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TESTING FOR A GENERAL CLASS OF FUNCTIONAL INEQUALITIES
SOKBAE LEE!, KYUNGCHUL SONG?2, AND YOON-JAE WHANG!

ABSTRACT. In this paper, we propose a general method for testing inequality restrictions
on nonparametric functions. Our framework includes many nonparametric testing problems
in a unified framework, with a number of possible applications in auction models, game
theoretic models, wage inequality, and revealed preferences. Our test involves a one-sided
version of L, functionals of kernel-type estimators (1 < p < oo) and is easy to implement
in general, mainly due to its recourse to the bootstrap method. The bootstrap procedure
is based on nonparametric bootstrap applied to kernel-based test statistics, with estimated
“contact sets.” We provide regularity conditions under which the bootstrap test is asymptot-
ically valid uniformly over a large class of distributions, including the cases that the limiting
distribution of the test statistic is degenerate. Our bootstrap test is shown to exhibit good
power properties in Monte Carlo experiments, and we provide a general form of the local
power function. As an illustration, we consider testing implications from auction theory,
provide primitive conditions for our test, and demonstrate its usefulness by applying our
test to real data. We supplement this example with the second empirical illustration in the
context of wage inequality.
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2 LEE, SONG, AND WHANG
1. INTRODUCTION

In this paper, we propose a general method for testing inequality restrictions on nonpara-
metric functions. To describe our testing problem, let v.;,..., v, ; denote nonparametric
real-valued functions on R? for each index 7 € T, where 7 is a subset of a finite dimen-

sional space. We focus on testing

Hy : max{v,1(x), -, v, 5(x)} <0 forall (z,7) € X X T, against

(1.1)

H; : max{v,1(x),- - -, v, s(z)} > 0 for some (z,7) € X X T,

where X' x7T is a domain of interest. We propose a one-sided L, integrated test statistic based
on nonparametric estimators of v.1,...,v, ;. We provide general asymptotic theory for the
test statistic and suggest a bootstrap procedure to compute critical values. We establish
that our test has correct uniform asymptotic size and is not conservative. We also determine
the asymptotic power of our test under fixed alternatives and some local alternatives.

We allow for a general class of nonparametric functions, including, as special cases, condi-
tional mean, quantile, hazard, and distribution functions and their derivatives. For example,
vr;(z) = P(Y; < 7|X = ) can be the conditional distribution function of Y; given X = z,
or vy ;(z) can be the 7-th quantile of Y; conditional on X = z. We can also allow for
transformations of these functions satisfying some regularity conditions. The nonparametric
estimators we consider are mainly kernel-type estimators but can be allowed to be more
general, provided that they satisfy certain Bahadur-type linear expansions.

Inequality restrictions on nonparametric functions arise often as testable implications from
economic theory. For example, in first-price auctions, Guerre, Perrigne, and Vuong (2009,
GPV hereafter) show that the quantiles of the observed equilibrium bid distributions with
different numbers of bidders should satisfy a set of inequality restrictions (Equation (5) of
GPV). If the auctions are heterogeneous so that the private values are affected by observed
characteristics, we may consider conditionally exogenous participation with a conditional
version of the restrictions (see Section 3.2 of GPV). Such restrictions are in the form of
multiple inequalities for linear combinations of nonparametric conditional quantile functions.
Our test then can be used to test whether the restrictions hold jointly uniformly over quantiles
and observed characteristics in a certain range. In this paper, we use this auction example
to illustrate the usefulness of our general framework. To the best of our knowledge, there
does not exist an alternative test available in the literature for this kind of examples.

In addition to GPV, a large number of auction models are associated with some forms of
functional inequalities. See, for example, Haile and Tamer (2003), Haile, Hong, and Shum
(2003), Aradillas-Lépez, Gandhi, and Quint (2013a), Aradillas-Lépez, Gandhi, and Quint
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(2013b), and Krasnokutskaya, Song, and Tang (2013), among others. Our method can be
used to make inference in their setups, while allowing for continuous covariates.

Econometric models of games belong to a related but distinct branch of the literature,
compared to the auction models. In this literature, inference on many game theoretic models
are recently based on partial identification or functional inequalities. For example, see Tamer
(2003), Andrews, Berry, and Jia (2004), Berry and Tamer (2007), Aradillas-Lépez and Tamer
(2008), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), Galichon
and Henry (2011), Chesher and Rosen (2012), and Aradillas-Lépez and Rosen (2013), among
others. See de Paula (2013) and references therein for a broad recent development in this
literature. Our general method provides researchers in this field a new inference tool when
they have continuous covariates.

Inequality restrictions also arise in testing revealed preferences. Blundell, Browning, and
Crawford (2008) used revealed preference inequalities to provide the nonparametric bounds
on average consumer responses to price changes. In addition, Blundell, Kristensen, and
Matzkin (2014) used the same inequalities to bound quantile demand functions. It would
be possible to use our framework to test revealed preference inequalities either in average
demand functions or in quantile demand functions. See also Hoderlein and Stoye (2013) and
Kitamura and Stoye (2013) for related issues of testing revealed preference inequalities.

In addition to the literature mentioned above, many results on partial identification can
be written as functional inequalities (see, e.g., Imbens and Manski (2004), Manski (2003),
Manski (2007), Manski and Pepper (2000), Tamer (2010), and references therein). In Section
3, we provide a couple of motivating examples of partially identified econometric models (one
from Chesher and Rosen (2014) and the other from Khan, Ponomareva, and Tamer (2013))
for which our testing approach can be used to construct confidence regions but to which
none of the currently available methods can be applied.

Our framework has several distinctive merits. First, our proposal is easy to implement in
general, mainly due to its recourse to the bootstrap method. The bootstrap procedure is
based on nonparametric bootstrap applied to kernel-based test statistics. We establish the
general asymptotic (uniform) validity of the bootstrap procedure under high level conditions
and provide low level conditions for an empirical example based on GPV.

Second, our proposed test is shown to exhibit good power properties both in finite and
large samples. Good power properties can be achieved by the use of critical values that adapt
to the binding restrictions of functional inequalities. This could be done in various ways; in
this paper, we follow the “contact set” approach of Linton, Song, and Whang (2010) and
propose bootstrap critical values. As is shown in this paper, the bootstrap critical values
yield significant power improvements. Furthermore, we find through our local power analysis

that this class of tests exhibit dual convergence rates depending on Pitman directions, and
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in many cases, the faster of the two rates achieves a parametric rate of y/n, despite the use
of kernel-type test statistics.

Third, we establish the asymptotic validity of the proposed test uniformly over a large class
of distributions, without imposing restrictions on the covariance structure among nonpara-
metric estimates of v, ;(-), thereby allowing for degenerate cases. Such a uniformity result is
crucial for ensuring good finite sample properties for tests whose (pointwise) limiting distri-
bution under the null hypothesis exhibits various forms of discontinuity. The discontinuity
in the context of this paper is highly complex, as the null hypothesis involves inequality
restrictions on a multiple number of (or even a continuum of) nonparametric functions. We
establish the uniform validity of the test in a way that covers these various incidences of
discontinuity. Our new uniform asymptotics may be of independent interest in many other
contexts.

Much of the recent literature on testing inequality restrictions focuses on conditional mo-
ment inequalities.! Researches on conditional moment inequalities include Andrews and
Shi (2013), Andrews and Shi (2014), Armstrong (2011a), Armstrong (2011b), Armstrong
and Chan (2013), Chernozhukov, Lee, and Rosen (2013), Chetverikov (2011), Fan and Park
(2014), Khan and Tamer (2009), Kim (2009), Lee, Song, and Whang (2013), Menzel (2009),
Ponomareva (2010), among others. In contrast, this paper’s approach naturally covers a wide
class of inequality restrictions among nonparametric functions that the moment inequality
framework does not (or at least is cumbersome to) apply. Such examples include testing
multiple inequalities that are defined by differences in conditional quantile functions uni-
formly over covariates and quantiles.? If we restrict our attention to the conditional moment
inequalities, then our approach is mostly comparable to the moment selection approach of
Andrews and Shi (2013). Our general framework is also related to testing qualitative non-
parametric hypotheses such as monotonicity in mean regression. See, for example, Baraud,
Huet, and Laurent (2005), Chetverikov (2012), Diimbgen and Spokoiny (2001), and Ghosal,
Sen, and van der Vaart (2000) among many others. See also Lee, Linton, and Whang (2009)
and Delgado and Escanciano (2012) for testing stochastic monotonicity.

Among aforementioned papers, Chernozhukov, Lee, and Rosen (2013) developed a sup-
norm approach in testing inequality restrictions on nonparametric functions using pointwise

asymptotics, and in principle, could be extended to test general functional inequalities as

IThere exists large literature on inference on models with a finite number of unconditional moment inequality
restrictions. Some examples include Andrews and Barwick (2012), Andrews and Guggenberger (2009),
Andrews and Soares (2010), Beresteanu and Molinari (2008), Bugni (2010), Canay (2010), Chernozhukov,
Hong, and Tamer (2007), Galichon and Henry (2009), Romano and Shaikh (2008), Romano and Shaikh
(2010), and Rosen (2008), among others.

2A working paper version (Andrews and Shi 2009) of Andrews and Shi (2013) covers testing moment inequal-
ities indexed by 7 € T, but their framework does not appear to be easily extendable to deal with functions
of multiple conditional quantiles such as differences in conditional quantiles.
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in (1.1).> Example 4 of Chernozhukov, Lee, and Rosen (2013) considered the case of one
inequality with a conditional quantile function at a particular quantile, but it is far from
trivial to extend this example to multiple inequalities of differences in conditional quantile
functions uniformly over a range of quantiles. As this paper demonstrates through empirical
applications, such testing problems arise frequently in the fields of industrial organization
and labor economics (see Sections 3.3 and 3.4).

The uniformity result in this paper is non-standard since our test is based on asymptot-
ically non-tight processes, in contrast to Andrews and Shi (2013) who convert conditional
moment inequalities into an infinite number of unconditional moment inequalities. This pa-
per’s development of asymptotic theory draws on the method of Poissonization (see, e.g.,
Horvath (1991) and Giné, Mason, and Zaitsev (2003)). For applications of this method,
see Anderson, Linton, and Whang (2012) for inference on a polarization measure, Lee and
Whang (2009) for testing for conditional treatment effects, and Lee, Song, and Whang
(2013) for testing inequalities for nonparametric regression functions using the numerator
of the Nadaraya-Watson estimator (based on pointwise asymptotics). Also, see Mason and
Polonik (2009) and Biau, Cadre, Mason, and Pelletier (2009) for support estimation.

The remainder of the paper is as follows. Section 2 gives an informal description of our
general framework by introducing test statistics and critical values and by providing intu-
itions behind our approach. In Section 3, we present four motivating examples that include
two examples of partially identified models and two empirical examples to demonstrate the
usefulness of our test. The first empirical example is based on GPV and the second one
is about testing functional inequalities in the context of wage inequality, inspired by Ace-
moglu and Autor (2011). In Section 4, we establish the uniform asymptotic validity of our
bootstrap test using high-level conditions. We also provide a class of distributions for which
the asymptotic size is exact. In Section 5, we give primitive conditions for the uniform
asymptotic validity of our inference method for the first empirical example in Section 3.
In Section 6, we establish consistency of our test and its local power properties. Section 7
concludes. Appendices consist of two parts. The first part presents results of Monte Carlo
experiments and more examples of testing functional inequalities that include an alternative

statistic for the first empirical example and testing monotonicity with respect to a covariate

30ur test involves a one-sided version of L,-type functionals of nonparametric estimators (1 < p < co). We
regard the sup-norm and L, norm approaches complementary, each with its own strength and weakness.
For example, our test and also the test of Andrews and Shi (2013) have higher power against relatively flat
alternatives, whereas the test of Chernozhukov, Lee, and Rosen (2013) has higher power against sharply-
peaked alternatives. See the results of Monte Carlo experiments reported in Appendix I. See also Andrews
and Shi (2013), Andrews and Shi (2014), and Chernozhukov, Lee, and Rosen (2013) for related discussions
and further Monte Carlo evidence.
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in conditional expectation, cumulative distribution, and quantile functions. The remaining

part provides all the proofs of theorems.

2. GENERAL OVERVIEW

2.1. Test Statistics. We present a general overview of this paper’s framework by introduc-
ing test statistics and critical values. To ease the exposition, we confine our attention to the
case of J = 2 here. The definitions and formal results for general J are given later in Section
4.

Throughout this paper, we assume that 7 is a connected compact subset of a Euclidean
space. This does not lose much generality because when 7 is a finite set, we can redefine our
test statistic by taking 7 as part of the finite index j indexing the nonparametric functions.

For j = 1,2, let 0, ;(z) be a kernel-based nonparametric estimator of v, ;(z) and let its
appropriately scaled version be

a’r,j (J)) = Tnijﬁﬂj(x)
0r4(7)
where 7, ; is an appropriate normalizing sequence that diverges to infinity,* and 4, ;(z) is an
appropriate (possibly data-dependent) scale normalization.” Then the inference is based on

the following statistic:

(2.1) 0 [r /X max {iir. (2), Gr2(), 0} drdr

/ max {t,1(x), Ur2(z), 0} dQ(z, T),
XxT

where () is Lebesgue measure on X x 7. In this overview section, we focus on the case
of using the max function under the integral in (2.1). In addition, we consider the sum

25:1 max {4, ;(x),0}" in one of our empirical examples (see Section 3.3).

2.2. Bootstrap Critical Values. As we shall see later, the asymptotic distribution of the
test statistic exhibits complex ways of discontinuities as one perturbs the data generating
processes. This suggests that the finite sample properties of the asymptotic critical values
may not be stable. Furthermore, the location-scale normalization requires nonparametric
estimation and thus a further choice of tuning parameters. This can worsen the finite sample
properties of the critical values further. To address these issues, this paper develops a
bootstrap procedure.

Mhe convergence rate 7, ; to differ across 7 € N can be convenient, when the nonparametric
estimators have different convergence rates. For example, this accommodates a situation where one jointly
tests the non-negativity and monotonicity of a nonparametric function.

SWhile our framework permits the case where 6, ;(x) is simply chosen to be 1, we allow for a more general
case where 6, ;(x) is a consistent estimator for some nonparametric quantity.
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As we shall show formally in a more general form in Lemma 1 in Section 4 below, it is
satisfied that under Hy, for each sequence ¢, — oo such that v/logn/c, — 0 as n — oo,

A

22 b= [ w01 a7
By, 11y(cn)

+/ max {i,2(z),0}" dQ(z, 7)
B, (23 (cn)

+/ max {t,1(x), tr2(x), 0} dQ(z, 7),
By, (1,21 (en)

with probability approaching one, where, letting w, . ;j(z) = ry Unr;(2)/0n;(z), i€, a

population version of i, j(z),® we define

Boy(en) = {(z,7) € X X T tupra(x)| < and uyr2(x) < —c},
Bhjoy(cn) = {(x,7) € X X T : Jupr2(x)| < ¢ and upi(x) < —cp} and
Bhgy(cn) = {(z,7) € X X T :upri(2)] <cpand Jup-2(x)] <o}t

For example, the set B, (11(c,) is a set of points (x,7) such that |v,1(x)/0n1(2)| is close
to zero, and v, ;2() /0, r2(2) is negative and away from zero. We call contact sets such sets
as By 1y(¢n), Bn,(2)(cn), and By, q1,9y(¢n).

Now, comparing (2.2) with (2.1) reveals that the limiting distribution of § under the null
hypothesis will not depend on points outside the union of the contact sets. Thus the main
idea of this paper is to base the bootstrap critical values on the quantity on the right hand
side of (2.2) instead of that on the last integral in (2.1). As we will explain shortly in the next
subsection, this leads to a test that is uniformly valid and exhibits substantial improvement
in power.

To construct bootstrap critical values, we introduce sample versions of the contact sets:
Buy(en) = {(x,7) € X X T :|tra(x)| < e, and Gro(x) < —cp},
Biy(cn) = {(z,7) € X X T :|tr2(x)| <, and Gry(x) < —c,} and
Bpua(cn) = {(2,7) € X X T :|urq(x)] <cpand |iro(x)] <cpnt.
See Figure 1 for illustration of estimation of contact sets when J = 2.
Given the contact sets, we construct bootstrap critical values as follows. Let ¢} ;(r) and

o7 (), j = 1,2, denote the bootstrap counterparts of 0. ;(z) and 6, ;(x), j = 1,2. Let the

bootstrap counterparts be constructed in the same way as the nonparametric estimators

6t is convenient for general development to let the population quantities Un,r,j(2) and o, - ;(x) depend on
n.
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FIGURE 1. Contact Set Estimation

Byyy(cy) Bi2(cn) By (cy)

uy(x)

Note: This figure illustrates estimated contact sets when J = 2. The
black, red, and green line segments on the x-axis represent estimated
contact sets.

Ur;(x) and 6, ;(x), j = 1,2, with the bootstrap sample independently drawn with replace-
ment from the empirical distribution of the original sample. We let

rng{07,5(2) — 0r5(2)}

;@) 7

(2.3) 87 () =

j=1,2

Note that 87 ; () is a centered and scale normalized version of the bootstrap quantity o; ;(x).
We construct a bootstrap version of the right hand side of (2.2) as

(2.4) A / max{éj}l(x),O}de(x,T)

Biiy(én)

+/ max{§i72(x),0}p dQ(z, )
B2y (én)

n / max {5%,(2), &%, (), 0} dQ(a, 7),
By1,21(én)

where ¢, is a data dependent version of ¢,. We will discuss a way to construct ¢, shortly.
We also define

a* = B0
where E* denotes the expectation under the bootstrap distribution. Let ¢ be the (1 — «)-th

quantile from the bootstrap distribution of 6*. Then for a small n > 0 such as n = 1075, we
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take ¢, , = max{c}, h??n + a*} as the critical value to form the following test:
(2.5) Reject Hy if and only if > Covn:
Then it is shown later that the test has asymptotically correct size, i.e.,

(2.6) limsup sup P{f > Com) < @,

n—oo PePy

where Py is the collection of potential distributions that satisfy the null hypothesis.

2.3. Obtaining tuning parameters. To construct ¢,, we suggest the following procedure.
First, define
S’ = max {(sup) 87 (), sx/logn} ,
2:T,&

where € > 0 is a small number. Then, set

(27) én == C(cs (log IOg n)Qlfan (S:L)a

where ¢1_q, (SF) is the (1 — a,,)-th quantile of the bootstrap distribution of S} with a,, =
0.1/logn, and Cg is a “sensitivity” constant that needs to be chosen by a researcher. Al-
though the rule-of-thumb for ¢, in (2.7) is not completely data-driven, it has the advantage
that the scale of @, ;(z) is invariant, due to the term ¢;_q,, (S};); see Chernozhukov, Lee, and
Rosen (2013) for a similar idea.” This data-dependent choice of ¢, is encompassed by the
theoretical framework of this paper, while many other choices are also admitted.®

To implement our bootstrap test, it is necessary to fix three constants: 7, €, and Cg, in
addition to the bandwidth used in kernel-based nonparametric estimation. Based on our
experiences in Monte Carlo experiments, we suggest the following rule-of-thumb: set 1 and
¢ to be small numbers, say n = ¢ = 107% and check sensitivity with respect to Cs by varying
it over a certain range. In particular, we recommend taking C.; = 0.5 and performing
sensitivity check by increasing the value of Cg up to 1.5.°

Regarding the bandwidth selection, we suggest the following rule. First, choose a band-

width, say fz, using a readily available bandwidth selection rule that is typically designed

"Note that q_q, (S*) is the (1 — a,,) quantile of the supremum of 87 j(z) over (j,7,z) for a sufficiently
small €, provided that s} ;(x) is non-degenerate. Note that (1 — a,) converges to 1 as n gets large. Thus,
this observation leads to the choice of ¢, in (2.7) that is proportional to qi_q,, (S)) times a very slowing
growing term such as loglogn, to insure that ¢, diverges to infinity but as slowly as possible, while having
the property of scale invariance.

8See Assumption A4(ii) below for sufficient conditions for a data dependent choice of é,. It is not hard to
see that the conditions are satisfied, once the uniform convergence rates of v, j(x) and 6, ;(z) and their
bootstrap versions hold as required in Assumptions A3, A5, and B2 and B3.

9The rationale behind this particular recommendation is that in Monte Carlo experiments reported in Ap-
pendix I, our test performed well with C.s = 0.5 and we would like to be on the more conservative side when
we check the sensitivity to Ces.
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for the purpose of optimal estimation (e.g. see Fan and Gijbels (1996) for local polynomial
estimators). When d = 1 and the underlying function is twice continuously differentiable,
the bandwidth has the form & = C'n~/% with some constant C. Second, if necessary, modify
h so that it satisfies the regularity conditions imposed in this paper. For example, in case
of estimating conditional quantile functions, Assumption AUC-3 in Section 5 is satisfied by
the choice of h = n™* with the condition 1/4 < s < 1/3 if the local linear estimator is used
with d = 1. Then we can take h = h x n/3 x n=* for some s satisfying 1/4 < s < 1/3.

