ M . Such an m exists

because 2 ≤ r ≤M/2. We bound

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r ≤ Cm

(
E||Σ−1/2

n,τ,εn(x)qn,τ (x; ηn)||am(r)
)1/(2m)

.

By Lemma C5, we find that

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||am(r)(D.17)

≤ sup
(x,τ)∈S

sup
P∈P

λam(r)/2
max

(
Σ−1
n,τ,εn(x)

)
E||qn,τ (x; ηn)||am(r)

≤ λ
−am(r)/2
min (εnIJ)h(1−(am(r)/2))d.

By the definition of εn = hd+ν1 ,

ε−am(r)/2
n h(1−(am(r)/2))d = h(1−am(r))d−am(r)ν1/2.

We conclude that

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r ≤ Cm

(
h(1−am(r))d−am(r)ν1/2

)1/2m

= Cm
(
h(−1−2m(r−2))d−(2m(r−2)+2)ν1/2

)1/2m

= Cmh
(−2−m−(r−2))d−((r−2)+2−m+1)ν1/2.

Since am(r) ≤M , or 2−m ≥ (r − 2)/(M − 2), the last term is bounded by

Cmh
−(r−2)(M−1

M−2)d−((r−2)+
2(r−2)
M−2 )ν1/2.

By taking ν1 small enough, we obtain the desired result.

Now, let us turn to the second statement of the lemma. Since, under the additional

condition,

λam(r)/2
max

(
Σ−1
n,τ,εn(x)

)
< c−am(r)/2,

the last bound in (D.17) turns out to be

c−am(r)/2h(1−(am(r)/2))d.

Therefore, we conclude that

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r ≤ Cm

(
c−am(r)/2h(1−(am(r)/2))d

)1/2m

= Cmc
−{(r−2)+21−m}/2h(2−m−{(r−2)+21−m}/2)d

= Cmc
−{(r−2)+21−m}/2h−(r−2)d/2.

Again, using the inequality 2−m ≥ (r − 2)/(M − 2), we obtain the desired result.
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Lemma D11. Suppose that the conditions of Lemma D5 hold. Then for any small ν > 0,

there exists a positive sequence εn = o(hd) such that for all r ∈ [2,M/2] (with M > 0 being

as in Assumption A6(i)),

sup
(x,τ)∈S

E∗||Σ̃−1/2
n,τ,εn(x)q∗n,τ (x; ηn)||r = OP

(
h−(r−2)(M−1

M−2)d−ν
)
, uniformly in P ∈ P ,

where ηn ∈ RJ is distributed as N(0, εnIJ) and independent of ((Y ∗>i , X∗>i )ni=1, (Y
>
i , X

>
i )ni=1, N)

in the definition of q∗n,τ (x), and

Σ̃n,τ,εn(x) ≡ Σ̃n,τ,τ (x, 0) + εnIJ .

Suppose furthermore that

sup
(x,τ)∈S

sup
P∈P

P
{
λmin(Σ̃n,τ,τ (x, 0)) > c

}
→ 0,

for some c > 0 that does not depend on n or P ∈ P. Then

sup
(x,τ)∈S

E∗||Σ̃−1/2
n,τ,εn(x)q∗n,τ (x; ηn)||r = OP

(
h−(r−2)d/2

)
, uniformly in P ∈ P .

Proof of Lemma D11. The proof is precisely the same as that of Lemma D10, where we use

Lemma D5 instead of Lemma C5.

We let for a sequence of Borel sets Bn in S and λ ∈ {0, d/4, d/2}, A ⊂ NJ , and a fixed

bounded function δ on S,

aRn (Bn) ≡
∫
Bn

E
[
ΛA,p(

√
nhdzN,τ (x) + hλδ(x, τ))

]
dQ(x, τ)

aR∗n (Bn) ≡
∫
Bn

E∗
[
ΛA,p(

√
nhdz∗N,τ (x) + hλδ(x, τ))

]
dQ(x, τ), and

an(Bn) ≡
∫
Bn

E
[
ΛA,p(W(1)

n,τ,τ (x, 0) + hλδ(x, τ))
]
dQ(x, τ),

where z∗N,τ (x) is a random vector whose j-th entry is given by

z∗N,τ,j(x) ≡ 1

nhd

N∑
i=1

βn,x,τ,j(Y
∗
ij , (X

∗
i − x)/h)− 1

hd
E∗
[
βn,x,τ,j(Y

∗
ij , (X

∗
i − x)/h)

]
.