2.4. Discontinuity, Uniformity, and Power. Many tests of inequality restrictions exhibit
discontinuity in its limiting distribution under the null hypothesis. When the inequality
restrictions involve nonparametric functions, this discontinuity takes a complex form, as
emphasized in Section 5 of Andrews and Shi (2013).

To see the discontinuity problem in our context, let {(V;, X;)"}*, be i.i.d. copies from
an observable bivariate random vector, (Y, X)" € R x R, where X, is a continuous random

variable with density f. We consider a simple testing example:
(2.8) Hy:EY|X =z]<0forallz € X vs. H : E[Y|X = z] > 0 for some z € X.

Here, with the subscript 7 suppressed, we set J =1, r,1 = vVnh, p = d = 1, and define
[v]+ = max{v,0}. Let

N . 1 - XZ—ZE ~9 _ 1 u 279 XZ—ZE
(2.9) Ul(x)—nh;}/;l(( - )andal(x)—nh;YiK( - ),

where K is a nonnegative, univariate kernel function with compact support and h is a
bandwidth.
Assume that the density of X is strictly positive on X'. Then, in this example, v, 1(x) =

Ev;(z) <0 for almost every « in X whenever the null hypothesis is true. Define

Zpa(x) = \/ﬁ{ﬁl(x)A_ vm(x)} and B, ;(0) = {x € X: ‘mynl(ﬂc)’ = O} :

Ul(.flf)

We analyze the asymptotic properties of 6 as follows. We first write
(2.10) hV20 —an,) = h'/? / (Zn ()], do — ap,
Bn’l(O)
+h1/2/ anwng(@
X\Bn,l(O)

Zn,1<x>+—] dz.
/ [Zml(x)hdx].
Bn,1(0)

o1()
where

anle

)
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When liminf,, @ (B,,1(0)) > 0 with Q(B,,1(0)) denoting Lebesgue measure of B, 1(0), we
can show that the leading term on the right hand side in (2.10) becomes asymptotically
N(0,02) for some o2 > 0. On the other hand, the second term vanishes in probability as
n — oo under Hy because for each x € X'\ B,,1(0),

0 > Vnhv,(x) = —o0

as n — oo under Hy. Thus we conclude that when liminf, ,. @ (B,,1(0)) > 0 under H,,

(2.11) h—1/2(é —ap1) & B2 {/ [Zn,l(:zz)]Jr dx — Gn,1} —a N(0,09).
B

n,l(o)

This asymptotic theory is pointwise in P (with P fixed and letting n — 00), and may not
be adequate for finite sample approximation. There are two sources of discontinuity. First,
the pointwise asymptotic theory essentially regards the drift component \/ﬁynvl(:ﬁ) as —oo,
whereas in finite samples, the component can be very negative, but not —oo. Second, even
if the nonparametric function vnhv, ;(z) changes continuously, the contact set B, 1(0) may
change discontinuously in response.!® While there is no discontinuity in the finite sample
distribution of the test statistic, there may arise discontinuity in its pointwise asymptotic
distribution. Furthermore, the complexity of the discontinuity makes it harder to trace
its source, when we have J > 2. As a result, the asymptotic validity of the test that is
established pointwise in P is not a good justification of the test. We need to establish the
asymptotic validity that is uniform in P over a reasonable class of probabilities.

Under regularity conditions, bootstrap critical values based on the least favorable config-
uration (LFC) such that

(2.12) ) e = / [8*(x)], dv, where §8"(x) = Vnh {M} :
X 61(z)
can be shown to yield tests that are asymptotically valid uniformly in P. However, they are

often too conservative in practice. Using a critical value based on
07 = / [é*(m)]+ dx
By (en)

also yields an asymptotically valid test, and yet éEFC > QAT in general. Thus the bootstrap

tests that use the contact set have better power properties than those that do not. The power

OFor example, take vnhv, 1(z) = —2%/n on X = [~1,1]. Let vo(z) = 0. Then vnhv, () goes to vy(z)
uniformly in € X as n — co. However, for each n, B, 1(0) = {x € X : Vnhv, 1(x) = 0} = {0}, which does
not converge in Hausdorff distance to B1(0) = {z € X : vo(z) =0} = X.



12 LEE, SONG, AND WHANG

improvement is substantial in many simulation designs and can be important in real-data
applications.'!

Now, let us see how the choice of ¢, = max{cj, h'/*n + a*} (with d = 1 here) leads
to bootstrap inference that is valid even when the test statistic becomes degenerate under
the null hypothesis. The degeneracy arises when the inequality restrictions hold with large

slackness, so that the convergence in (2.11) holds with ¢2 = 0, and hence
h Y20 — any) = op(1).
For the bootstrap counterpart, note that

h—1/2(c;n —any) = KV max{c’ — any, h*n + 0" — any}

Z n + h_l/Q(d* - an,l)a

where it can be shown that h='/2(¢* — a,;) = op(1). Therefore, the bootstrap inference is
designed to be asymptotically valid even when the test statistic becomes degenerate.

Note that for the sake of validity only, one may replace h'/?n by a fixed constant, say 7 > 0.
However, this choice would render the test asymptotically too conservative. The choice of
h'/?1 in this paper makes the test asymptotically exact for a wide class of probabilities, while
preserving the uniform validity in both the cases of degeneracy and nondegeneracy.'?> The
precise class of probabilities under which the test becomes asymptotically exact is presented
in Section 4.

There are two remarkable aspects of the local power behavior of our bootstrap test. First,
the test exhibits two different kinds of convergence rates along different directions of Pitman
local alternatives. Second, despite the fact that the test uses the approach of local smoothing
by kernel as in Hardle and Mammen (1993), the faster of the two convergence rates achieves
a parametric rate of \/n. To see this more closely, let us return to the simple example in
(2.8), and consider the following local alternatives:

o(x)
b

where vg(z) < 0 for all x € X and 6(z) > 0 for some z € X, and b, — 00 as n — oo such

(2.13) v () = vo(z) +

that v, (z) > 0 for some z € X. The function §(-) represents a Pitman direction of the local

alternatives. Suppose that the test has nontrivial local power against local alternatives of

HThere may exist an alternative approach to improve the power of our test. Romano, Shaikh, and Wolf
(2013) proposed a computationally attractive two-step method for testing a finite number of unconditional
moment inequalities. It is an interesting topic to extend their two-step approach to our setup, but it is
beyond the scope of this paper.

20ur fixed positive constant 7 plays a role similar to a fixed constant in Andrews and Shi (2013)’s mod-
ification of the sample variance-covariance matrix of unconditional moment conditions, transformed by in-
struments (¢ in their notation in equation (3.5) of Andrews and Shi (2013)).



GENERAL FUNCTIONAL INEQUALITIES 13

the form in (2.13), but trivial power whenever b, in (2.13) is replaced by ¥/, that diverges
faster than b,. In this case, we say that the test has convergence rate equal to b, against
the Pitman direction 9.

As we show later, there exist two types of convergence rates of our test, depending on the
choice of §(z). Let B*(0) = {z € X : vo(z) = 0} and o7 (z) = E[Y?|X; = z]f(z) [ K*(u)du.

When §(-) is such that
o
/ (z) dx > 0,
BO(0) 01 (z)
the test achieves a parametric rate b, = y/n. On the other hand, when §(+) is such that

2
/ de =0 and / 62(96) dz > 0,
BO(0) o1(r) B°(0) 01 (z)

the test achieves a slower rate b, = /nh!'/%. See Section 6.2 for heuristics behind the results.

In Section 6.3, the general form of local power functions is derived.

3. MOTIVATING EXAMPLES

In this section, we first provide two examples of partially identified econometric models
for which our testing approach can be used to construct confidence regions. One example is
based on generalized instrumental variables models of Chesher and Rosen (2014), and the
other is from a panel data model of Khan, Ponomareva, and Tamer (2013). In addition,
we give two empirical examples. The first empirical example is on testing auction models
following GPV, and the second one is about testing functional inequalities via differences-
in-differences in conditional quantiles, inspired by Acemoglu and Autor (2011). All four
examples given in this section are not covered easily by existing inference methods, when
continuous covariates exist; however, they are all special cases of our general framework.

Appendix II gives more examples of testing problems that can be included in our gen-
eral framework. In particular, these additional examples include new methods for testing
monotonicity with respect to a covariate by constructing one-sided L,-type functionals in a
suitable fashion in three examples: one in mean regression, another in conditional distribu-

tion function, and the third in quantile regression.

3.1. Generalized Instrumental Variables Models. First, we consider generalized in-
strumental variables models of Chesher and Rosen (2014). Specially, we illustrate usefulness
of our framework using Example 5 of Chesher and Rosen (2014) with the restriction that
the structural error U is independent of the instrument Z. In Example 5 of Chesher and
Rosen (2014), the outcome variable Y] is fully observed, whereas the endogenous explanatory

variable Y5 is interval censored, that is, Y € [Ya, Ya,].
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One of semiparametric specifications imposed in Chesher and Rosen (2014) is to assume
the linear index for the structural function without any parametric specification of the distri-
bution of U. In this specification, Chesher and Rosen (2014) show that the full independence
between U and Z implies that the identified set for the structural parameter [ is given by
the set of b’s that satisfy

(3.1) Gi(b, 71,7, 2) < Ga(b, 71,72, 2)
for every z and (11, 72) € T = {(11,2) € R* : 71 < 1o}, where
Gi1(b, 11, 79,2) = P(11 +bYs, <Y < 1o+ bYy|Z = 2),
Go(b, 11, 79,2) = P(11 +bYy <Y < 7o+ bY2,|Z = 2).
The identified set in (3.1) is a simplified version of the identified set obtained in Section 4
of Chesher and Rosen (2014), without including exogenous explanatory variables. Then, a

confidence region for § can be obtained by inverting pointwise (in b) tests with v, ,(x) =

G1(b, 11,79, 2) — Go(b, 11, T2, ), where 7 = (71, T2).

3.2. Panel Data Models with Endogenous Censoring. Consider a panel data model
of Khan, Ponomareva, and Tamer (2013). In their framework, a researcher only observes
{(Yit, Dig, Xip) :i=1,...,n,t =1,..., T} generated from

}/;t - maX{}/i:7 Cit}7

Dy = 1{Y;; > Cy},

Vi = a; + X}, + Uy,
where «; is the unobserved fixed effect that can be correlated with X; = (Xj,..., X;r) and
Ui = (Ua,...,Uir). Khan, Ponomareva, and Tamer (2013) consider endogenous censoring

and obtain bounds under alternative modeling assumptions. To illustrate their approach,
note that

Yii <Y <Y,

where Y;F' = DYy, + (1 — Dy)(—00).
When «; + Uy has the same distribution as «; + U;s conditional on X; for ¢t # s (which
they call Model 1), they show that the identified set is the set of b’s that satisfy

P(Yi — Xjpb < y|Xi = 2) < P(Yy = Xjb < y|X; = x)



GENERAL FUNCTIONAL INEQUALITIES 15

for every (y,z) and every ¢t = 1,...,T. Then, to construct a confidence region for 3, we may

take the following route: for each j =1,...,T, we define

Ur,j,b(x) = U‘r,j(x;b)

= P(Yy— X[b<7|Xi =2) — P(Y} — X[;b < 7|X; =),

and carry out our test pointwise in b. Khan, Ponomareva, and Tamer (2013) focus on the
case when covariates have discrete distribution with finite support. Our method provides an
inference method for the case of continuous covariates. Our general framework also applies
to other partially identified panel data models. For example, see Jun, Lee, and Shin (2011),
Li and Oka (2013) and Rosen (2012) among others.

3.3. Empirical Example 1: Testing Functional Inequalities in Auction Models.
In this example, we go back to the auction environment of GPV mentioned earlier. We
first state the testing problem formally, give the form of test statistic, and present empirical
results.

3.3.1. Testing Problem. Suppose that the number I of bidders can take two values, 2 and 3
(that is, I € {2,3}). For each 7 such that 0 < 7 < 1, let ¢x(7|z) denote the 7-th conditional
quantile (given X = z) of the observed equilibrium bid distribution when the number of
bidders is I = k, where k = 2,3. A conditional version of Equation (5) of GPV (with I; = 2

and I = 3 in their notation) provides the following testing restrictions:
¢@(7|T) — g3(7|x) <0,

(3.2)
b —2qo(7|x) + g3(7|x) <0

for any 7 € (0,1] and for any x € supp(X), where supp(X) is the (common) support of
X, and b is the left endpoint of the support of the observed bids.!* The restrictions in
(3.2) are based on conditionally exogenous participation for which the latent private value
distribution is independent of the number of bidders conditional on observed characteristics
(X), e.g. appraisal values.

A slightly weaker version of (3.2) can be put into our general testing problem in (1.1).'
That is, we can test the following null hypothesis:

IN

vr1(7) = qa(7]7) — g3(7]7)

(3.3)
Vra(x) = b —2¢o(7|7) 4+ g3(7]2) <

0,
0

for any (7,2) € T x X C (0, 1] x supp(X).

131y GPV, it is assumed that for I = k, the support of the observed equilibrium bid distribution is [b, by] C
[0, 00) with b < by, where k = 2,3. Note that b is common across k’s, while by,’s are not.

141 necessary, we may test the strict inequalities (3.1), instead of the weak inequalities (3.2). However, such
test would require a test statistic that is different from ours and needs a separate treatment.
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The example in (3.3) illustrates that in order to test the implications of auction theory,
it is essential to test the null hypothesis uniformly in 7 and x. More specifically, testing
for a wide range of 7 is important because testable implications are expressed in terms of
conditional stochastic dominance relations. Furthermore, testing the relations uniformly
over z is natural since theoretical predictions given by conditionally exogenous participation
should hold for any realization of observed auction heterogeneity. It also shows that it is
important to go beyond the J = 1 case and to include a general J > 1. In fact, if the number
of bidders can take more than two values, there could be many more functional inequalities
(see Corollary 1 of GPV). Finally, we note that v, ; (z) and v, 5(x) are not forms of conditional
moment inequalities and each involves two different conditional quantile functions indexed by
7. Therefore, tests developed for conditional moment inequalities are not directly applicable
to this empirical example. There exist related but distinct papers regarding this empirical
example. See, e.g., Marmer, Shneyerov, and Xu (2013) who developed a nonparametric
test for selective entry, and Gimenes and Guerre (2013) who proposed augmented quantile

regression for first-price auction models.

3.3.2. Test Statistic. To implement the test, it is necessary to estimate conditional quan-
tile functions. In estimation of ¢;(7|x), j = 2,3, we may use a local polynomial quantile

regression estimator, say g;(7|z). Now write

() = Ga(7]7) = G3(7l2),

bro(x) = b — 2Go(7|2) + G3(7]x),

where b is a consistent estimator of b.'> Then testing (3.3) can be carried out using {0, () :
j = 1,2} based on our general framework. In this application, our test statistics take the
following forms:
Ocun = / [rn0r1 ()]} dQ(z,7) +/ [rn0r ()]} dQ(x,7), or

XXT

(3.4) TxX

~

Omax = / (max {[7“71177,1(%)]+ , [rn@w(gg)h})?’ dQ(x, ).
XxT
Note that in (3.4), we set ¢, ,(z) = 1.
As a matter of fact, it is possible to develop an alternative test statistic by rewriting (3.3)
in terms of distribution functions. Appendix II.1 illustrates the usefulness and flexibility of

our framework by reconsidering the implications from GPV using a test statistic based on

estimating conditional cumulative distribution functions.

150 our application, we set b to be the observed minimum value.
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3.3.3. Empirical Results. We now present empirical results using the timber auction data
used in Lu and Perrigne (2008).'® They used the timer auction data to estimate bidders’
risk aversion, taking advantage of bidding data from ascending auctions as well as those from
first-price sealed-bid auctions. In our empirical example, we use only the latter auctions with
2 and 3 bidders, and we use the appraisal value as the only covariate X; (d = 1). Summary
statistics and visual presentation of data are given in Table 1 and Figure 2. It can be seen
from Table 1 that average bids become higher as the number of bidders increases from 2 to
3. The top panel of Figure 2 suggests that this more aggressive bidding seems to be true,

conditional on appraisal values.

TABLE 1. Summary Statistics for Empirical Example 1

2 bidders 3 bidders

(Sample size = 107) (Sample size = 108)

Standard Standard

Mean Deviation Mean Deviation

Appraisal Value 66.0 47.7  53.3 41.4
Highest bid 96.1 55.6 100.8 56.7
Second highest bid  80.9 49.2  83.1 51.5
Third highest bid 69.4 44.6

Notes: Bids and appraisal values are given in dollars per thousand
board-feet (MBF'). Source: Timber auction data are from the Journal
of Applied Econometrics website.

Before estimation, the covariate was transformed to lie between 0 and 1 by studentizing it
and then applying the standard normal CDF transformation. The bottom panel of Figure
2 shows local linear estimates of conditional quantile functions at 7 = 0.1,0.5,0.9.17 In this
figure, estimates are only shown between the 10% and 90% sample quantiles of the covariate.

On one hand, the 10% conditional quantiles are almost identical between auctions with
two bidders (I = 2) and those with three bidders (I = 3). On the other hand, the 50% and
90% conditional quantiles are higher with three bidders for most values of appraisal values.
There is a crossing of two conditional median curves at the lower end of appraisal values.

To check whether inequalities in (3.3) hold in this empirical example, we plot estimates
of v.1(z) and v,2(z) in Figure 3. The top panel of the figure shows that 20 estimated
curves of v, (), each representing a particular conditional quantile, ranging from the 10th
percentile to the 90th percentile. There are strictly positive values of v, ;(z) at the lower
end of appraisal values. The bottom panel of Figure 3 depicts 20 estimated curves of v, (),
16The data are available on the Journal of Applied Econometrics website.
17Specifically, the conditional quantile functions gs (7|x) and g3(7]x) are estimated via the local linear quantile

regression estimator with the kernel function K (u) = 1.5[1—(2u)?] x 1{|u| < 0.5} and the bandwidth h = 0.6.
See Section 5.1 for more details on estimating conditional quantile functions.
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FiGURE 2. Data for Empirical Illustration for Empirical Example 1
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Note: The top panel of the figure shows observations and the bottom
panel depicts local linear quantile regression estimates.

showing that they are all strictly negative. The test based on (3.4) can tell formally whether
positive values of v, 1(x) at the lower end of appraisal values can be viewed as evidence
against economic restrictions imposed by (3.3).

We considered both the L; and Lo test statistics described in (3.4). We set T to be the
interval between the 10th and 90th percentiles of the covariate, and also set X = [0.1,0.9].
The contact set was estimated with ¢, = Celoglog(n)gi—o.1/10g(n)(S;;) With r, = Vnh.
We checked the sensitivity to the tuning parameters with Cos € {0.5,1,1.5} and h €
{0.3,0.6,0.9}. All cases resulted in bootstrap p-values of 1, thereby suggesting that pos-

itive values of v, ;(z) at the lower end of appraisal values cannot be interpreted as evidence
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FIGURE 3. Estimates of v,;(z) and v, 2(z) for Empirical Example 1
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Note: The top and bottom panels of the figure show estimates of v, ()
and v, o(z), respectively, where 0,1 (x) = ¢1(7|z) — g2(7|z) and v, 2(z) =
b—2¢:(7|z) + Go(T]).

against the null hypothesis beyond random sampling errors. Therefore, we have not found

any evidence against economic implications imposed by (3.3).

3.4. Empirical Example 2: Testing Functional Inequalities in the Context of Wage

Inequality. We now give an example based on Acemoglu and Autor (2011).

3.4.1. Testing Problem. Figures 9a-9c in Acemoglu and Autor (2011) depict changes in log
hourly wages by percentile relative the median. Specifically, they consider the following

differences-in-differences in quantiles:

Ars(r,2) = [ai(7l2) = gs(r]2)] = [¢:(0.5]7) = ¢5(0.5])]
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for time periods ¢ and s and for quantiles 7, where ¢;(7|z) denotes the T-quantile of log
hourly wages conditional on X = z in year t. Acemoglu and Autor (2011) consider males
and females together in Figure 9a, males only in Figure 9b, and females only in Figure 9c.
Thus, in their setup, the only covariate X is gender.

Figures 9a-9c¢ in Acemoglu and Autor (2011) suggest that (1) Ajgss 1974(7, ) > 0 for quan-
tiles above the median, but Ayggs 1974(7, ) < 0 for quantiles below the median (hence, widen-
ing the wage inequality, while the lower quantiles losing most), and that (2) Aggos 1988(7, ) >
0 for most of quantiles (hence, ‘polarization’ of wage growth, while middle quantiles losing

most). In this subsection, we consider testing
(3.5) Hy: Aps(m,2) >0V(x,7) € X x T,

with a continuous covariate, where (¢, s) = (1988,1974) or (t,s) = (2008, 1988)."® Note that
degeneracy of the test statistic could occur if the contact set consists of values of (x, ) only
around 7 = 0.5. Therefore, the uniformity of our test could be potentially important in this

example.

3.4.2. Test Statistic. To implement the test, we again use a local polynomial quantile re-

gression estimator, say ¢:(7|x). Then A; (7, x) can be estimated by
As(r,2) = [@(r]) = 4s(712)] = [3(0.5]2) — G,(0.5])].

Then testing (3.5) can be carried out using

(3.6) 6, = /X i@l dQ(a 7).

9

where 0, 4(z) = —At’s(T, x)." Here, to reflect different sample sizes between two time

periods, we set

. \/ (nihs) x (nyhy)
" (nehe) + (nghs)’

where n; and h; are the sample size and the bandwidth used for nonparametric estimation

for year j =t,s.

18Note that Hy in (3.5) includes the case Ay 4(7, ) = 0, which does not correspond to the notion of polariza-
tion. In view of this, our null hypothesis in (3.5) can be regarded as a weak form of polarization hypothesis,
whereas a more strict version can be written as the inequality in (3.5) holds strictly for some high and low
quantiles.

Note that the null hypothesis is written as positivity in (3.5). Hence o, ; ,(z) is defined accordingly.
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TABLE 2. Summary Statistics for Empirical Example 2

Year 1974 1988 2008
Log Real Hourly Wages 2.780 2.769  2.907
Age in Years 35918 35.501 39.051
Sample Size 19575 64682 48341

Notes: The sample is restricted to white males, with age between 16
and 64. Entries for log real hourly wages and age show CPS sample
weighted means. Source: May/ORG CPS data extract from David
Autor’s web site.

F1GURE 4. Changes in Log Hourly Wages by Percentile Relative to the Median
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Notes: The figure shows differences-in-differences in quantiles of log
hourly wages, measured by [¢:(7) — ¢s(7)] — [¢:(0.5) — ¢5(0.5)]. Triangles
correspond to changes from 1974 to 1988, whereas circles those from
1988 to 2008. All quantiles are computed using CPS sample weight.
Source: May/ORG CPS data extract from David Autor’s web site.

3.4.3. Empirical Results. We used the CPS data extract of Acemoglu and Autor (2011).%
In our empirical example, we use age in years as the only covariate. Summary statistics and

20The data are available on David Autor’s web site. We would like to thank him for posting the data set
on a public domain. They used three-year averages around the year of interest to produce Figures 9a-9c in
Acemoglu and Autor (2011); however, we used just annual data.
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FIGURE 5. Estimates of 0, 4(z)
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Note: The top and bottom panels of the figure show local linear esti-
mates of —Ajggs 1974(7, ) and —Asggos 1088(7, ), respectively, where z is
age in years.

visual presentation of data are given in Table 2 and Figure 4. Note that Figure 4 replicates
the basic patterns of Figures 9 of Acemoglu and Autor (2011).

We now turn to the conditional version of Figure 4, using age as a conditioning variable.
As an illustration, let X be an interval of ages between 25 and 60 and let 7 = [0.1,0.9].
To check whether inequalities in A, ,(7, ) > 0 hold for each value of (z,7) € X x T, we
plot estimates of U, () = —At75(7', x) in Figure 5. The top panel of the figure shows that
5 estimated curves of 01955 1974(2), each representing a particular conditional quantile, and
the bottom panel shows the corresponding graph for period 1988-2008.2! By construction,

the estimated curve is a flat line at zero when 7 = 0.5. As consistent with Figure 4, the

21 A5 before, underlying conditional quantile functions are estimated via the local linear quantile regression
estimator with the kernel function K (u) = 1.5[1 — (2u)?] x 1{|u| < 0.5}. One important difference from the
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lower quantiles seem to violate the null hypothesis, especially for the period 1974-1988. As
before, our test can tell formally whether positive values of 0., s(x) lead to rejection of the
null hypothesis of polarization of wage growth.

We considered both the L; and L, test statistics described in (3.6). As before, the contact
set was estimated with ¢, = Cesloglog(n)qi—o.1/10g(n)(S;) With r, = Vvnh.22 We checked the
sensitivity to the tuning parameters with C.s € {0.5,1,1.5}.

For period 1974-1988, we rejected the null hypothesis at the 1% level across all three values
of Cs. However, for period 1988-2008, we fail to reject the null hypothesis at the 5% level
for any value of C.. Therefore, the changing patterns of the US wage distribution around

1988, reported in Acemoglu and Autor (2011), seem to hold up conditionally on age as well.

4. UNIFORM ASYMPTOTICS UNDER GENERAL CONDITIONS

In this section, we establish uniform asymptotic validity of our bootstrap test using high-
level conditions. We also provide a class of distributions for which the asymptotic size is

exact. We first define the set of distributions we consider.

Definition 1. Let P denote the collection of the potential joint distributions of the observed
random vectors that satisfy Assumptions A1-A6, and B1-B4 given below. Let Py C P be
the sub-collection of potential distributions that satisfy the null hypothesis.

Let || - || denote the Euclidean norm throughout the paper. For any given sequence of
subcollections P,, C P, any sequence of real numbers b,, > 0, and any sequence of random
vectors Z,,, we say that Z, /b, —p 0, Py-uniformly, or Z,, = op(b,), P,-uniformly, if for any
a >0,

limsup sup P {||Z,|| > ab,} = 0.

n—oo PeP,
Similarly, we say that Z, = Op(b,), P,-uniformly, if for any a > 0, there exists M > 0 such
that
limsup sup P {||Z,.|| > Mb,} < a.

n—oo PeP,
We also define their bootstrap counterparts. Let P* denote the probability under the boot-

strap distribution. For any given sequence of subcollections P, C P, any sequence of real

numbers b, > 0, and any sequence of random vectors Z*, we say that Z* /b, —p« 0, P,-

n’

uniformly, or Z* = op«(b,,), Py-uniformly, if for any a > 0,

limsup sup P{P*{||Z}|| > ab,} > a} = 0.

n—oo PeP,

first empirical example is that we used the CPS sample weight, which were incorporated by multiplying it
to the kernel weight for each observation. Finally, the bandwidth was h = 2.5 for all years.
2275 accommodate different sample sizes across years, we set n = (n1974 + N19ss + M2008)/3 in computing é,,.
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Similarly, we say that Z* = Op+(b,,), P,-uniformly, if for any a > 0, there exists M > 0 such
that
limsup sup P{P*{||Z;|| > Mb,} > a} < a.

n—oo PeP,
In particular, when we say Z,, = op(b,) or Op(b,), P-uniformly, it means that the conver-
gence holds uniformly over P € P, and when we say Z,, = op(b,) or Op(b,), Po-uniformly,
it means that the convergence holds uniformly over all the probabilities in P that satisfy the

null hypothesis.

4.1. Test Statistics and Critical Values in General Form. First, let us extend the test
statistics and the bootstrap procedure to the general case of J > 1. Let A, : R/ — [0, 00)
be a nonnegative, increasing function indexed by p > 1. While the theory of this paper can
be extended to various general forms of map A,, we focus on the following type:

J

(4.1) AP(Uh' -, v5) = (max{[vi]4, - - -, [UJ]+})p or Ap(vh cnuy) = Z[Uj]ﬁ’

j=1
where for a € R, [a]+ = max{a,0}. The test statistic is defined as

6= Ay (pa (@), -+, iy g (2)) dQ(z, 7).

XxT

To motivate our bootstrap procedure, it is convenient to begin with the following lemma. Let
us introduce some notation. Define Ny = 28\ {@}, i.e., the collection of all the nonempty
subsets of Ny = {1,2,---,J}. Forany A € Ny and v = (vy,---,v5)" € R7, we define v, to
be v except that for each j € N\ A, the j-th entry of v, is zero, and let

(42) AAJ)(V) = Ap(VA)'

That is, Aa,(v) is a “censoring” of A,(v) outside the index set A. Now, we define a general
version of contact sets: for A € N; and for ¢, 1,¢,2 > 0,
(4.3)

U o <cp1, foralljeA
Bn,A<cn,1,cn,2>z{(am)exw: ngtnirgl0)/Tnrg ()] % s, forall j € }

Tn,jUnrj(€)/Onrj(x) < —cCno, forall jeN;/A

where o, j(x) is a “population” version of &, ;(z) (see e.g. Assumption A5 below.) When

Cn1 = Cna = ¢, for some ¢, > 0, we write B, a(¢,,) = By oa(cni, Cn2)-

Lemma 1. Suppose that Assumptions A1-A3 and A4 (i) in Section 4.2 hold. Suppose further

that c,1 > 0 and ¢, 2 > 0 are sequences such that

Viegn{c, +cpa} =0,
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as n — 0o. Then as n — oo,

13127£0P {(9 = Z / AA,p(’&T,l(x)> o ',fLTJ(.Q?))dQ(Z',T)} — 17
AeN; / Bnalen1,6n,2)

where Py is the set of potential distributions of the observed random vector under the null

hypothesis.

The lemma above shows that the test statistic 6 is uniformly approximated by the integral
with domain restricted to the contact sets B, a(c¢pn1,¢n2) in large samples. Note that the
asymptotic result is remarkable, in the sense that the approximation error between 0 and the
expression on the right-hand side is op(e,,) for any &, — 0. The result of Lemma 1 suggests
that one may consider a bootstrap procedure that mimics the representation of 0 in Lemma
1.

We begin by introducing a sample version of the contact sets. For A € N,

\rn,jﬁﬂj(x)/&m(xﬂ S én, for all] < A
Tn,jﬁf,j(:z:)/677j(:1:') < —én, for allj S NJ\A .

A

By(é,) = {(x,T) eXXT:

The explicit condition for ¢, is found in Assumption A4 below. Given the bootstrap coun-
0y (), 07 ()] - § € Ny}, of {[07;(),67;(z)] : j € Ny}, we define our bootstrap
test statistic as follows:

0 = Z / CH)AAP $ta(@), -+ 87 4 (2)dQ(x, 7),

AENJ

terparts, {|

where for j € Ny, 87 () = 1, ;(07 ;(7) — 075(2)) /67 ;(x). We also define

=3 [ RN )5 )R

AENJ A(Cn

Let ¢, be the (1 — a)-th quantile from the bootstrap distribution of 0* and take

Com = max{c}, hd/Qn +a*}
as our critical value, where 1 > 0 is a small fixed number.

One of the main technical contributions of this paper is to present precise conditions under
which this proposal of bootstrap test works. We present and discuss them in subsequent
sections.

To see the intuition for the bootstrap validity, first note that the uniform convergence of
Tn,j{0r;(x) — vy j(x)} over (z,7) implies that

A

(44) Bn,A(Cn,La Cn,U) - BA(én> - Bn,A<Cn,U7 Cn,L)
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with probability approaching one, whenever P {c, 1 < ¢, < ¢, v} — 1. Therefore, if \/logn/c, 1 —

0, then, (letting $,; = 7, (07 (x) — vy j(x))/0-(x)), we have

(4.5) i<y / Aay (Bra (@), - - 30y () dQ(, 7),

Ae/\/' nA anvcnU

with probability approaching one, by Lemma 1 and the null hypothesis. When the last sum

has a nondegenerate limit, we can approximate its distribution by the bootstrap distribution

Z / Aap (§i1(x), 5 TJ( )) dQ(x, T)

AGNJ nA(ancnU)
< Z/ R Aayp (‘éil(m)a ° TJ( ))dQ(%’ 7')_0*

where the inequality follows from (4.4).* Thus the critical value is read from the bootstrap
distribution of §*. On the other hand, if the last sum in (4.5) has limiting distribution
degenerate at zero, we simply take a small positive number 7 to control the size of the test.

This results in our choice of ¢ = max{c’, h%?n+ a*}.

]
4.2. High-Level Regularity Conditions. In this section, we provide high-level conditions
needed to develop general results. We assume that S = X x T is a compact subset of a

Euclidean space. We begin with the following assumption.

Assumption Al. (Asymptotic Linear Representation) For each j € Ny = {1,---, J}, there
exists a nonstochastic function v, . ;(-) : R* = R such that (a) v, ;(z) <0 for all (z,7) € S
under the null hypothesis, and (b) as n — oo,

(4.6)
Sup |7, {UT’j<x2 ~ Unry (@) } — vVnhi¥{g, ;(z) — EQTJ(x)}‘ = op(Vh4), P-uniformly,
(2,7)ES r5()

where, with {(Y;", X, | being a random sample such that Y; = (Y,{,...,Y,})T € RJL,
i Al iJ

Y, € RL, X, € RY, cmd the distribution of X; is absolutely continuous with respect to
j

2 we define

i — X
gT,j hd ZBTL:L‘T,] ( 7R T) )

and Ppzrj RL x RY — R is a function which may depend on n > 1.

Lebesgue measure,

231n fact, the main challenge here is to prove the bootstrap approximation using the method of Poissonization
that is uniform in P € P,.

24Throughout the paper, we assume that X; € R? is a continuous random vector. It is straightforward to
extend the analysis to the case where X; has a subvector of discrete random variables.
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Assumption Al requires that there exist a nonparametric function v, , j(x) around which
the asymptotic linear representation holds uniformly in P € P, and v, ,;(z) < 0 under
the null hypothesis. The required rate of convergence in (4.6) is op(h%?) instead of op(1).
We need this stronger convergence rate primarily because 0 — a, is Op(hd/ %) for some non-
stochastic sequence an. 2

When 0, ;(x) is a sample mean of i.i.d. random quantities involving nonnegative kernels
and &, -(z) = 1, we may take v, ,;(z) = Eo, ;(z), and then op(v/h9) is in fact precisely equal
to 0. If the original nonparametric function v, ;(-) satisfies some smoothness conditions, we
may take v, . j(r) = v, ;(x), and handle the bias part Ev, ;(x) — v, ;(z) using the standard
arguments to deduce the error rate OP(\/W). Assumption Al admits both set-ups. For
instance, consider the simple example in Section 2.4. The asymptotic linear representation
in Assumption 1 can be shown to hold with

Brwa Vi, (Xi —x)/h) = ViK((X; —x)/h) /on(2),
where o7, | (2) = B[Y?K?*((X; — x)/h)]/h, if 6,1(x) is chosen as in (2.9).

The following assumption for 3, , - ; essentially defines the scope of this paper’s framework.

Assumption A 2. (Kernel-Type Condition) For some compact Ky C R? that does not
depend on P € P or n, it is satisfied that B, . ;(y,u) = 0 for all u € RN\Ky and all
(x,7,y) € X xT xY; and all j € N;, where Y; denotes the support of Yi;.

Assumption A2 can be immediately verified when the asymptotic linear representation in
(4.6) is established. This condition is satisfied in particular when the asymptotic linear rep-

resentation involves a multivariate kernel function with bounded support in a multiplicative

25To see this more clearly, we assume that 7 = {r}, p=1, and J = 1, and suppress the subscripts 7 and j
from the notation, and take 6(x) =1 for simplicity. We write (in the case where v, (z) = 0)

%4 = h’d/Q/Xmax{rn{f)(x)—vn(m)},O}dx

h/2 / max {Vihi(g(x) ~ Bj(x)),0} do + bR,

where R, is an error term that has at least the same convergence rate as the convergence rate of the remainder
term in the asymptotic linear representation for o(z). Now we let

a, =E [/X max{m{g(x) - Eg(x)},()} dx]
and write h—4/20 — h=/2q, as
pd/? (/X max {W{g(x) _Ej(z)}, o} dz — an> +hY2R,,.

It can be shown that the leading term is asymptotically normal using the method of Poissonization. Hence
h~=%20 — h=%/2q,, becomes asymptotically normal, if R,, = op (hd/2). This is where the faster error rate in
the asymptotic linear representation in Assumption A1(i) plays a role.
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form. In such a case, the set Ky depends only on the choice of the kernel function, not on

any model primitives.

Assumption A3. (Uniform Convergence Rate for Nonparametric Estimators) For all j €
NJ;

U i(2) — Upri(x

iy 1, |P2aE) = (@

(Z,T)ES &T’](:C)

=Op (@) , P-uniformly.

Assumption A3 requires that 0, ;(x) — v, ;(z) have the uniform convergence rate of
Op(r;;\/@) uniformly over P € P. Lemma 2 in Section 4.4 provides some sufficient
conditions for this convergence.

We now introduce conditions for the bandwidth h and the tuning parameter ¢, for the

contact sets.

Assumption A4. (Rate Conditions for Tuning Parameters) (i) As n — oo, h — 0,
Viogn/r, — 0, and n=Y2h=%"1 — 0 for some arbitrarily small v, > 0, where r, =
minjen, 7n,j-
(ii) For each n > 1, there exist nonstochastic sequences ¢, > 0 and ¢,y > 0 such that
o < Cpu, and

]ijlelgpp{cn,L <é, <cput — 1, and \/logn/c, . + cnu/rn — 0,

as n — 0.

The requirement that y/logn/r, — 0 is satisfied easily for most cases where r, increases
at a polynomial order in n. Assumption A4(ii) requires that ¢, increase faster than /logn

but slower than r, with probability approaching one.

Assumption A5. (Regularity Conditions for 6, j(x)) For each (1,j) € T x N, there exists
Oprj(c) : X = (0,00) such that liminf,_, inf(, ryes infpep 0 7 (2) > 0, and
sup |6,;(z) — onr;(z)| = 0p(1), P-uniformly.
(z,7)ES

Assumption A5 requires that the scale normalization ¢, ;(x) should be asymptotically
well defined. The condition precludes the case where estimator 6, ;(x) converges to a map
that becomes zero at some point (z,7) in S. Assumption A5 is usually satisfied by an
appropriate choice of 6, ;(x). When one chooses 6, ;(z) = 1, which is permitted in our
framework, Assumption A5 is immediately satisfied with o, ,;(z) = 1. Again, if we go
back to the simple example considered in Section 2.4, it is straightforward to see that under
regularity conditions, with the subscript 7 suppressed, 67(z) = o, ,(x)+op(1) and o}, ; () =
ot(z) + o(1), where of(z) = E(Y?|X =) f(x) [ K*(u)du, as n — co. The convergence can
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be strengthened to a uniform convergence when o3 (z) is bounded away from zero uniformly
over x € X and P € P, so that Assumption A5 holds.

We introduce assumptions about the moment conditions for §,,,;(+,-) and other regu-
larity conditions. For 7 € T and &; > 0, let S,(e;) = {z +a:x € S,, a € [—&1,21]?}, where
S,={rxeX:(x,7) € S} foreach 7 € T. Let U = Ky + Ky such that U contains {0} in its
interior and kg is the same as Assumption 2.

Assumption AG6. (i) There exist M > 2(p+2), C >0, and g1 > 0 such that
EHﬂn,r,ﬂj (}/;j7u) ’M|Xl = 'T]f($> <C,

for all (z,u) € S;(e1) xU, T €T, je€N;,, n>1, and P € P, where f(-) is the density of
X,
(ii) For each a € (0,1/2), there exists a compact set C, C R% such that

0 < inf P{X; € R\C,} < sup P{X; € R\C,} < a.
pPep PeP

Assumption A6(i) requires that conditional moments of £, . ; (Yi;, z) be bounded. As-
sumption A6(ii) is a technical condition for the distribution of X;. The third inequality
in Assumption A6(ii) is satisfied if the distribution of X; is uniformly tight in P, and fol-
lows, for example, if suppepE||X;|| < 0o. The first inequality in Assumption A6(ii) requires
that there be a common compact set outside which the distribution of X; still has positive
probability mass uniformly over P € P. The main thrust of Assumption A6(ii) lies in the
requirement that such a compact set be independent of P € P. While it is necessary to
make this technical condition explicit as stated here, the condition itself appears very weak.

This paper’s asymptotic analysis adopts the approach of Poissonization (see, e.g., Horvath
(1991) and Giné, Mason, and Zaitsev (2003)). However, existing methods of Poissonization
are not readily applicable to our testing problem, mainly due to the possibility of local
or global redundancy among the nonparametric functions. In particular, the conditional
covariance matrix of 3, . ,;(Yi;,u)’s across different (z,7,7)’s given X; can be singular in
the limit. Since the empirical researcher rarely knows a prior: the local relations among
nonparametric functions, it is important that the validity of the test is not sensitive to the
local relations among them, i.e., the validity should be uniform in P.