Lemma D12. Suppose that the conditions of Lemmas D10 and D11 hold and that

n−1/2h−( 3M−4
2M−4)d−ν → 0,

as n→∞, for some small ν > 0. Then for any sequence of Borel sets Bn in S,

sup
P∈P

∣∣aRn (Bn)− an(Bn)
∣∣ = o(hd/2) and

sup
P∈P

P
{∣∣aR∗n (Bn)− an(Bn)

∣∣ > ahd/2
}

= o(1).
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Proof of Lemma D12. For the statement, it suffices to show that uniformly in P ∈ P ,

sup
(x,τ)∈S

∣∣∣∣∣ EΛA,p(
√
nhdzN,τ (x) + hλδ(x, τ))

−EΛA,p(W(1)
n,τ,τ (x, 0) + hλδ(x, τ))

∣∣∣∣∣ = o(hd/2),(D.18)

sup
(x,τ)∈S

∣∣∣∣∣ E∗ΛA,p(
√
nhdz∗N,τ (x) + hλδ(x, τ))

−EΛA,p(W(1)
n,τ,τ (x, 0) + hλδ(x, τ))

∣∣∣∣∣ = oP (hd/2),

uniformly in P ∈ P . We prove the first statement of (D.18). The proof of the second

statement of (D.18) can be done in a similar way.

Take small ν > 0. We apply Lemma D10 by choosing a positive sequence εn = o(hd) such

that for any r ∈ [2,M/2],

(D.19) sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r = O

(
h−(r−2)(M−1

M−2)d−ν
)
,

where qn,τ (x; ηn) and Σn,τ,εn(x) are as in Lemma D10. We follow the arguments in the proof

of Step 2 in Lemma C6 to bound the left-hand side in the first supremum in (D.18) by

sup
(x,τ)∈S

sup
P∈P

∣∣∣EΛA,p(
√
nhdzN,τ (x; ηn) + hλδ(x, τ))− EΛA,p(W(1)

n,τ,τ,εn(x, 0) + hλδ(x, τ))
∣∣∣+C√εn,

for some C > 0, where

zN,τ (x; ηn) ≡ zN,τ (x) + ηn/
√
nhd,

and W(1)
n,τ,τ,εn(x, 0) is as defined in (C.17). Let

ξN,τ (x; ηn) ≡
√
nhdΣ−1/2

n,τ,εn(x) · zN,τ (x; ηn) and

Z(1)
n,τ,τ,εn(x, 0) ≡ Σ−1/2

n,τ,εn(x) ·W(1)
n,τ,τ,εn(x, 0).

We rewrite the previous absolute value as

(D.20) sup
(x,τ)∈S

sup
P∈P

∣∣∣EΛΣ
A,n,p(

√
nhdξN,τ (x; ηn))− EΛΣ

n,p(Z(1)
n,τ,τ,εn(x, 0))

∣∣∣ ,
where ΛΣ

A,n,p(v) ≡ ΛA,p(Σ
1/2
n,τ,εn(x)v+hλδ(x, τ)). Note that the condition forM in Assumption

A6(i) that M ≥ 2(p+2), we can choose r = max{p, 3}. Then r ∈ [2,M/2] as required. Using

Theorem 1 of Sweeting (1977), we bound the above supremum by (with r = max{p, 3})
C1√
n

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||3

+
C2√
nr−2

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r

+C3 sup
(x,τ)∈S

sup
P∈P

Eωn,p

(
Z(1)
n,τ,τ,εn(x, 0);

C4√
n

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||3

)
,
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for some positive constants C1, C2, C3, and C4, where

ωn,p (v; c) ≡ sup
{
|ΛΣ

A,n,p(v)− ΛΣ
A,n,p(y)| : y ∈ R|A|, ||v − y|| ≤ c

}
.

The proof is complete by (D.19) and by the condition n−1/2h−( 3M−4
2M−4)d−ν → 0.
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