This paper deals with this challenge in three steps. First, we introduce a Poissonized ver-

sion of the test statistic and apply a certain form of regularization to facilitate the derivation

5The conditional expectation Ep [|B,,4,r; (Yij, u) |M|X; = z] is of type E [f(Y,2)|X = 2], which is not well
defined according to Kolmogorov’s definition of conditional expectations. See, e.g. Proschan and Presnell
(1998) for this problem. Here we define the conditional expectation in an elementary way by using conditional
densities or conditional probability mass functions of (Y;;, Yix) given X; = x, depending on whether (Y;;, Yiz)
is continuous or discrete.
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of its limiting distribution uniformly in P € P, i.e., regardless of singularity or degeneracy
in the original test statistic. Second, we use a Berry-Esseen-type bound to compute the
finite sample influence of the regularization bias and let the regularization parameter go to
zero carefully, so that the bias disappears in the limit. Third, we translate thus computed
limiting distribution into that of the original test statistic, using so-called de-Poissonization
lemma. This is how the uniformity issue in this complex situation is covered through the

Poissonization method combined with the method of regularization.

4.3. Asymptotic Validity of Bootstrap Procedure. Recall that E* and P* denote the
expectation and the probability under the bootstrap distribution. We make the following

assumptions for o; ;(x).

Assumption B1. (Bootstrap Asymptotic Linear Representation) For each j € Ny,

sup_[rn {20 TN VR 0) — B2, 01| = o (VD). Pvnifory
(z,7)eS 0-7—7j(x)
where

X*
gT,j nhd Zﬁnxﬂ] ( 7,]7 h ) )

and B zrj 15 a real valued function mtroduced in Assumption Al.

Assumption B2. For all j € Ny,

07(2) — 0r ()

o7 (@)

= Op«(+/logn), P-uniformly.

sup rn,j
(z,7)ES

Assumption B3. For all j € Ny,
sup |&:7j () — 6+5(z)| = op+(1), P-uniformly.
(z,7)eS
Assumption B1 is the asymptotic linear representation of the bootstrap estimator o7 ;(z).
The proof of the asymptotic linear representation can be typically proceeded in a similar
way that one obtains the original asymptotic linear representation in Assumption Al. As-

sumptions B2 and B3 are the bootstrap versions of Assumptions A3 and Ab5.

Assumption B4. (Bandwidth Condition) n=/?h~ (B=3)d 5 0 asn — oo, for some

small vy > 0 and for M > 0 that appears in Assumption A6(7).

When 3, ,-; (Yi;,u) is bounded uniformly over (n,x,7,j), the bandwidth condition in
Assumption B4 is reduced to n~Y/2hp734/272 — (. If Assumption A4(i) holds with M = 6
and p = 1 (this choice of (M, p) satisfies Assumption A6(i)), the bandwidth condition in
Assumption B4 is reduced to n=/2p=Td/4=2 5 .
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Note that Assumption B4 is stronger than the bandwidth condition in Assumption A4(i).
The main reason is that we need to prove that for some a,, > 0, we have a,, = a. + o(hd/ 2)
and a’ = as + op(h%?), P-uniformly, where a, is an appropriate location normalizer of
the test statistic, and a} is a bootstrap counterpart of a,. To show these, we utilize a
Berry-Esseen-type bound for a nonlinear transform of independent sum of random variables.
Since the approximation error depends on the moment bounds for the sum, the bandwidth
condition in Assumption B4 takes a form that involves M > 0 in Assumption A6.

We now present the result of the uniform validity of our bootstrap test.

Theorem 1. Suppose that Assumptions A1-A6 and B1-B/ hold. Then

limsup sup P{0 > Cont S .
n—oo PePy ’

One might ask whether the bootstrap test 1{9 > cf,,} is asymptotically exact, i.e., whether
the inequality in Theorem 1 holds as an equality. As we show below, the answer is affirmative
in general. The remaining issue is a precise formulation of a subset of Py such that the
rejection probability of the bootstrap test achieves the level o asymptotically, uniformly
over the subset.

To see when the test will have asymptotically exact size, we apply Lemma 1 to find that

with probability approaching one,

é— AAP ST ll,,”_xo- d x,T
Z/) (8+(2) + W (:6)) dQ(w, 7),

AeN;y

where 8, (2) = [ {00 (€) = O (@)} /625 (2)] ) a0d Wr (25.6) = [ gvn (@) /5],

and ¢,y > 0 and ¢, ; > 0 are nonstochastic sequences that satisfy Assumption A4(ii).?" We

fix a positive sequence ¢, — 0, and write the right hand side as

. Agyp (5-(2) +uy-(2;0))dQ(z, T
(@.7) 3 Sy Mo la) i) )

n Z/ Aap (8-(7) + o r(250)) dQ(z, 7).

AeN; Y Bn,a(Cn,U:cn,L)\Bn,A(qn)

Under the null hypothesis, we have v, ; ;(z) <0, and hence the last sum is bounded by

) / Ay (5-()) dQ(a, 7).

AeN; Y Bn,a(en,Uscn,L)\Bn,a(qn)

2"Note that we use Lemma 1 with By, a(cn,u, cn 1) here, differently from (4.5). This is because for asymptotic
exactness, we need to use different arguments. See the roadmap of Appendix A for detailed explanations.



32 LEE, SONG, AND WHANG

with probability approaching one. Using the uniform convergence rate in Assumption A3,

we find that as long as
Q(Bn,A(Cn,Ua Cn,L)\Bn,A(Qn)) — 07

fast enough, the second term in (4.7) vanishes in probability. As for the first integral, since
for all z € B, 4(¢n), we have |r, ju,r;(x)/0,;(x)] < ¢, for all j € A, we use the Lipschitz

continuity of the map A4, on a compact set, to approximate the leading sum in (4.7) by
01.1(qn) = Z / Aap (8-(2))dQ(x, 7).
AENJ Bn,A(Qn)
Thus we let
(48) 7571(>\n>Qn) = {P € 73 : Q ( U Bn(cn,Uacn,L)\Bn(Qn)) S An} )

AENJ

where B, (¢nu, o) = Uaen,; Bn,a(cau, cn ), and find that
0 = 01,1(q0) + 0p(h*"?), Pu(An, ) N Po-uniformly,

as long as A\, and ¢, converge to zero fast enough. We will specify the conditions in Theorem
2 below.
Let us deal with 6, ,(g,). First, it can be shown that there are sequences of nonstochastic

numbers a,(¢,) € R and 0,(g,) > 0 that depend on ¢, such that

(4.9) W0, ,(4) — an(gn)}/on(gn) 2 N(0,1),

if liminf,, .0, (g,) > 0. We provide the precise formulae for 0,(q,) and a,(g,) in Section 6.3.
Since the distribution of h=%2{0, ,,(¢,) — @n(¢n)}/on(gs) is approximated by the bootstrap
distribution of A~%2{6* — a,,(¢n)}/0n(gs) in large samples, we find that

h*d/Z{CZ — an(qn)}

P =0 (1 —a)+op(1).

Hence the bootstrap critical value ¢* will dominate h=%2n + a* > 0, if for all n > 1,
W= {h*n + @ — au(gn)}
T (qn)
n+h"P{a" — an(gn)}
on(qn) '

(1 —a)

We can show that a* — a,(g,) = op(h%?), which follows if A, in (4.8) vanishes to zero

sufficiently fast. Hence if
oa(qn) 2 n/®7H (1 - @),
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we have ¢, becomes approximately equal to our bootstrap critical value cj, ,. This leads to

the following formulation of probabilities.

Definition 2. Define
Prn(Ansqn) = {P € PuAny @) : 0n(gn) > n/@ 71 (1 — a)} :

where 75n()\n, ¢n) is as defined in (4.8).

The following theorem establishes the asymptotic exactness of the size of the bootstrap
test over P € P, (An, qn) N Po.

Theorem 2. Suppose that Assumptions A1-A6 and B1-B4 hold. Let \,, — 0 and ¢, — 0 be

positive sequences such that

(4.10) h=¥ (logn)”* N, — 0 and
h=2q,{(logn)®*~V/2 £ g2=11 - 0.

Then
lizrisolip PePn(S;\lizn)ﬁPO P{0>c,,}—a|=0.

Theorem 2 shows that the rejection probability of our bootstrap test achieves exactly the
level v uniformly over the set of probabilities in Py, (A, ¢o) NPo. If v, 7 ;(z) = 0 for each (z, )
and for each j (the least favorable case, say Prpc), then it is obvious that the distribution
Prrc belongs to Pp(\,, ¢,) for any positive sequences A, — 0 and ¢, — 0. This would be
the only case of asymptotically exact coverage if bootstrap critical values were obtained as
in (2.12), without contact set estimation. By estimating the contact sets and obtaining a
critical value based on them, Theorem 2 establishes the asymptotically uniform exactness of

the bootstrap test for distributions such that they may not satisfy v, . j(z) = 0 everywhere.

4.4. Sufficient Conditions for Uniform Convergences in Assumptions A3 and B2.
This subsection gives sufficient conditions that yield Assumptions A3 and B2. The result is

formalized in the following lemma.

Lemma 2. (i) Suppose that Assumptions A1-A2 hold and that for each j € N, there exist
finite constants C,v; > 0, and a positive sequence 0, ; > 0 such that for alln > 1, and all
(I'l, 7'1) & S,

(4.11) E sup (bnij (21, T1) = bpij(2,72))?| < Con N4, for all X >0,

(z2,m2)€ES:||x1—22||+||T1—T2||<A
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where bn,ij (‘Tlv 7—1) = 6n,x1,7'1,j (}/iﬁ (XZ - xl)/h) and lim SUPp, 00 E[Sup(x,‘r)es bfrll,ij (‘Ta T)] <C

and 0, ; = n° and h = n* for some s;;,s2 € R. Furthermore, assume that
n~V2pmdv 0,

for some small v > 0. Then, Assumption A3 holds.
(ii) Suppose further that Assumptions B1 and B3 hold. Then, Assumption B2 holds.

The condition (4.11) is the local Lo-continuity condition for 3, r; (Yi;, (X; —2)/h) in
(z,7). The condition corresponds to what Andrews (1994) called “Type IV class”. The
condition is satisfied by numerous maps that are continuous or discontinuous, as long as
regularity conditions for the random vector (Y;, X;) are satisfied.?® Typically, 4§, ; diverges to
infinity at a polynomial rate in h~'. The constant ~; is 2 or can be smaller than 2, depending
on the smoothness of the underlying function b, ;;(x, 7). The value of ; does not affect the

asymptotic theory of this paper, as long as it is strictly positive.

5. VERIFYING HiGH-LEVEL CONDITIONS FOR THE FIRST EMPIRICAL EXAMPLE

In this section, we use the auction model of GPV to illustrate how to verify high-level

regularity conditions in Section 4.%

5.1. Details on Estimating Conditional Quantile Functions. We provide further de-
tails on the empirical example considered in Section 3.3. Assume that g (7|x) is (r+1)-times

continuously differentiable with respect to x, where r > 1. We use a local polynomial es-

timator gy(7|z). For w = (uy,...,uq), a d-dimensional vector of nonnegative integers, let
[u] = uy + -+ + ug. Let A, be the set of all d-dimensional vectors u such that [u] < r,
and let |A,| denote the number of elements in A,. For z = (z1,- - -,24) € R? with
u = (up,--ug)’ € A, let 2 = [[%_, 2%, Now define ¢(z) = (2*)uea,, for z € R%

Note that ¢(z) is a vector of dimension |A,|.

Let {(By, X;, L;) : £ =1,...,L;;i =1,...,n} denote the observed data, where {By; : { =
1,..., L;} denotes the L; number of observed bids in the i-th auction, X; a vector of observed
characteristics for the i-th auction, and L; the number of bids for the i-th auction, taking
values from Ny = {2,-- -, L}. In our application, L = 3.

Assume that the data {(By, X;, L;) : ¢ =1,...,L;;i =1,...,n} are i.i.d. over ¢ and that
By;’s are also i.i.d. over ¢ conditional on X; and L;. To implement the test, it is necessary
mn, and Van Keilegom (2003, Theorem 3) introduced its extension to functions indexed partly
by infinite dimensional parameters, and called it local uniform Ls-continuity. For further discussions, see
Andrews (1994) and Chen, Linton, and Van Keilegom (2003).

29Similarly one may derive primitive conditions for the second empirical example since it is also concerned
with estimating conditional quantile functions. Hence we omit the details.
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to estimate b. In our application, we use b = min{By; : ¢ =1,...,L;;i =1,...,n}, that is
the overall sample minimum.

For each x = (x1,...,x4), the r-th order local polynomial quantile regression estimator of
qx(7|x) can be obtained by minimizing

Sari(y) = zn: 1{L; = k}ng {B& —ATe (th— z)} % (x —hXZ>

i=1

with respect to v € R4l where [, (u) = {|u| + (27 — 1)u}/2 for any u € R, and K(-) is a
d-dimensional kernel function and h a bandwidth. More specifically, let gy (7|z) = e] 41 (z),
where 4y () = argmin. cgia,| Snzrk(7) and ey is a column vector whose first entry is one, and
the rest zero. Note that all bids are combined in each auction since we consider symmetric
bidders. For u = (uy,- - -,uq)" € A,, and 7 + 1 times differentiable map f on R¢, we define
the following derivative:

ol
(D*f)(x) = mf(iﬁ),

where [u] = u; + - - - + ug. Then we define v, () = (Yrpu(x))

1 u
Vrku(T) = ﬁD qk(T|z).

1“..ud'

wea,» Where
.

5.2. Primitive Conditions for the Example. Let us present primitive conditions for the

auction example of GPV.

Assumption AUC-1. (i) There exists an integer r > 3d/2 — 1 and a constant € > 0 such
that for all (1,k) € T x N, qu(7]) is v+ 1 times continuously differentiable on S.(g) with
derivatives bounded uniformly over (1, P) € T x P.

(ii) The density f of X is continuously differentiable on R¢ with a derivative bounded uni-
formly over P € P.

Assumption AUC-2. For each k € Ny, (i) inf,cs (o) frx(0]2) is bounded away from zero
uniformly over (1, P) € T x P, with f;(0|x) being the conditional density of By — qi(7|X:)
given X; = x and L; = k. (ii) sup,es, (o) fr1(0[x) is bounded uniformly over (1, P) € T x P,
and (iii) fr(E|x) is continuously differentiable in (£, x) with a derivative bounded uniformly
over x € S;(¢), T€ T, and P € P.

(i) P{L; = k|X; = z} is bounded away from zero uniformly over x € S,;(¢),7 € T and
P € P, and is continuously differentiable in x with a derivative bounded uniformly over
re S, (e),TeT and P € P.

Assumption AUC-3. (i) K is compact-supported, nonnegative, bounded, and Lipschitz
continuous on the interior of its support, [ K(u)du =1, and [ K (u) ||u||*du > 0. (it) As
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n — 0o,
_1/4h (d+v)/4 + \/_hr+1 - 0

for some small v > 0.
Assumption AUC-4. b=0b+ op (n=1/2), P-uniformly.

Assumption AUC-1(i) is a standard assumption used in the local polynomial approach
where one approximates gx(:|z) by a linear combination of its derivatives through Taylor
expansion, except only that the approximation behaves well uniformly over P € P. As-
sumption AUC-2 is made to prevent the degeneracy of the asymptotic linear representation
of 4 x(x) — vrx(z) that is uniform over x € S;(¢),7 € T and over P € P. Assumptions
AUC-3 (i) and (ii) are conditions for the kernel and the bandwidth. For example, the choice
of h = n~* with the condition 1/(2(r + 1)) < s < 1/(3(d + v)) satisfies the bandwidth con-
dition. The small v > 0 there is introduced to satisfy Assumption B4. Assumption AUC-4
holds in general because the extreme order statistic is super-consistent with the n=! rate of
convergence. Recall that e; is a unit vector whose first element is one and all other elements

are zZeros.

Theorem AUC. If Assumptions AUC-1, AUC-2, AUC-3, and AUC-4 hold, then Assump-
tions A1-AS3, A5-A6, and BI1-B4 hold with the following definitions: J =2, r, ; = Vnhe,
Unra () = el {1r2(2) = 173(2)},
Unr2(2) = b= el {2yra(w) = ra(2)},
Brari(Yis2) = ngro(Yi 2) — angrs(Yis 2), and
Brwr2(Yi,2) = —204,,.2(Y;,2) + o rs(Yi, 2),

where I(u) =7 — 1{u <0}, Y; = {(Bu,L;) : L =1,...,L;},
k
nark(Yiz) = —1{L; =k} Z (Bei = vop(x) - H-c(2)) &) My 1 (2)c(2) K (2),

My k(x) = k / P{L; = k| X; = v + th} f; x(0]z + th) f(x + th) K (t)c(t)c' (t)dt,
and H =diag((h")yeca,) is the |A,| x |A,| diagonal matriz.

It is worth commenting on the linear expansion derived in Theorem AUC. The term
Qi (Y:, 2) is not mean zero conditionally on X; since the bias terms are included inside
Z~T() Also, note that M, ,(z) depends on n and contains the smoothing bias as well.
However, the results obtained in Theorem AUC are sufficient enough to verify high-level

conditions of the paper.
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The main part of the proof is to establish a uniform error rate for the asymptotic linear
representation for vnhe{4, () —v-x(z)} in a spirit similar to Guerre and Sabbah (2012).%
Our proof uses some arguments of Guerre and Sabbah (2012), who employ a maximal in-
equality of Massart (2007, Theorem 6.8).3!

The theoretical novelty in our derivation of the linear expansion in Theorem AUC is
that we have obtained an approximation that is uniform in (x,7) as well as in P. To the
best of our knowledge, there is no established result on linear expansions of local polynomial
quantile regression estimators that hold uniformly over three aspects (x, 7, P) simultaneously.

Therefore, our results may be of independent interest and can be useful in other contexts.

6. POWER PROPERTIES

In this section, we go back to the general setup in Section 4 and consider the power
properties of the bootstrap test. In Section 6.1, we establish the consistency of our test.

Section 6.2 provides heuristic arguments behind local power properties of our tests, and

Section 6.3 presents the local power function in a general form.3?

6.1. Consistency. First, to show consistency of our test, we make the following assumption.

Assumption C1. For each j € Nj and (z,7) € S, vy, (x) = v, ;(z) + o(1), and

(6.1) limsup sup |v,r;(2)] < oco.

n—oo (z,7)ES

The pointwise convergence vy, ;(z) = v,;(z) 4+ o(1) holds typically by an appropriate
choice of v, ;(x). In many examples, condition (6.1) is often implied by Assumptions Al-
AG6. If we revisit the simple example considered in Section 2.4, it is straightforward to see
that under Assumptions A1-A6, with the subscript 7 suppressed, v,1(x) = vi(z) + o(1),
where v, 1(z) = E0,1(2) and vi(z) = E(Y|X = z)f(z), and (6.1) holds easily.

We now establish the consistency of our proposed test as follows.

30See Lemma QR2 in Appendix B. Our asymptotic approximation is based on plugging the asymptotic linear
expansion directly. There is a recent proposal by Mammen, Van Keilegom, and Yu (2013), who developed
nonparametric tests for parametric specifications of regression quantiles and showed that calculating moments
of linear expansions of nonparametric quantile regression estimators might work better in a sense that their
approach requires less stringent conditions for the dimension of covariates and the choice of the bandwidth.
It is an interesting future research topic whether their ideas can be applied to our setup.

31The main significant difference is that the convergence rate obtained by Guerre and Sabbah (2012) is
uniform over h in some interval, while our result is uniform over P € P.

32The local power results in this section are more general than those of Lee, Song, and Whang (2013). In
particular, the results accommodate a wider class of local alternatives that may not converge to the least
favorable case.



38 LEE, SONG, AND WHANG

Theorem 3. Suppose that Assumptions A1-A6, B1-B, and C1 hold and that we are under
a fized alternative hypothesis such that

/Ap (UT,1<=’”)>' : ‘aUT,J(l")) dQ(x, ) > 0.

Then as n — oo,
P{6>c,,}—1

6.2. Local Power Analysis: Definitions and Heuristics. In this section, we investigate
the local power properties of our test. For local power analysis, we formally define the space
of Pitman directions. Let D be the collection of R’-valued bounded functions on X x 7~ such
that for each 0 = (01,---,0;) € D, Q{(x,7) € S : §;(x,7) # 0} > 0 for some j =1,...,J.
That is, at least one of the components of any 6 € D is a non-zero function a.e. For each
d=(61,---,0;) € D, we write 6, (z) =0(x,7), j=1,---,J.

For a given vector of sequences b, = (by1,- - -, by s), such that b, ; — oo, and 6 € D, we

consider the following type of local alternatives:

dr4(x)
an

where v? ;(z) < 0 for all (x,7,7) € X x T x Ny, d,;(z) > 0 for some (z,7,j) € X x T x N,
such that v, ;(x) > 0 for some (z, 7, j) € X xT xN;. Note that in (6.2), v, ;(z) is a sequence

(6.2) Hs : v, j(x) = 02 (z) +

T’]

, for all j € Ny,

of Pitman local alternatives that consist of three components: v ;(x), by, and 6, ;(z).

The first component vgj(x) determines where the sequence of local alternatives converges
to. For example, if U?_J () =0 for all (z,7,j), then we have a sequence of local alternatives
that converges to the least favorable case. We allow for negative values for uSJ (x), so that
we include the local alternatives that do not converge to the least favorable case as well.

From here on, we assume the local alternative hypotheses of the form in (6.2). We fix

0
Tkj

The following definitions are useful to explain our local power results.

v) (x) and identify each local alternative with a pair (b,,d) for each Pitman direction § € D.

Definition 3. (i) Given a Pitman direction § € D, we say that an a-level test, 1{T > ¢,},

has nontrivial local power against (by,d), if under the local alternatives (b, ¢),
liminf, oo P{T > ¢,} > a,

and say that the test has trivial local power against (b,,d), if under the local alternatives

(b, ),
limsup,,_,o, P{T > co} < a.
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(ii) Given a collection D, we say that a test has convergence rate b,, against D, if the test
has nontrivial local power against (b, ) for some ¢ € D, and has trivial local power against
(b),,0) for all § € D and all b, such that b;, ;/b, ; — 00 asn — oo, forall j =1,...,J.

One of the remarkable aspects of the local power properties is that our test has two types of
convergence rates. More specifically, there exists a partition (Dy, Ds) of D, where our test has
a rate b, against D; and another rate b, against Dy. Furthermore, in many nonparametric
inequality testing environments, the faster of the two rates b, and b/, achieves the parametric
rate of \/n.

To see this closely, let us assume the set-up of testing inequality restrictions on a mean
regression function in Section 2.4, and consider the following local alternatives:

o(x)
b,

(6.3) Un1(z) = vo(x) +

where vg(x) < 0 for all z € X, and 6 € D.
First, we set b, = v/n. Then under this local alternative hypothesis (b,,d), we can verify
that with probability approaching one,

(64) A0 —ang) =712 {/
By (en)
where Zy,1(x) = Vih {in(2) = va1 ()} /61(2), BY(en) = {w € X : |Vhuo(w)| < e}, e =

00, v/logn/c, — 0, and
ano=E [/ [Zna(z)], dw} :
BY (cn)

Under regularity conditions, the right-hand side of (6.4) is approximated by

hl/2§
(6.5) h1/? {/ {Znyl(:c) + ﬂ] dx — an,g} +p2 {ans — ano},
B(0) +

Znﬂl(ZL‘)

+ V() + hl/25(x)] dr — anﬁ} ;

o1(x) o1(x)

o1(z)

where B%(0) = {z € X : vo(x) = 0} and

ans =E UBO(O) [Znyl(x) + %} +da:] .

The leading term in (6.5) converges in distribution to Z; ~ N(0,02) precisely as in (2.11).

Furthermore, we can show that

h'/2§
Upy = / E [Zl + —(I)] dz + o(h*?) and
BY(0) +

o1(z)

- / E (2], dr + o(h"?).
B(0)
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Therefore, as for the last term in (6.5), we find that

WY {ans — ano} = /B o h1/2 <E {Zl + %} - E [Z1]+) dx
5(x)

26(0) /30(0) o1(x) do+olD),

where the last equality follows from expanding h~1/2 {E [Zy + 2'?6(x) [0 (2)] , — E [Zl]+}.
We conclude that under the local alternatives, we have

dx.

WY20 — ang) —a Zy + 20(0) / o(x)

BY(0) 91 (z)
The magnitude of the last term in the limit determines the local power of the test. Thus

under Pitman local alternatives such that

§(x)
(6.6) /B o (@) dx > 0,

the test has nontrivial power against y/n-converging Pitman local alternatives. Note that the

integral in (6.6) is defined on the population contact set BY(0). Thus, the test has nontrivial
power, unless the contact set has Lebesgue measure zero or (-) is “too often negative” on
the contact set.

When the integral in (6.6) is zero, we consider the local alternatives (b,,J) with a slower

convergence rate b, = n'/2h'/*. Following similar arguments as before, we now have
h—1/2(9 - an,[)) —d Zl + lirnn—)ooh_l/2 {an,é - an,O} 3

where 1/ig
h
ns = / E {Zml(l’) + ﬁ] dz,
BO(0) o1() +

which can be shown again to be equal to

1/4
/ E [Zl + h—(s(x)} dx + o(h'/?).
B2(0) +

o1(z)
o f ol 28w
o) /BO(O) %d:ﬁ +o(1)

()
—1/4 1
— /2¢<0>/ .

However, observe that

E[Z,
(

0'1(1’
dr + =
BY(0) o1(z)

2
— 1/ 62(36)613:—{—0(1),
2 /o

0) oi(z)
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because fBO(O){(S(x)/Ul (x)}dz = 0. We find that under the local alternative hypothesis in
(6.3) with b, = n'/2h1/4

- 1 62(x)
h12(0 — a, —y Ty + —/ da.
( o) @M Bo(0) 01 ()

Therefore, even when [, (0){5 (x)/o1(x)}dx = 0, the test still has nontrivial power against

n'/2hl/*converging Pitman local alternatives, if the Pitman directions are such that
/ {6%(z)/o? (z) }dz > 0.
BO(0)

Now let us consider the partition (D;, Dy) of D, where

D, = {5 €D: d(z)/o1(x)dx # 0} and
B9 (0)

Dy, = {(5 €D: 0 d(z)/o1(x)dx = 0 and /BO(O){(SZ(JU)/Jf(:U)}d:U > O} :

When inf,cyoi(z) > ¢ > 0 for some ¢ > 0 (recall Assumption A5) and Q(B°(0)) > 0, we
have [po){0%(z)/0%(z)}dz > 0 and the set {Dy, D} becomes a partition of D. Thus the
bootstrap test has a convergence rate of \/n against D; and n'/?h'/-rate against D,. In the
next section, Corollary 1 provides a general result of this phenomenon of dual convergence

rates of our bootstrap test.

6.3. Local Power Analysis: Results. We now provide general local power functions
explicitly. We first present explicit forms of location and scale normalizers, a,(g,) and
on(qn) in (4.9). Let for j,k € Ny, and 74,75 € T,

(6.7) P ke (T, 1) = mE |:ﬁn,x,7-1,j (Yz‘j, T) Br,z,7a,k (Yik, 5 + U)} :

This function approximates the asymptotic covariance between /n (0, j(x) — vy - j(x))/6;(2)
and /n(0r;(z+uh) — v, ,;(x+uh)) /6, (x). We define ¥, ;, -, (x, u) to be the J-dimensional
square matrix with (7, k)-th entry given by py - r.5k(2, w).
Define for v € R,
Ko (V) = Y Aap(V)1{(2,7) € B alan)} -
AeN;
Then we define
ia) = [ [ B[R (WL (5,0)] dra,
X JT

and

(6.8) ai(qn)z////C’n,mm(x,u)dﬁdrgdxdu,
UJIXJTJIT
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where

Chrm(z,u) = Cov (/_XJM1 (W 1) (z,u)), /_\gw2 (W(Q) (x, u))) ,

n,71,72 n,T1,72
1 2 : :
and [W%,)TMQ (x,u)T,WgL,)Thm(a:,u)T]T is a mean zero R?/-valued Gaussian random vector

whose covariance matrix is given by

En:Tl,Tl (xa O) Zn,ﬁ,m (x, u)
Z?’L,TI,TQ ('TJ u)T En77-2,7-2 (.CU + 'U/h, 0)

(6.9)

The multiple integral in (6.8) is nonnegative.

The limit of the quantity o2(q,) as n — oo, if it is positive, is nothing but the asymptotic
variance of the test statistic 6 (after location-scale normalization). Not surprisingly the
asymptotic variance does not depend on points (x,7) of X x T such that v, ,;(x)/0n.;()
is away below zero, as is expressed through its dependence on the contact sets B, 4(gy,) and
the “truncated map” /_\gm(-) involving A’s restricted to Nj.

We first make the following assumptions.

Assumption C2. (i) For each (1,j) € T x Ny, there exists a map v} ; : R* = R such
that for each x € S;(e1), v2 . (z) <0, and

n,7,J

0rj()

(6.10) Vprj(z) =00 () + o
n7]

n77-7]

(1+0(1)),

where o(1) is uniform in v € S; and in T € T, as n — 00 and b, ; — 00 is the positive
sequence in (6.2).
(i1) SUP(y ryes |Onrj(2) — 0r ()| = o(1), as n — oo, for some function o, ;(x) such that

inf(, ryes 0-j(x) > 0.

Assumption C2 can also be shown to hold in many examples. When appropriate smooth-
ness conditions for v, ;(z) hold and a suitable (possibly higher-order) kernel function is used,
we can take v, ;;(z) in Assumption Al to be identical to v, j(x), and hence Assumption C2
is implied by (6.2). For the simple example in Section 2.4, if we take v, ;(z) = E0;(x), it
follows that v, ;(z) = v ;(x) + b, [ 6;(x + zh) K (2)dz, with v}, ;(z) = [0)(x 4 zh) K (z)dz.
Hence when 6;(x) is uniformly continuous in x, we obtain Assumption C2.

The local asymptotic power function is based on the asymptotic normal approximation of
the distribution of 6 (after scale and location normalization) under the local alternatives. For
this purpose, we define the sequence of probability sets that admit the normal approximation

under local alternatives. For c1,co > 0, let BY(cy, o) and Bg7A(cl, ¢o) denote B, (cp, ) and

0

B a(c1, c2) except that v, . j(x)’s are replaced by v, _

we write BY(c) = BY(c, ¢).

(x)’s in Assumption C2. As before,
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Definition 4. For any positive sequence A, — 0, define
Phw) = {P € PAN)  02(0) = /@7 (1 - )}

where 752()\n) is equal to 75n(/\n, ¢n) except that B, a(cnu,cnr) and By, a(g,) are replaced
by BgﬁA(can, Cp,1,) and ngA(qn) for all A € N, and ¢, is set to be zero.

To give a general form of the local power function, let us define ¢, 4 .(+;x) : R7— [0, 00),
(¢, 7)€ X x T and A C Ny, as

¢n,A,T (Y7 (L’) =

O—nl(o)E [AAvp (W’gleT(x’O) + Y)} -1 {(IL',T) c B,S’A(O)} .

The local power properties of the bootstrap test are mainly determined by the slope and the

curvature of this function. So, we define
2

Jydy "

if the first derivatives and the second derivatives in the definition exist respectively.

0
(6.11) wﬁ%,xy;x)z%wm,xy; x) and ) (y;z) = Unar(y; ),

Assumption C3. (i) There exists 1 > 0 such that for all (1, A) € T x Ny and all z in the
interior of S;(e1), wﬁjgﬁ(o; x) exists for alln > 1 and

¥ (052) = Tim ¢, (052)

eaists, and msup, . Sup yes [0, (052)| < C for some C > 0.
(ii) There exists 1 > 0 such that for all (1, A) € T x N and all x in the interior of S;(g1),
ws%vT(O;x) exists for alln > 1 and

2
¢ (0:2) = lim o) (052)
exists, and limsup,,_, SUP(, 1es WnAT( z)| < C for some C > 0.

To appreciate Assumption C3, consider the case where J = 2, A = {1, 2}, and szl)w(x, 0)

has a distribution denoted by G,. Choose y; > y, without loss of generality. We take
A, (v1,v2) = max{vy, ve,0}P. Then we can write E[AAP(W?(&)W(:U, 0) +y)] as

/ (w1 + 11)P1 {1 € [ws + g — y1,00) and wy € [—ys, 00)} A (w1, ws)

R2

+/ <UJQ + y2)p 1 {w1 € (—OO, Wa + Y — yl) and wy € [—yg, OO)} dGn(wl, U)g)
R2

+/ (w1 + y1)P1{w; € [—y1,00) and wy € (—o0, —y2) } dG,, (w1, w2).
R2

Certainly the three quantities are all differentiable in (yy, y2).
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The following theorem offers the local power function of the bootstrap test in a general

form.

Theorem 4. Suppose that Assumptions A1-A6, B1-Bj, C1-C2, and C3(i) hold and that
(6.12) h=Y? (logn)"’* A, — 0,

as n — co. Then for each sequence P, € P°(\,), n > 1, which satisfies the local alternative
hypothesis (b, ) for some § € D with b, = (1, jh~%?)’

Jj=b

lim P,{0 > Comt =1 =@ (210 — 1(0)),
n—00 ’
where ® denotes the standard normal cdf,
Z /1/1(1) (0;2) "6, 5(2)dQ(z, T),
AeN;

and

(6.13) 0ro(z) = (%, e j:jii;) .

Theorem 4 shows that if we take b, such that b, ; = rn,jh*d/2 for each j = 1,...,J, the
local asymptotic power of the test against (b,,d) is determined by the shift p1(6). Thus, the

bootstrap test has nontrivial local power against (b,,d) if and only if

The test is asymptotically biased against (b,,d) such that u(d) < 0.
Suppose that

(6.14) m(6) =0,

for all A € Ny, i.e., when 0., has positive and negative parts which precisely cancels out
in the integration. Then, we show that the bootstrap test has nontrivial asymptotic power

against local alternatives that converges at a rate slower than n~'/2 to the null hypothesis.

Theorem 5. Suppose that the conditions of Theorem 4 and Assumption C3(ii) hold. Then

for each sequence P, € P2(\,), n > 1, which satisfies the local alternative hypothesis (by,9)

for some § € D such that j11(0) =0 and b, = (r, jh~ d/4)],1,
lim P,{0 > Comt =1 =@ (210 — p12(0)),
n—00 ’

where

1a(0) =5 3 [ 5@ (050)60(0)dQ(.7)
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The local power function depends on the limit of the curvature of the function v, 4 ,(y; )
at y = 0, for all A € N;. When the function is strictly concave at 0 in the limit, @DEi)T(O; x) is
positive definite on X x 7, and in this case, the bootstrap test has nontrivial power whenever
dr.-(x) is nonzero on a set whose intersection with B2(0) has Lebesgue measure greater than
¢ > 0 for all n > 1, for some ¢ > 0.

From Theorems 4 and 5, it is seen that the phenomenon of dual convergence rates generally

hold for our tests. To formally state the result, define
Dl = {(S eD: /,Ll((;) 7é O} and
Dy={0€D:u(6) =0 and ps(5) > 0}.

When lim inf,, o, Q(B2(0)) > 0, the set {D;, Dy} becomes a partition of the space of Pitman
directions D.

Corollary 1. Suppose that the conditions of Theorem & hold. Then the bootstrap test has

J

convergence rate b, = (r,;h=%?)7_, against Dy, and convergence rate b, = (rn;h~%*)_,

against Dy.

When 7, ;’s diverge to infinity at the usual nonparametric rate r, ; = n'/2h%? as in many
kernel-based estimators, the test has a parametric rate of convergence b,, = y/n and nontrivial
local power against D;. However, the test has a convergence rate slower than the parametric
rate against Ds.

When 7, ;’s diverge slower than the rate nl/ 2h4/? as in the case of kernel-based derivative
estimators, the test has a convergence rate slower than the parametric rate. In Appendix
I1.2, we present several nonparametric tests for monotonicity where d = 1, J = 1, and
Tpi = n'/2h3/2. In this case, the monotonicity tests have convergence rate with b, = n'/2h

against Dy, and convergence rate with b, = n'/2h%/* against Ds.

7. CONCLUSIONS

In this paper, we have proposed a general method for testing inequality restrictions on
nonparametric functions and have illustrated its usefulness by looking at two particular
empirical applications. We regard our examples as just some illustrative applications and
believe that our framework can be useful in a number of other settings.

Our bootstrap test is based on a one-sided version of L, functionals of kernel-type estima-
tors (1 < p < o0). We have provided regularity conditions under which the bootstrap test
is asymptotically valid uniformly over a large class of distributions and have also provided a
class of distributions for which the asymptotic size is exact. We have shown the consistency

of our test and have obtained a general form of the local power function.
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There are different notions of efficiency for nonparametric tests and hence there is no
compelling sense of an asymptotically optimal test for the hypothesis considered in this paper.
See Nitikin (1995) and Bickel, Ritov, and Stoker (2006) for a general discussion. It would
be interesting to consider a multiscale version of our test based on a range of bandwidths

to see if it achieves adaptive rate-optimality against a sequence of smooth alternatives along
the lines of Armstrong and Chan (2013) and Chetverikov (2011).

APPENDICES

Appendix I reports the results of Monte Carlo experiments, and Appendix II presents more
examples of testing problems that can be included in our general framework. Appendix A
gives the proofs of Theorems 1-5, Appendix B provides the proof of Theorem AUC, and
Appendices C and D offer auxiliary results for the proofs of Theorems 1-5.

I. MONTE CARLO EXPERIMENTS

This part of the appendix reports the finite-sample performance of our proposed test for
the Monte Carlo design considered in Andrews and Shi (2013, Section 10.3, hereafter AS).
The null hypothesis has the form

Hy:E(Y —0|X =2) <0 foreach x € X
with a fixed 6. AS generated a random sample of (Y, X) from the following model:
Y = f(X)+U,

where X ~ Unif[—2,2], U follows truncated normal such that U; = min{max{—3, ocU;}, 3}
with U; ~ N(0,1) and o = 1, and f(-) is a function with an alternative shape. AS considered

two functions:

fasi(z) :== Lo(z'?),
fasa(x) := L -max {¢((z — 1.5)"), ¢((z + 1.5)')},

These two functions have steep slopes, fas1 being a roughly plateau-shaped function and
fas2 a roughly double-plateau-shaped function, respectively. AS considered the following
Monte Carlo designs:

DGP1: f(z) = fasi(xz) and L =1; DGP2: f(x)
DGP3: f(z) = fase(z) and L =1; DGP4: f(z)

fasi(z) and L = 5;
fASQ((L’) and L = 5.

AS compared their tests with Chernozhukov, Lee, and Rosen (2013, hereafter CLR) and Lee,
Song, and Whang (2013). The latter test uses conservative standard normal critical values

based on the least favorable configuration.
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TABLE 3. Results for Monte Carlo Experiments: Coverage Probability

o @ 6 @ 6 (6) (7) (8)

AS CLR LSW1 LSW2
n CvM KS series local Cs=04 Cs=05 Cs=0.56
linear
DGP1 100 .986 .986 .707 .804  1.00 .980 .990 .999
250 975 973 .805 .893  1.00 951 .960 971
500 975 970 872 .925 1.00 968 976 977
1000 .971 .966 .909  .935 1.00 .962 971 973
DGP2 100 1.00 1.00 .394 .713 1.00 .996 .999 1.00
250 1.00 1.00 .683 .856 1.00 .953 963 975
500 1.00 1.00 .833 .908 1.00 963 972 976
1000 1.00 1.00 .900 .927 1.00 965 968 .968
DGP3 100 .970 .969 .620 .721 1.00 987 991 .993
250  .969 964 .762 .854 1.00 .952 .965 973
500 .963 .957 .854  .900 1.00 .966 971 976
1000 .969 .963 .901 .927 1.00 .949 957 .962
DGP3 100 .998 .999 .321 .655 1.00 .998 .999 1.00
250  .997 998 612 .826 1.00 .952 .965 976
500 .994 994 808 .890 1.00 .964 971 973
1000 .994 991 .893 .918 1.00 943 .950 958

Notes: Figures in columns (1)-(5) are from Table V of Andrews and Shi
(2013), whereas those in columns (6)-(8) are based 1000 Monte Carlo
replications in each experiment, with the number of bootstrap repli-
cations being 200. LSW1 refers to the test of Lee, Song, and Whang
(2013), which uses conservative standard normal critical values based
on the least favorable configuration. LSW2 refers to this paper that uses
bootstrap critical values based on the estimated contact set. The tun-
ing parameter is chosen by the rule ¢, = Cesloglog(n)qi—-0.1/10g(n)(Sy),
where Cgs € {0.4,0.5,0.6}.

In this paper, we used the same statistic for Lee, Song, and Whang (2013) as reported in
AS. Specifically, we used the L; version of the test with the inverse standard error weight
function. In implementing the test, we used K(u) = (3/2)(1 — (2u)*)I(Ju] < 1/2) and
h = 2 x 5x x n~'/%, where I(A) is the usual indicator function that has value one if A
is true and zero otherwise and 5y is the sample standard deviation of X. Thus, the only
difference between the new test (which we call LSW2) and Lee, Song, and Whang (2013)
(which we call LSW1) is the use of critical values: LSW1 uses the standard normal critical
values based on the least favorable configuration, whereas LSW2 uses bootstrap critical
values based on the estimated contact set. For contact set estimation, we set the rule
Cn = Cesloglog(n)qi—o.1/10g(n)(Ss), where Cos € {0.4,0.5,0.6}.
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TABLE 4. Results for Monte Carlo Experiments: False Coverage Probability

W @ 6 @ 6 (6) (7) (8)

AS CLR LSW1 LSW2
n CvM KS series local C=04 Cs=05 C.=0.6
linear
DGP1 100 .84 .89 .88 .83 98 .81 .90 .95
250 .57 .67 .82 .69 .92 44 49 .54
500 .25 .37 .72 .50 .70 A7 18 .20
1000 .03 .07 .57 .26 .25 .02 .02 .02
DGP2 100 10 1.0 .91 .89 .99 94 98 1.0
250 1.0 1.0 .85 .73 .96 48 .54 .62
500 .97 .99 .77 .56 .82 19 21 .23
1000 .70 .89 .61 .33 40 .03 .03 .03
DGP3 100 .70 .79 .89 .84 .90 .69 .79 .86
250 .30 .46 .83 .66 .65 27 .32 .35
500 .06 .15 .70 A7 .26 .06 .06 .08
1000 .00 .01 .55 23 .02 .00 .00 .00
DGP4 100 .95 .99 91 .88 .95 .89 .95 97
250 .66 .83 .86 .70 .75 .30 .35 42
500 .23 42 .74 51 .36 .07 .08 .09
1000 .01 .04 .59 .29 .04 .00 .00 .00

Notes: See notes in Table 3. Figures in columns (1)-(5) are “CP-
corrected”, where those in columns (6)-(8) are not “CP-corrected”.

The experiments considered sample sizes of n = 100, 250, 500, 1000 and the nominal level
of a = 0.05. We performed 1000 Monte Carlo replications in each experiment. The number
of bootstrap replications was 200.

The null hypothesis is tested on X = [—1.8,1.8]. To compare simulation results from AS,
the coverage probability (CP) is computed at nominal level 95% when 6 = max,cr f(z)
and the false coverage probability (FCP) is computed at nominal level 95% when 6 =
max,cy f(z) — 0.02.

Tables 3 and 4 report the results of Monte Carlo experiments. In each table, figures in
columns (1)-(5) are from Table V of Andrews and Shi (2013), whereas those in columns
(6)-(8) are from our Monte Carlo experiments. Table 3 shows that coverage probabilities
of LSW2 are much closer to the nominal level than those of LSW1. When ¢ = 0.4 and
n = 100 or 250, we see some under-coverage for LSW2, but it disappears as n gets larger.
Table 4 reports the false coverage probabilities (FCPs). Figures in columns (1)-(5) are
“CP-corrected” by AS, where those in columns (6)-(8) are not “CP-corrected”. However,
CP-correction would not change the results for either n > 500 or ¢ > 0.5 since in each of

these cases, we have over-coverage. We can see that in terms of FCPs, LSW2 performs much
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better than LSW1 in all DGPs. Furthermore, the performance of LSW2 is equivalent to
that of AS for DGP1, DGP3, and DGP4, and is superior to AS for DGP2. Overall, our
simulation results show that our new test is a substantial improved version of LSW1 and is
now very much comparable to AS. The relative poor performance of CLR in tables 3 and 4
are mainly due to the experimental design. If the underlying function is sharply peaked, as
those in the reported simulations of Chernozhukov, Lee, and Rosen (2013), CLR performs
better than AS. In unreported simulations, we confirmed that CLR performs better than
LSW2 as well. This is very reasonable since CLR is based on the sup-norm statistic, whereas
ours is based on the one-sided L, norm. Therefore, we may conclude that AS, CLR, and

LSW2 complement each other.

II. FURTHER EXAMPLES OF TESTING FUNCTIONAL INEQUALITIES

II.1. Testing Functional Inequalities in the Auction Model via Estimating Con-
ditional Cumulative Distribution Functions. This appendix illustrates the usefulness
and flexibility of our framework by reconsidering implications from GPV in terms of con-
ditional stochastic dominance. Specifically, relative to the test statistic in the main text
(based on estimating conditional quantiles functions), we consider a related but distinct
testing statistic based on estimating conditional cumulative distribution functions.

We may rewrite (3.3) as
Gs(b|lz) — Go(b|lz) < 0 for any b € [b, by] and for any =z € X

I1.1 —
(1) Gy [(b+b) /2|z] — G3(blx) < 0 for any b € [b, bs] and for any x € X.

where G (+|z) is the CDF of the observed bid (conditional on X = z) when the number of
bidders is I = k (k = 2,3). Recall that in GPV, the support of the observed bid is [b, by].
Note that strictly speaking, the restrictions in (II.1) are not identical to those in (3.3) since
7 in (3.3) is limited to a compact strict subset of (0, 1).

To implement the test, it is necessary to know b, (k = 2,3), in addition to the value of
b. As before, in our application, we set b the overall minimum value, and b, the maximum

value when the number of bids is k for k£ = 2, 3.
Define

v1(b, x) := G5(blr) — Ga(b|x),
va(b, ) == Go [(b+b) /2|x] — G3(b|z).

To construct the test statistic, it is necessary to estimate v;(b, ), where j =1, 2.
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For each k = 2,3, define px(z) := Pr(L; = k|X; = z)f(x), where f(-) is the marginal

density of X;. To describe our estimator of v;(b, z) in a simple form, define

5

Bi(b) == L7y 1(By <)),

%
/=1

3>
El
=
i
S
L
-

WL; =k)Kp (z — X;),

=1

where K,(-) = K(-/h)/h?, K is a d-dimensional kernel function, h is a bandwidth, and d is
the dimension of X. Then v, (b, z) and vy(b, x) are estimated by

o1(b, ) :==n"" 4 B;(b) {1%;(;)3) - 1(113/;(;)2)1 Ky (r — Xi),
b ) = Bi[(b+ @; 2/@)1@:1- =2) Bi<b>;3<<z;)_ 3)] K, (o X0,

Note that again all bids are combined in each auction (see the definition of B;(b)) since we
consider symmetric bidders.

The sum statistic would be convenient for testing (II.1) since by can be different from bs.
Then the test statistic has the form

(11.2) §— / b)) Qb ) + / (b, @) dQ(, @),
[b,ba]x X [b,b3]x X

where () is Lebesgue measure. Note that we did not normalize 0;(b, z) by its pointwise
standard error here. One advantage of doing this is that we can test the null hypothesis on
the full support [b,bs], (k = 2,3) without an elaborate use of the trimming function or a

decaying weight function at the boundary.

I1.2. Nonparametric Tests of Monotonicity: an L, Approach. In this appendix, we
present new methods for testing monotonicity by constructing one-sided L,-type functionals
in a suitable fashion. Suppose that we observe n independent and identically distributed
random vectors {(Y;,X;) : ¢ = 1,...,n} from the joint distribution of random variables
Y and X, where Y is the dependent variable and X is a univariate explanatory variable.
We consider testing monotonicity in three examples: one in mean regression, another in
conditional distribution function, and the third in quantile regression. In what follows, we
focus on the case that J = 1; however, it is straightforward to extend to the J > 1 case with

a multivariate vector of Y;.
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I1.2.1. Testing monotonicity of mean regression. Let X C R be the region of our interest in

the domain of the regression function E[Y|X = z]. Consider testing the hypothesis
H, : E[Y|X = z] is increasing on X.

Let K be a one-dimensional kernel function and h be a bandwidth. Define the following

U-process: for x € X,

o) = e 2 D (¥ = Vsl = X)Kfe = X)Ki (o — X)),
=1 j=1,5#1

where Kp,(z) = K(z/h)/h, and sgn(z) = 1{x > 0} — 1{z < 0}, z € R. If E[Y|X = ] is
continuously differentiable, as n — oo, we have that

_%p@ / / luy — g K (ug) K (un) duy du,

where f(-) is the density function of X. That is, the limit of Eo(x) is less than or equal to

Eo(z) —

zero if and only if OE[Y|X = z]|/dz > 0. This suggests we develop a test based on

(11.3) b= /X (max {r,i(z), 0} )P dz

with a suitable choice of r,,.
Define v, (z) = h'E[(Y; — Yi)sgn(X; — X;) Ky (2 — X;) Kp(x — X;)]. It can be shown that

the U-process 0(x) has the following asymptotic representation:

Vih? {8(x) = va(2)}
- (e (0557 =2 o (555} o

where R, is a remainder term that is of smaller order than the leading term and

Bna(Yi, 2) = 2{E[Y|X = 2] - Y;} K(2) /Sgn(u — 2)K (u) du.

Therefore, we have r,, = V/nh3.

In a contemporaneous paper, Chetverikov (2012) proposed an adaptive test using the sup-
norm statistic of a studentized version of a U-process, including v(z) as a special case. The
test based on (I1.3) is an alternative to the sup-norm test of Chetverikov (2012). The test of
Chetverikov (2012) is closely related to the tests proposed in Ghosal, Sen, and van der Vaart
(2000). They developed monotonicity tests for the function m(-) in the transformation model
o(Y) = m(X)+e, where ¢(-) is a monotone function and X and ¢ are independent. In their
setup, independence between X and ¢ is indispensable, but ¢(-) can be unknown as long as

it is strictly monotone. They constructed sup-norm and time spent test statistics (57, and
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Ss., of Ghosal, Sen, and van der Vaart (2000, page 1060)) using the following U-process:
1

n(n —1)

> ) sen(Y; — Vi)sgn(X; — X)) Ky(x — X)) Kz — X;).

=1 j=1,j#i

Equation (2.5) of Ghosal, Sen, and van der Vaart (2000) shows that the limit of A~ 'EU,,(x)
is less than or equal to zero if and only if Om(z)/dx > 0. As before, we may develop a test
based on (I1.4) with a redefined o(x) = h™'U,(x) and the same r,,.

In addition to sup-norm and time spent test statistics, Ghosal, Sen, and van der Vaart

(IL4)  U(x)

(2000, page 1070) suggested test statistics that are similar to our one-sided L, statistics;
however, they did not provide asymptotic theory, remarking that there are no limit theorems
for one-sided L, functionals of a stationary Gaussian process. However, we can obtain the
limiting distribution of our suggested test statistic in (I1.3) by a direct approximation of 0

via Poissonization techniques, without going through strong approximation results such as
Rio (1994) and Chernozhukov, Lee, and Rosen (2013).

I11.2.2. Testing stochastic monotonicity. Let Fy x(-|x) denote the distribution of ¥ condi-
tional on X = z, where (Y, X) is a pair of random variables whose joint distribution is
absolutely continuous with respect to Lebesgue measure. We assume that the function
Fy|x(y|x) is continuously differentiable with respect to « for each y. Consider testing the
hypothesis Ho : 0Fy|x(y|z)/0x < 0 for all (y,2) € Y x X, where Y C R and X C R are
domains of interest.
In this subsection, consider the following U-process: for (y,z) € Y x X,

(IL.5)

iy, ) = ——+ Z Z 1(Y; <y) — 1(Y; <y)lsgn(X; — X;)Kp(z — X;) Kp(z — Xj).

i=1 j=1,j#i

Lee, Linton, and Whang (2009) proposed a nonparametric test of stochastic monotonicity
using the sup-norm statistic based on 0(y, x). Note that as mentioned in Lee, Linton, and
Whang (2009), under the regularity conditions imposed in this paper, as n — oo, we have
that

W%ZW / / lun — | K (1) K (1) s iy,

That is, the limit of E0(y, z) is less than or equal to zero if and only if Hy holds. Again this

Eo(y,z) —

suggests we develop a test based on

~

(I1.6) Qz/X T(max{rn@(T, x),0H)P dQ(z, T)
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with r, = v/nh3. The one-sided L, functional-based test complements the sup-norm test of
Lee, Linton, and Whang (2009). Delgado and Escanciano (2012) proposed an alternative
approach based on the sup-norm of the difference between the empirical copula function and

its least concave majorant.

11.2.3. Testing Monotonicity of Quantile Regression. Let q(7|x) denote the 7-th quantile of Y’
conditional on X = z, where 7 € (0,1). In this subsection, we consider testing monotonicity

of quantile regression. The null hypothesis and the alternative hypothesis are as follows:

(IL.7) Hy : q(7]x1) < q(7|x2) for all (7, (x1,22)) € T x X against
Hy : q(7]x1) > q(7|xs) for some (7, (21, 22)) € T x X,

where X C {(z1,72) € R*: 21 < x5} and T C (0,1). The null hypothesis states that the
quantile functions are increasing on X for all 7 € T, and the alternative hypothesis is the
negation of the hypothesis. If T consists of a singleton set, then testing (I.7) amounts to
testing monotonicity of quantile regression at a fixed quantile.

Suppose that ¢(7|z) is continuously differentiable on on X for each 7 € 7. Then one
natural approach is to test the sign restriction of the derivative of ¢(7|z). In other words, we
again develop a test based on (I1.6) with (7, z) now being the local polynomial estimator
of dq(r|x)/0x and r, = V/nh3.

Our general framework covers various other forms of monotonicity tests for quantile re-
gression. For example, one might be interested in monotonicity of an interquartile regres-
sion function. More specifically, let 74 < 75 be chosen from (0,1) and write Agq,, ,,(z) =
q(72|1) — q(71|x1). Then the null hypothesis and the alternative hypothesis of monotonicity

of the interquartile regression function are as follows:

(IL.8) Hoan @ Agrr (1) < Agy 1, (xs) for all (z1,22) € X against

Hin @ Agrrj(x1) > Ay ryi(22) for some (21, 29) € X.

)

The null hypothesis states that the interquartile regression function ¢, ;j(z) — ¢, j(x) is
increasing on X for all 7 € Nj;. This type of monotonicity can be used to investigate
whether the income inequality (in terms of interquartile comparison) become severe as certain
demographic variable X increases. Once again, we can consider a test based on (I1.3) with
() now being the local polynomial estimator of [0¢(7e|x)/0x —q(|x)/dx] and r,, = V/nh3.

APPENDIX A. PROOFS OF THEOREMS 1-5

The roadmap of Appendix A is as follows. Appendix A begins with the proofs of Lemma

1 (the representation of §) and Lemma 2 (the uniform convergence of ©,;(z)). Then we
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establish auxiliary results, Lemmas A1-A4, to prepare for the proofs of Theorems 1-3. The
brief descriptions of these auxiliary results are given below.

Lemma Al establishes asymptotic representation of the location normalizers for the test
statistic both in the population and in the bootstrap distribution. The crucial implication
is that the difference between the population version and the bootstrap version is of order
op(h%/?), P-uniformly. The result is in fact an immediate consequence of Lemma D12 in
Appendix D.

Lemma A2 establishes uniform asymptotic normality of the representation of 6 and its
bootstrap version. The asymptotic normality results use the method of Poissonization as in
Giné, Mason, and Zaitsev (2003) and Lee, Song, and Whang (2013). However, in contrast
to the preceding researches, the results established here are much more general, and hold
uniformly over a wide class of probabilities. The lemma relies on Lemmas C7-C9 in Appendix
C and their bootstrap versions in Lemmas D7-D9 in Appendix D. These results are employed
to obtain the uniform asymptotic normality of the representation of 6 in Lemma A2.

Lemma A3 establishes that the estimated contact sets B 4(¢,,) are covered by its enlarged
population version, and covers its shrunk population version with probability approaching
one uniformly over P € P. In fact, this is an immediate consequence of the uniform conver-
gence results for 0, ;(x) and 6, (x) in Assumptions 3 and 5. Lemma A3 is used later, when
we replace the estimated contact sets by their appropriate population versions, eliminating
the nuisance to deal with the estimation errors in B A(Cn).

Lemma A4 presents the approximation result of the critical values for the original and
bootstrap test statistics in Lemma A2, by critical values from the standard normal distri-
bution uniformly over P € P. Although we do not propose using the normal critical values,
the result is used as an intermediate step for justifying the use of the bootstrap method in
this paper. Obviously, Lemma A4 follows as a consequence of Lemma A2.

Equipped with Lemmas A1-A4, we proceed to prove Theorem 1. For this, we first use the
representation result of Lemma 1 for 0. In doing so, we use B(cn, 1, Cnu) as a population

version of B4(¢,). This is because

Ba(co.r, cnv) C Ba(én)

with probability approaching one by Lemma A3, and thus, makes the bootstrap test statistic
0* dominate the one that involves B A(Cn,L, Cnu) in place of B 4(¢,). The distribution of the
latter bootstrap version with Ba(c,, 1, ¢,v) is asymptotically equivalent to the representation
of § with B A(Cn.L, cnp) after location-scale normalization, as long as the limiting distribution
is nondegenerate. When the limiting distribution is degenerate, we use the second component

h%?n+a* in the definition of Cp,y tO ensure the asymptotic validity of the bootstrap procedure.
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For both cases of degenerate and nondegenerate limiting distributions, Lemma A1 which
enables one to replace a* by an appropriate population version is crucial.

The proof of Theorem 2 that shows the asymptotic exactness of the bootstrap test modifies
the proof of Theorem 1 substantially. Instead of using the representation result of Lemma
1 for 0 with By a(cnL, cnp), we now use the same version but with By, a(c, v, ¢, ). This
is because for asymptotic exactness, we need to approximate the original and bootstrap
quantities by versions using B, 4(¢,) for small ¢,, and to do this, we need to control the
remainder term in the bootstrap statistic with the integral domain B (¢,)\Byp.(gn). By our

choice of B, a(cpu,cnr) and by the fact that we have

BA(én) C Bpa(cnu, cnr),
with probability approaching one by Lemma A3, we can bound the remainder term with
a version with the integral domain B, a(cnv, ¢nr)\Bn,a(¢,). Thus this remainder term
vanishes by the condition for A, and g, in the definition of P, (A, ¢y )-

The rest of the proofs are devoted to proving the power properties of the bootstrap proce-
dure. Theorem 3 establishes consistency of the bootstrap test. Theorems 4 and 5 establish
local power functions under Pitman local drifts. The proofs of Theorems 4-5 are similar to
the proof of Theorem 2, as we need to establish the asymptotically exact form of the rejection
probability for the bootstrap test statistic. Nevertheless, we need to employ some delicate
arguments to deal with the Pitman local alternatives, and need to expand the rejection prob-
ability to obtain the final results. For this, we first establish Lemmas A5-A7. Essentially,
Lemma A5 is a version of the representation result of Lemma 1 under local alternatives.

Lemma A6 and Lemma A7 parallel Lemma A1l and Lemma 2 under local alternatives.

Let us begin by proving Lemma 1. First, recall the following definitions

0r5() o7 ()
Also, define
(A2) U (2) = {M} and u.(z;0) = {—Tn’];vn’f’j (x)] .
UT,j(x) jEN; O’T,j(x) jeN,

Proof of Lemma 1. It suffices to show the following two statements:

Step 1: As n — oo,

inf P / A, (0, (2))dQ(x,7) =0 p — 1,
Jnf { oo 7 (z)) dQ(z,T) }

where we recall B,,(¢,1, ¢n2) = Uaen, Bn,a(Cnis Cna).
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Step 2: For each A € N, as n — oo,

inf P / (A, (6 (2)) — Aap (6 (2))} dQ(z,7) = 0 b — 1.
By, a(cn,1,6n,2)

PePy

First, we prove Step 1. We write the integral in the probability as

(A.3) / A, (32 () + uo (:6)) dQ(x, 7).
S\Bn(cn,1:cn,2)

Let
Az, 1) = {j eNy: w > —(Cnn /\Cn,Z)}'

Op,r,j ()
We first show that when (x,7) € S\B,(cy1,¢n2), we have A, (z,7) = @ under the null
hypothesis. Suppose that (z,7) € S\B,,(¢n1,¢n2) but to the contrary, A, (z,7) is nonempty.
By the definition of A, (z,7), we have (x,7) € By A, (z,7)(Cn1, Cn2). However, since

S\Bn(cn,la Cn,?) =8N (mAGNJBfL7A(C’I'L,17 Cn,2>) C BfL,An(x,T) (Cn,lu Cn,2)7

this contradicts the fact that (z,7) € S\ By, (cn1, ¢n2). Hence whenever (z,7) € S\B,,(¢n1, cn2),
we have A, (z,7) = @.

Note that
U?’L,T,j (x) — U?’L,T,j (‘r) {1 + O-H,T,j (:,U) B a-ij (x) } — U?’L,T,j (.’L’) {1 + OP(l)}
&TJ'(Q]) an,m(a:) (3’-,—»j(l') O-n,T,j<x) ’

where op(1) is uniform over (z,7) € S and over P € P by Assumption A5. Fix a small
e > 0. We have for all j € Ny,

n,jYn,T,j n A n
inf P{T ’JAU ri(T) __Cna A\ for all (z,7) € S\Bn(cnl,cng)}
PePy o-i(x) 1+¢€ o
, T, Vn,rj (2) Cn1 A Cna
> inf P ) T < — : : for all (z,7) € S\B,(cn.1,Cn }—)1,
> o, P < ST ey 5 € SV )
as n — oo, where the last convergence follows because A,(z,7) = @ for all (z,7) €

S\By,(¢n,1,cn2). Therefore, with probability approaching one, the term in (A.3) is bounded
by

~ n A Cn.2
( ) S\Bn(cn,1,¢n,2) ! ( ) 1+4+¢ d ( )

where 1; is a J-dimensional vector of ones. Using the definition of A,(v), bound the above
integral by

2 p/2

J
(A.5) Jr/? Z [rw- sup
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Note that by Assumption A3,

U7 () — Vn ()
r4(2)

— Op (Viogn) .

Fix any arbitrarily large M > 0 and denote by FE),, the event that

Tpj SUP
(z,7)ES

07 () — Un 7 j(7)
67.5()

Trnj SUp < M+/logn.

(z,7)ES

The term (A.5), when restricted to this event E,, is bounded by

J A 2\ P/
JP/2 (Z {M\/@ — _6”711 " Cn,z} )
j=1 RS

which becomes zero from some large n on, given that (c,1 A ¢,2)/vIogn — oo. Since
suppep, PES — 0 as n — oo and then M — oo by Assumption A3, we obtain the desired
result of Step 1.

As for Step 2, we have for any small € > 0, and for all j € N;\ A,

n,7Yn, 1,9 n A n
(A.6) P {T s () < _ Sl A G2 for all (z,7) € BmA(Cn’l,Cn’Q)}

0r() 1+e
> p {rn,jvn,m’ () < — Cn1 N\ Cpp2 for all (2.7) € By a(en.c )} N
il O-n77'7j(m) (1 + 6) {]- + OP(]-)} ’ n,A\Cn,1; Cn 2 5

similarly as before. Let 8, 4(z) be a J-dimensional vector whose j-th entry is r, j0y, - j(x) /67 ()
if j € A, and 7, ;{0 j(x) — Vnr;(2)}/0-(x) if 7 € Nj\A. Since by Assumption A5, we
have

inf P{u,(z;6) <0 forall (z,7) € S} — 1,

PecPy
as n — 0o, using either definition of A,(v) in (4.1),
(A7) / Ay (8 (2)) dQ(z, 7)
Bp,a(en,1,6n,2)

</ Ay (fr(2)) dQ(a. 7)
By, alcn,1,cn,2)

Cn,l A Cn,2

S / A (§T,A(w) —]—A) dQ(x’ 7—),
By, a(Cn,1,6n,2) b 14+¢

where 1_ 4 is the J-dimensional vector whose j-th entry is zero if j € A and one if j € N\ A,
and the last inequality holds with probability approaching one by (A.6). Note that by
Assumption A3 and by the assumption that /log n{c;}l + 05’12} — 00, we deduce that for
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Cpai/N\C
S n,1 n,2 _>17
1+e¢
as n — oco. Hence, as n — oo,

{ vaL,A(CvL,1707L2)A <§TA< ) ((Cnl/\cn2)/(1+5))1—fl) dQ(JJ,T) }_> 1
= B s(ensson) Mp (Bra(@)) dQ(z, 7) '

any 7 € Ny,

inf P
PePy

Since
/ Aay (5ra(@) dQe.7) = | Aty (8,2 Q. 7),
B, a(cn,1:Cn,2) B, a(cn,1:Cn,2)
we obtain the desired result from (A.7). §
Now let us turn to the proof of Lemma 2 in Section 4.4.

Proof of Lemma 2. (i) Recall the definition b, ;;(z,7) = Bnarj (Yij, (Xi —x)/h)). Take
M, ; = Vnhi/\/logn, and let

by i, 7) = bpij(z, 7)1, and b

n,5J

nzj(x77—) = bmij(xa 7—) (1 - 1n,ij) )

where 1,,;; = 1{sup,r)es|bn,ij(x, 7)| < M, ;/2}. First, note that by Assumption Al,

(A.8) rnjm sup @T’j@z ~ Unry(7)
T @nes G75()
< s \/—Z o E [0 ,(z, )})‘
(A.9) + sup \/_Z i ( [bf”j( 7)])| + op(1), P-uniformly.
(z,7)ES

We now prove part (i) by proving the following two steps.

Step 1:
e m Z i E [0, (=, )])‘ = op(y/logn), P-uniformly.
Step 2:
1 - " . .
(23)23 \/W 221 (bn w( ) E [bn z]( )])' = OP(\/ log n), P—unlformly.

Step 1 is carried out by some elementary moment calculations, whereas Step 2 is proved

using a maximal inequality of Massart (2007, Theorem 6.8).
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Proof of Step 1: It is not hard to see that

3 e B )|

sup
(z,7)ES
S 2\/EE sup ’bn,ij(ﬁﬂ, T)| (1 — 1n,ij)
(z,7)ES
Mnj - 4 Mn] -
< Cvn| =2 E| sup [by(z,7)]"| <Civn : :
2 (z,7)ES 7 2

for some C > 0, C' > 0. The last bound follows by the uniform fourth moment bound for

bnij(x, T) assumed in Lemma 2. Note that

Vi (M, ;)% =n"th=32 (log n)*? =o (x/log nhd/2> ,

by the condition that n=*/2h=4"" — 0 for some small v > 0.

Proof of Step 2: For each j € Ny, let 7, ; = {5 .., (-—x)/h)/M,; : (v,7) € S}, where
B iYij, (Xi — ) /h) = by ,;(x, 7). Note that the indicator function 1, ;; in the definition
of B¢

n,x,T,J

does not depend on (z,7) of B¢ Using (4.11) in Lemma 2 and following (part

JT,T, "

of) the arguments in the proof of Theorem 3 of Chen, Linton, and Van Keilegom (2003), we
find that there exist C; > 0 and C5; > 0 such that for all € > 0,

M, ; 2/ M, —Cy
N (5,.7:n,j,L2(P))§N<(€6—’j) ,XXT,||-||> < (55 ’]/\1) ,

n7j n7j

where Ny (¢, Fy ;, Lo(P)) denotes the e-bracketing number of the class F,,; with respect to
the Lo(P)-norm and N (e, X x T, || -||) denotes the e-covering number of the space X x T
with respect to the Euclidean norm || ||. The last inequality follows by the assumption that
X and T are compact subsets of a Euclidean space. The class F, ; is uniformly bounded by
1/2.

L[ =000V = B000) Vs T 5 = 28) 1) Mg 85 Mo
k=1,--- Ny, } constitutes e-brackets, where A.(Yy;, X;) = sup |y, . (Y, (Xi — x)/h) —
5Z,zk,m,j(yij7 (X; — x)/h)| and the supremum is over (x,7) € S such that

Ve — il 2+ |7 — |2 < C1(eMnj/n5)* .

—Ca,5

By the previous covering number bound, we can take N,, ; < Cy ((eM,,;/6n;) A1) , and

EA2(Yy, X)) M, 2 < &2

R
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Note that for any k& > 2,

Ubn ”(ZL’,T>/Mn7j| } <E [b2 (z, )] /sz < CM;JZ-hd = C(logn)/n,

n,ij

by the fact that b2, (z,7)/M, ;| < 1/2. Furthermore,

nzg(

B [|Ae(Yy, X0) /Mo F] < B [AF(Y;, X)/M2,] < <

where the first inequality follows because |Ay(Y;;, X;)/M, ;| < 1. Therefore, by Theorem 6.8
of Massart (2007), we have (from sufficiently large n on)

o 3o () B )|
Cyhf/2

My M, ; 1/2 Cy Vdiogn
< C/ ’ {(—C lo (6 w/\l))/\n} de — —lo <—)
s RN v Ve

where C1, Cy, C3, and C} are positive constants. (The inequality above follows becausey/logn//n —
0 as n — o0.) The leading integral has a domain restricted to [0, , ;/M, ;], so that it is

sup
(z,7)ES

(A.10) E

equal to

Cond/2 6, 5

n,j A n’j Mn 1 1/2
Cl/ Mg M {(-Cg log (8 j)) /\n} de
0 On,;j

by [N
. g
= % T /(—=Csloge) A nde
n7j 0

Sus [ hY? Rd/2
— O 2ni 1) /-1 1) ).
¢ (Mn,j <5n,j " ) * <5n,j : )

After multiplying by M, ;/ h/? | the last term is of order

() ) o) -

because 6, ; = n°" and h = n*? for some sy ;,52 € R.
Also, note that after multiplying by M, ;/h%? = \/n/y/logn, the last term in (A.10) (with

minus sign) becomes

C, Viogn Civ/logn  Cylog+/logn
— log < — =0 (Vlogn) ,
Viogn NZD 2 Vlogn
where the inequality follows because y/logn > 1 for all n > e = exp(1). Collecting the
results for both the terms on the right hand side of (A.10), we obtain the desired result of
Step 2.
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(ii) Define b}, ,;(z,7) = Bnar (Y5, (X; —x)/h). By Assumptions B1 and B3, it suffices to
show that

= Op+(y/logn), P-uniformly.

sup
(z,7)ES

\/—Zl nz] - E° [b:m]( )])

Using Le Cam’s Poissonization lemma in Giné and Zinn (1990) (Proposition 2.2 on p.855)
and following the arguments in the proof of Theorem 2.2 of Giné (1997), we deduce that

E E*<$SB)I;S \/—; n'L] —E [b;kllj( )D|>]

where N;’s are i.i.d. Poisson random variables with mean 1 and independent of {(X;, ¥;)} ;.

The last expectation is bounded by

E S \/— ;{ ) bnij (2, 7) — BE[(N; = 1) bn,ij(fE,Tﬂ}u
1 n
+E (xS,E)ES ;;(Nl \/_; ki (T, T) E[bn’kj(x,T)])u :

Using the same arguments as in the proof of (i), we find that the first expectation is

O (\/log n) uniformly in P € P. Using independence, we write the second expectation

n

which, as shown in the proof of part (i), is O(\/log n), uniformly in P € P. 1

E -E | sup

(z,7)ES

For further proofs, we introduce new notation. Define for any positive sequences ¢, ; and

Cno, and any v € R’,

(A.11) = > Aap (M@, 7) € Bualens, ena)}-
AEN;
We let
(A.12) af(le,CnQ) = / E [/_\M(VnhdzNJ(x))} dQ(xz,7), and
XxT

0 (Car, Cnz) = / B[R (Vi ()] Qe 7).
X x
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where zy - (r) and z} (7) are random vectors whose j-th entry is respectively given by

N
1 X, —x Xi—a
ZN,-r,j($) = WZ (ﬁn,m,‘r,j (Y;ﬁ T) —E |:ﬁn,x,‘r,j (Y;j’ h ):|) and
i=1
1 N X* — o X —zx
@) = g 2 (B (i T ) — B B (15,550 ).
i=1

and N is a Poisson random variable with mean n and independent of {Y;, X;}5°,. We also
define

an(Cn1,sCno) = /E [A%T(Wn{)m(x,()))] dQ(x, 7).

(See Section 6.3 for the definition of WS)TT(x, u).)

Lemma A1l. Suppose that Assumptions A6(i) and B4 hold and let ¢,1 and c,2 be any
nonnegative sequences. Then
’af(cnvl, Cn2) — an(Cn 1, cmg)‘ = o(hd/2), uniformly in P € P, and

‘aﬁ*(cnvl,cn,g)—an(cn,l,cmg)‘ = op(h¥?), P-uniformly.

Proof of Lemma Al1. The proof is essentially the same as the proof of Lemma D12 in Ap-
pendix D. &

For any given nonnegative sequences ¢y, 1, ¢, 2, we define

(A.13) O‘?L(Cnﬁl,chQ)E///671772($)d$d71d7—2,
TJTJX

where
Cron@) = [ Cov (R (P11, 0 0), R (W2, ,0))
Let !
(A14) Bulenssens) = [ Rur (8002 dQ(z.7)
and
(A.15) Oilenscns) = [ Ro (5342 Qo 7).

From here on, for any sequence of random quantities Z,, and a random vector Z, we write
Z, %5 N(0,1), Py-uniformly,
if for each ¢t > 0,

sup |P{Zy <t} = O(t)] = o(1).
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And for any sequence of bootstrap quantities Z* and a random vector Z, we write
7+ % N(0,1), Po-uniformly,

if for each ¢t > 0,
|P*{Z" <t} — ®(t)] = op(1), Po-uniformly.

Lemma A2. (i) Suppose that Assumptions A1-A3, AJ(i), and A5-A6 are satisfied. Then for
any sequences Cy 1, cp2 > 0 such that liminf,_, . infpep, JZ(cnﬁl, Cn2) > 0 and v/logn/cpo —

0, as n — 00,

en n,l, “n —all n,ly “n ;
h_d/2 < (C 1,C ,2) a, (C 1,C 72)) i) N(O,l), Po-umformly.

On (lea Cn,2)
(ii) Suppose that Assumptions A1-A3, A4(i), A5-A6, B1 and B4 are satisfied. Then for any
sequences Cn1,Cn2 > 0 such that iminf, . infpep, 02(cn1, cna) > 0 and /logn/c,o — 0,

as n — 0o,

o n n —af* n,1, tn * .
hd/? ( Oty Cn) = @y (Cns, € ’2)) 4 N(0,1), Po-uniformly.

O'n<cn,1) Cn,2)

Proof of Lemma A2. (i) By Lemma 1, we have (with probability approaching one)

A5 (2)dQ(, ) = 3 / Aap(Er(2))dQ(x, 7).

AEN; /Bn,A(cn,l,cnz) AeN; Y Bn,a(en,1,6n,2)

0n<cn,1> Cn,2> =

Note that a®(cp1,cn2) = > AN, all A(¢n1, Cn2), Where
aﬁA(cn,l, Cn2) = / E [AA,p(v nhdzN,T(x))] dQ(z,T).
Bn,A(Cn,l,Cn,Q)

Using Assumption A1, we find that h=%2{0,(c,1,cn2) — al(cn1,cnz2)} is equal to

h_d/2 Z {Cn,A(Bn,A(Cn,17 Cn,Q)) - ECN,A(Bn,A(Cn,b Cn,2))} + OP(l)v
AENJ

where for any Borel set B C S,

(oa(B) = /B Ay (Virhiz, - (2))dQ(z, 7).
(xa(B) = /B May(Viihzy 1 (2))dQ(z, 7),
and .
() = =3 B (Ve (Xs = 2)/1) = 1B (e V5, (Xs = 2/
with

Brwr Vi, (Xi = 2)/h) = (Buwra(Yir, (Xi = 2)/h), - -+, Bowirs (Y, (Xi — ) /h)) "
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We take 0 < & — 0 as [ — oo and take C; € R? such that
0< P{XZ < Rd\CZ} <gé,

and Q((X\C;) x T) — 0 as | — oo. Such a sequence {&;}°; exists by Assumption A6(ii) by
the condition that & is compact. We write
h'id/Q ZAGNJ{Cn,A(Bn,A(Cn,h Cn,?)) - ECN,A(Bn,A(Cn,la Cn72))}
U%(Cn,la cn,2)
h=d/2 Y oaen; 16na(Bralcns cn2) N (Cox T)) — ECv a(Bna(cni; cn2) N (G x T))}
0-721<Cn,17 Cn,2)
+h‘d/2 Y oaen; 16na(Bualcn; cn2)\(C X T)) — ECn a(Bn,a(cn, cn2)\(C x T))}

Ug(cn,la Cn,Q)

(A.16)

= Aln + Agn, say.

As for Ay, we apply Lemma C7 in Appendix C, and the condition that Q((X\C;) xT) — 0,
as | — oo, and

liminf, ,ooinfpep, 0, (Cin, c2n) > 0,
to deduce that As, = op(1), as n — oo and then [ — oco. As for Ay, first observe that as
n — oo and then [ — oo,

(A17> }O'Z(Cn’l, Cn72) — 5'72%[(6”’1, Cn,2>‘ — 0,

where 6,2171(07%1,0”,2) is equal to 02(cp1,Cna) except that By, a(cn1,cn2)’s are replaced by
By a(cni,cn2) N(C x T). The convergence follows by Assumption 6(i). Also by Lemma
C9(i) and the convergence in (A.17) and the fact that

liminf inf o2(cn1,cnz2) >0,
n—oo P€ePy

we have
Ay, 5 N(0,1), Py-uniformly,
as n — oo and as | — oco. Hence we obtain (i).

(ii) The proof can be done in the same way as in the proof of (i), using Lemmas D7 and
D9(i) in Appendix D instead of Lemmas C7 and C9(i) in Appendix C.

Lemma A3. Suppose that Assumptions A1-A5 hold. Then for any sequences ¢, 1, chy > 0
satisfying Assumption A4(ii), and for each A € N7,

IygDP {BmA(cn,L,cn’U) C BA(én) C Bn,A(ch,cn,L)} — 1, as n — oo.



GENERAL FUNCTIONAL INEQUALITIES 65

Proof of Lemma A3. By using Assumptions A3-A5, and following the proof of Theorem
2, Claim 1 in Linton, Song, and Whang (2010), we can complete the proof. Details are
omitted. &

Define for ¢, 1,¢p2 > 0,

Tn(cn717 CTL,Q) = h—d/2 (en(cn,la cn72) - an(cn,17 Cn72)) and

Un(cn,la Cn,2)

h_d/2 (9;(071717 Cn,?) - an(cn,la Cn,Q))

Un<cn,1> Cn,2)

T; (Cn,b Cn,2) =

We introduce critical values for the finite sample distribution of 0 as follows:
Yo(ena,Cn2) =inf{c € R: P{T,(cn1,cn2) <c} >1—a}.

Similarly, let us introduce bootstrap critical values:

(A.18) Yo (enp, Cne) =inf{c € R: P*{T(cn1,Cn2) <c} >1—a}.

Finally, we introduce asymptotic critical values: 7¢, = ®7!(1 — «), where ® denotes the
standard normal CDF.

Lemma Ad4. Suppose that Assumptions A1-A3, A4(i), and A5-AG6 hold. Then the following
holds.
(i) For any ¢, Cno — 00 such that
liminf inf 02(c, 1, cn2) > 0,
n—oo PeP

it 1s satisfied that

sup |’77?(Cn,17 Cn,z) — 75| — 0, as n — occ.
PeP

(i1) Suppose further that Assumptions B1 and B4 hold. Then for any c,1,cn2 — 00 such
that

ligr_lg)rolf gelg 02(cp1,Cna) >0,

it is satisfied that

sup |73*(Cn,17 Cn,2) -3 — 0, as n — oc.
PeP

Proof of Lemma Aj. (i) The statement immediately follows from the first statement of Lemma
A2(i) and Lemma Al.

(ii) We show only the second statement. Fix a > 0. Let us introduce two events:

En,l = {73*(671,17 Cn,Q) - 730 < —CL} and En,2 = {’Yff*(cn,l, Cn,2) - 72‘0 > a}.
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On the event F,, 1, we have

9_* n,l, “n - Un\tnl,tn
a = P*{hdﬂ( (Cnt, En2) = Gn(eny, € ’2)) >vﬁf*(cn,1,cn,z)}

Un<cn,17 cn,2>

Z P* {hd/2 (Q_Z(le, Cn,2) - an(cn,la Cn,Z)) > fygéo . CL} .

Un<cn,17 Cn,2>

By Lemma A2(ii) and Lemma A1, the last probability is equal to
1 =@ (v —a)+op(l) > a+op(l),

where op(1) is uniform over P € P and the last strict inequality follows by the definition of

7% and a > 0. Hence suppep PE, 1 — 0 as n — oo. Similarly, on the event E,, o, we have

é* n,l, “n - Un\tn,l, tn
a = P {h‘dﬂ( n(en1:Cn2) — nfCnn, € 2)) > 73*(071,1;071,2)}

Un(cn,la Cn,Q)

S P* {h_d/2 (G_Z(Cn,l? Cn,2) - an<cn,17 Cn,Q)) > '}’go + a} )

Un<cn,1> Cn,2>

By the first statement of Lemma A2(ii) and Lemma A1, the last bootstrap probability is
bounded by

1 - vy +a)+op(l) <a+op(l),

so that we have suppcp PE, 2 — 0 as n — co. We conclude that

sup P{|7y* (¢, n2) — 75| > a} = sup (PE,1 + PE,») — 0,
peP PeP

as n — 00, obtaining the desired result.

Proof of Theorem 1. By Lemma 1, we have

;ggop{e— 3 / Ay (ﬁf(x))dQ(x,T)} 1,

AGNJ nACnLCnU

as n — oo. Since under the null hypothesis, we have v, ,;(-)/d,;(-) <0 for all j € N, with
probability approaching one by Assumption A5, we have

> Ay (8 (2)) dQ(a, 7)
AENJ Bn,A(Cnychn,U)

= Z / AA’p (gT(x» dQ(ZL‘, 7—) = Q_n(cmh Cn,U)'
AGNJ nA(CnLCnU)

Thus, we have as n — oo,

(A.19) inf P {é < O(cors ch)} Sl

PePy
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Let the (1 — a)-th percentile of the bootstrap distribution of

Oi(enrcnr) = 3 / w5 (2))dQ(x, 7)

AGNJ 'n.A CnL7CnU

be denoted by ¢;%. By Lemma A3 and Assumption A4(ii), with probability approaching

one,

(A.20) > /

AGNJ nA CnL7CnU

May 620 Q) < Y [ Ay (83(0)) A ).
AeN; / Ba(én)

This implies that as n — oo,

(A.21) Iyng{c >t =1

There exists a sequence of probabilities { P, },>1 C Py such that

(A.22) limsup sup P {é > czm} = limsupP, {é > sz}

n—oo PePy n— o0
= hmn*}m Wn, {Hwn > Cw'm 717},

where {w,} C {n} is a certain subsequence, and 6, and Crom .y 1€ the same as 0 and Com
except that the sample size n is now replaced by w,,.
By Assumption A6(i), {on(cnr,Cnuv)}n>1 is a bounded sequence. Therefore, there exists
a subsequence {uy,}n,>1 C {w,}n>1, such that o, (cy, 1, cu, v) converges. We consider two
cases:

Case 1: lim, 000y, (Cu, L, Cu,.v) > 0, and

Case 2: lim,_,o.04, (Cu, L, Cup.v) = 0.

In both case, we will show below that

(A.23) limsupP,, {0, > ¢

n—o0

} <a.

Un,0,N

Since along {wy}, Py, {0w, > ¢, ..} converges, it does so along any subsequence of {w,}.

W, Q7

Therefore, the above limsup is equal to the last limit in (A.22). This completes the proof.

Proof of (A.23) in Case 1: We write P, {f,, > Cri ) 8

Pun h_d/2 éun — Ay, (Cun,La cun,U) > h_d/Q (Czn,a,n — Oy, (Cun,Lv cun,U>>
Oup, (Cun,La Cun,U) Oup, (Cun,L7 cun,U)

) - Cor — Qy,, (Cy y Cu
S Pun (hd/2 <6un0- O’Un<cun,Lacun,U)> > h d/2( Un7L n( 'mL n7U))> +0<1)’

(Cun,La cun,U> Ou, (Cun,Lv Cun,U>
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*

where the inequality follows by the fact that ¢}, , > ¢, > ¢, with probability approaching
one by (A.21). Using (A.19), we bound the last probability by

(A.24) B

Pun {hd/2 (Qun(cumL, Cun,U) — Ay, (CumL, Cuan)) S hid/2 <CSZ,L — Qy, (Cun,L; Cun,U)) }+0(1)

Ouy, (Cun,La Cun,U) Ouy, (Cun,L7 C'Lm,U)

Therefore, since lim,, 000y, (Cu, L, Cu,.v) > 0, by Lemmas A2 and A4, we rewrite the last
probability in (A.24) as

Ou. (Cu L Cu ) — G (Co L, Cu
P,, {hd/2 < o (CunLy Cup ) — Gy (Cuy,15 € n,U)) > ysz(cumL,CumU)} +o(1)

Ou, (Cun,L7 cun,U)

eu U ) Lu - Uy U s Lu
= P, {h_d/2< o (CunLr Cun ) = B (Cuns 1 € "U)) > 730} +o(l) =a+o(1).

UU7L (Cun L CU7L7U>

This completes the proof of Step 1.

Proof of (A.23) in Case 2: First, observe that

azn (Cun7L7 Cun7U> S a’zn (éun)7

with probability approaching one by Lemma A3. Hence using this and (A.19),

~

Pun {éun > c’)LkLn,Oéy"]} = Pun {h_d/2 <0Un - aun (CU7L7L’ CuruU)) > h_d/2 (C;ktn,aan - aun (Cun,L’ Cuan))}

W= (0, (Cunys Cuntr) = Qi (Cu 5 Cu 7)) +o(1)
Un — * ’ '

By Lemma Al, the leading probability is equal to

P,, {ifd/2 (éun(cumL, Cup.U) — Quy, (Cupy Ly cun,U)) >n+ 0p(1)} +o(1).

Since n > 0 and lim,,_ o0y, (Cyu, 1, Cu,,v) = 0, the leading probability vanishes by Lemma

CI(ii).

Proof of Theorem 2. We focus on probabilities P € P, (A, ¢,) N Py. Recalling the definition

of W, r(2;6) = [rnjUnr;(2)/0r;(2)] e, and applying Lemma 1 along with the condition

that
Viegn/c,u < +/logn/c,, — 0,
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as n — oo, we find that with probability approaching one,

~

0 = Z / Aap (8:(2) +up o (256)) dQ(x, T)
AE/\/J HA(CnU Cn L)
= ) / Ay (3, (x) + s (236)) dQ(z, 7)
AeN; ¥ Bn,alan)

s / Anp (3-(2) + U, - (2:6)) dQ(w, 7).

AGNJ nACnUCnL \Bn A(qn)

Since under P € Py, u,(r;6) < 0 for all x € S, with probability approaching one by
Assumption 5, the last term multiplied by h~%?2 is bounded by (from some large n on)

B/ Z/ Aap (8,(2))dQ(z, T)

AENJ nA(cnUCnL \Bn A(Qn)

< h Y (sup ||éT<x>||) Q (Bn,a(env, en,)\Bn,a (1))

AEN; (z,7)ES
= Op (h™"*(logn)"?X,) = op(1),
where the second to the last equality follows because Q (B a(¢nu, ¢n,r)\Bn.a(gn)) < An by

the definition of P, (A, gn), and the last equality follows by (4.10).
On the other hand,

25 [ by 600 :0) 40

AeN; By, a(gn)

=Y [ Ay ) Q)

AENJ nA qn)

SRS / Ay (8 (2) + W (:6)) dQ(, 7)

AeN; By, a(gn)
S [ Ay Q)
AEN; By, a (qn)
From the definition of A, in (4.1), the last difference (in absolute value) is bounded by

chir 3 / [t s (6] all 18- (@) P dQ(a )

AENJ nA qn
+Ch™4? Z / | [ (3 6) ] all 1[0 7 (5. 6)]a P~ dQ(, 7),
AGNJ nA Qn

where [a]4 is a vector a with the j-th entry is set to be zero for all j € N;\A and C' > 0 is a
constant that does not depend onn > 1 or P € P. We have sup(z,r)eB, 4(g,) | [Wn7(2;0)]all <
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qn(1+0p(1)), by the null hypothesis and by Assumption A5. Also, by Assumptions A3 and

A5,
SUD(z,r)eB,, 4(qn) ||[§T(:17)}AH =0Op <\/ log n> .

Therefore, we conclude that

=2 Z/ Ay (8:(2) + W (256)) dQ(z, 7)

AeN; Y Bn.a (gn)
p—d/2 Z / Aap (8-(2))dQ(z, 7) + Op (h‘d/Qqn{(logn)p 1)/2+q })
AeN; Y Bn.a (gn)

The last Op(1) term is op(1) by the condition for g, in (4.10). Thus we find that

(A.25) 0 = 0,(q.) + op(h"?),

where 0,,(¢,) = Y 4en, meA(qn) Aa,p (8,(2))dQ(z, 7).
Now let us consider the bootstrap statistic. We write

= ) Ay (85(2)) dQ(z,T)

AcN; BA (én)

- Y [ ) Qe+

AGNJ nA(Qn AENJ ‘/;A(én)\BnyA(q")

Aap (87(2)) dQ(x, 7).

By Lemma A3, we find that

}i)n;)P {E’nA(én) C Bn,A(ch,cn,L)} — 1, asn — oo,
€

so that

GO ED DY My (55(a)) dQ(a, ),

AEN; /BA(én)\BnyA(qn) AEN; n A Cn U+Cn,L \Bn A(Qn)
with probability approaching one. The last term multiplied by h~%? is bounded by

h=/? ((sup 185 (z ) Z Q (Bna(cnu, en,r)\Bn.a(qn))

z,7)ES AEN;
= Op~ (h_d/z(log n)P/Q)\n) = 0p+(1), Pn(An, gn)-uniformly,

where the second to the last equality follows by Assumption B2 and the definition of
Prn(An, Gn), and the last equality follows by (4.10). Thus, we conclude that

h—d/?(é* _ an(Qn>> _ h—d/2 (§:(Qn) - an(Qn))
7 (gn) 7n(n)

(A.26) + 0p+(1), Pn(An, gn)-uniformly,



GENERAL FUNCTIONAL INEQUALITIES 71
where

0*(qn) = Aap (85(2)) dQ(z, 7).
(2) ZN /B A ) Q)

Using the same arguments, we also observe that
(A.27) a* = a*(qn) + op(h?) = an(qn) + op(hY?),

where the last equality uses Lemma Al. Let the (1 — «)-th percentile of the bootstrap
distribution of 6*(¢,) be denoted by *(g,). Then by (A.26), we have

h_d/2 (CZ _ an(Qﬂ)) _ h_d/2 (52* (Qn) _ @n(qn))
on(n) Jn(%l)

By Lemma A4(ii) and by the condition that o, (g,) > n/®1(1 —a), the leading term on the
right hand side is equal to

(A.28)

+ op+<(1), Pn(An, ¢)-uniformly.

O (1 — a) + op-(1), Pu(An, ¢n)-uniformly.
Note that
(A.29) ¢ > hn+ a4+ op(hY?),

by the restriction o,(g,) > n/®71(1 — a) in the definition of P,(\,,¢,) and (A.27). Using
this, and following the proof of Step 1 in the proof of Theorem 2, we deduce that

—dj2 é—an(qn) a2 CZ,n—an(Qn)
P{h ("n(qn) )>h < on(n) )

_ p {hd/Z (Qn(qn) - an(qn)) o pds? <CZ - an(qn))} +o(1)

 onlam) n(qn)
P { i/ (@(qi(—qs;(qﬁ) o 2 (Cz*(qu(_q:;n(Qn)> } L ofD),

where the first equality uses (A.25), (A.29), and the second equality uses (A.28). Since
on(qn) = n/@ (1 —a) > 0 for all P € P,(\,,q,) NPy by definition, using the same
arguments in the proof of Lemma A4, we obtain that the last probability is equal to

a+o(1),

uniformly over P € P,,(An, qn) N Po. B



72 LEE, SONG, AND WHANG

Proof of Theorem 3. For any convex nonnegative map f on R’, we have 2f(b/2) < f(a +
b) + f(—a). Hence we find that

A~

= /Ap(éT(x)—i—uT(:v;&))dQ(x,T)
Zzpl//\ u,(z;6))dQ(z, 1) — /A ) dQ(x, 7).

From Assumption A3, the last term is Op((logn)”?). Using Assumption A3, we bound the

leading integral from below by

(A30)  minr?, (/ Ay (For (7)) dQ(z, 7 {ﬁ\ i jgg:g - 1} +op(1)) ,

where v,, (2) = [Un.r; (%) /Onrj (m)]jeNJ and v, ,(z) = [vm(x)/amm- (x)]jeNJ. Since

liminf, ., / A, (Fon () dQ(a,7) > 0,

we use Assumption C1 and apply the Dominated Convergence Theorem to write (A.30) as

min? / Ay (T () dQ(a, 7) (1 + 0p(1))

JEN,

Since minjey, 7,; — 00 as n — 0o and liminf, o [A, (V- (2)) dQ(z,7) > 0, we have for
any M > 0,

P {2p—1_1 /Ap (u (2 6)) dQ(z, 7) > M} Y

as n — oo. Also since v/logn/minjey, 7,; — 0 (Assumption A4(i)), Assumption A3 implies
that for any M > 0,
P{o>m} -1
Also, note that by Lemma A2(ii), h~%?(¢%, — a,)/0, = Op(1). Hence
¢t = a, + Op(h%?) = Op(1).
Given that ¢!, = Op(1) and a* = Op(1) by Lemma Al and Assumption A6(i), we obtain
that P{0 > Cont — 1,asm— 00. 1

Lemma A5. Suppose that the conditions of Theorem 4 or Theorem 5 hold. Then asn — oo,
the following holds: for any c,1,cn2 > 0 such that

Viegn/c,2 — 0,

asn — o0o. Then

inf P A, (0, (2))dQ(z, 7)=0p — 1
PEPS()\H) {/S\Bg(cml,cng) p( ( )) Q( ) }
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Furthermore, we have for any A € Ny,

PePi(

inf P / {8y (8,(2)) — Ay (8(2))} dQ(ar,7) =0 b — 1.
)‘") B?L,A(Cn,l,cn,g)
Proof of Lemma A5. Consider the first statement. Let A be either d/2 or d/4. We write

/ Ay (1, (2)) dQ(x, 7)

S\B{ (en,1,6n,2)

- | Ay 6. (0) + (102 )) Q. 7).
S\B,QL(CyL,17C7L,2)

_ / Ay (3:(2) +u(236) + 126,.5(2)) dQ(x, 7)),
S\Bg(cn,lvcn,2)

where 0(2;8) = (ra 10y (/71 (2), - Pty (267 (2) and
6-1(2) (STJ(x))

A31 5oy = (W) O .

(A-31) o) (UTJ(J?) or.5()

Note that 0, () is bounded with probability approaching one by Assumption A3. Also note
that for each j € Ny,

(A.32)
A 0 A~
sup rn’j{vn’mfx) — Iy (m)}‘ < sup Tn’j{vn’T’jA(x) = Unrg (@)} + 1 sup —(A;T’j@)
(z,7)ES UT,j<x> (z,7)ES O-T,j<x> (z,7)ES O’T,j(aj)

=Op (\/@—Fh’\) =0Op (\/@),

by Assumption A3. Hence we obtain the desired result, using the same arguments as in the
proof of Lemma, 1.
Given that we have (A.32), the proof of the second statement can be proceeded in the

same way as the proof of the first statement. g

Recall the definitions of A, -(v) in (A.11). We define for v.e R/, AY _(v) to be A, -(v)
except that By a(cn,1,cn2) is replaced by By 4(cn1,cn2). Define for A € {0,d/4,d/2},

(A.33) Bs(Cor, Cnzi A) = / RO (8,(2) + 126,0(2)) dQ(x, 7).
Let

aﬁ(;(an, Cn2; ) = /E [2\3’7 <\/WZN’T(I) - h’\éﬂg(x)ﬂ dQ(x, 1),

Gi(ensienaih) = [ R (8:(0) + 106, (0)) dQ(. ),

and

(A.34) alls(Cn1, Cog; A) = /E* [/_\277 <\/WZ*N7T($) + h’\éw(x)ﬂ dQ(x, 7).
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We also define
st Cngi A) = / E [A%, (W) (2,0) + 1*6,0(2))] dQ(z. 7).

When ¢, 1 = cn2 = ¢, we simply write aff5(co; ), af5(ca; A), and aps(cp; A), instead of

writing a[f5(cn, cn; A), af5(Cn, cni A), and ap5(Cn, cn3 A).

Lemma A6. Suppose that the conditions of Assumptions A6(i) and B4 hold. Then for each
P € P such that the local alternatives in (6.2) hold with b, ; = rp;h™, j = 1,-- - J, for

some X € {0,d/4,d/2}, and for each nonnegative sequences ¢, 1, Cpa,
}arfﬁ(cn,lv Cn,2; /\) - an,é(cn,h Cn,2; )‘)‘ = O(hd/2)7 and

a5 (cnts Cni A) = ang(ena, enz; N)| = op(R??).
Proof of Lemma A6. The result follows immediately from Lemma D12 in Appendix D. g

Lemma A7. Suppose that the conditions of Theorem / are satisfied. Then for each A €
{0,d/4,d/2}, for each P € PY(\,) such that the local alternatives in (6.2) hold,

Un(cn,U7 cn,L)

e_n Cn,U,Cn ;)\ _CLR Cn,U, Cn ;/\
h‘d/2< 3{Cn0; eni ) 7 Ans{Cntr, oL ))$N(o,1) and

h_d/2 9_:75(Cn,U7 Cn,L; )\) - ayji)g(cn,Ua Cn,L; )\)
Un(cn,U7 Cn,L)

) LN N(0,1), PY(\n)-uniformly.

Proof of Lemma A7. Note that by the definition of P2(),), we have

.. . 2 > L
i nf | mL,y (e ent) 2 o

Hence we can follow the proof of Lemma A2 to obtain the desired results. 1

Proof of Theorem 4. Using Lemma A5, we find that
i= Y / Anyp (80 (2) + uy (236)) dQ(z, 7)
AeN; Bg,A(Cn,U»cn,L)
with probability approaching one. We write the leading sum as

3 / Ay (5. (2) + ur(2:6)) dQ(a, ) + R,
AeN; BnA(O)

where

R, = Z / Aayp (8-(2) +ur(z;0)) dQ(x, 7).

AENJ BgyA(cn,UicTL,L)\B’?L,A(O)
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We write h~%2R,, as

p-d/2 §:(x) +ul(x;5)
2. / Alenuen,D)\BS 4(0) R ( +hi26, 5 (2) (1 + o(1)) 4z 7)

AENJ

<[ M (@) + 128,5(2)(1 + 0(1))) dQr. 7).

AEN; alenusen,L \Bn 4(0)

by Assumption C2. We bound the last sum as

O/ Z ( sup ||§T(a:)||> Q (Bg,A(Cn,UaCn,L)\Bg,A(O)) =Op <h—d/2 (logn)p/2 ,\n> =op(1)

AEN (z,7)ES
using Assumption A3 and the rate condition in (4.10). We conclude that

(A35) hP0 = 2N / AAp 8.(x) + u,(z;6)) dQ(z, ) + op(1)

AeN;
B2 Z / AAp (x) + hd/2(57,&(3:)) dQ(x,7) + op(1),
AGNJ

where the second equality follows by Assumption C2 and by the definition of B} 4(0).
Fix small £ > 0 and define

5r 4
— if 5 T 0
5£U7n7j<x> = (1+K_)I_UJTE£] ( ) i
Tonn@ 1 0rj(7) <0
5, ,
Oromi() = g ey 1 8n(2) 2 0
T,0,K,] — 6.,.7- z . '
j m if 6, (z) <0

Define 6%, . (x) and 67, . (z) to be R/-valued maps whose j-th entries are given by %, .(z)

T,0,K T,0,K

and 6Y_ _ .(x) respectively. By construction, Assumptions A3 and C2(ii), we have

T,0,K,]

P{ok, (x) < d0,5(x) <0, (2)} =1,

TO'I{ T,0,K

as n — o0o. Therefore, with probability approaching one,

(A36Ksp(0:d/2) = 3 / o Mo (o) £ 0L () 4, )

AeN; B

< Y Aap (8,(2) + h¥%5, 4(x)) dQ(z, T)
AENJ B?L,A(O)

< Y [ My (o) + 6 (@) QL) = (0 d)2),
AENJ TLA(O)

We conclude from (A.35) that

A~ ~

(A.37) 05.(0;d/2) + op(h¥?) < 6 < 5(0;d/2) + op(hY?).
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As for the bootstrap counterpart, note that since d, ;(x) is bounded and oy, - ; () is bounded

away from zero uniformly over (z,7) € S and n > 1, and hence

1 0ry(2)
h=42 o, . i(x)

(A.38) sup < Ch¥? =0,

(z,7)ES

as n — 00. By (A.38), the difference between 7, jv,, ;i () /0y 7.;(x) and 7, ;00 | (x) /0y 7.;(x)

n7T7]

vanishes uniformly over (z,7) € S. Therefore, combining this with Lemma A3, we find that
(A.39) P{Bu(é) € Blenp,cnr) | = 1.

as n — 0.

Now with probability approaching one,

(A.40) = Y [ M@)o

= Y [ M) Q)

T / A, (52(2)) dQ(z, 7).
At ) Baea)\BY 4 (0)

As for the last sum, it is bounded by
)Y / Aoty (85 (0)) dQr, ),
AeN; alen,usen,r \Bn 4(0)

with probability approaching one by (A.39). The above sum multiplied by h~%? is bounded
by

1,—d/2 (( sup ||8%(x ) Z Q (B 4(cn U,an)\BnA(O))

z,7)ES AEN;
= Op- (h_d/z(log n)p/Q)\n) = op+(1), P-uniformly,

by Assumption B2 and the rate condition for \,,. Thus, we conclude that
(A.41) 0* = 0*(0) + op-(h¥?), P°(\,)-uniformly,

where

=S [ M) Q).

AeN; Y B a(0)
Let ¢@*(0) be the (1 — a)-th quantile of the bootstrap distribution of #*(0) and let v2*(0) be
the (1 — «)-th quantile of the bootstrap distribution of

(A.42) =i/ (9*(0)(7n<of*(0)) |
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By the definition of PJ(A,), we have o7 (0) > n/®~'(1 — ). Let af;(0;d/2) and aff(0;d/2)
be aff5(0; d/2) except that 4., is replaced by ¥, and 0%, . respectively. Also, let s (0;d/2)

and as 1 (0;d/2) be an;s(0;d/2) except that d., is replaced by 0¥, and &%, respectively.
We bound P{f > Com} DY

P {h—d/2 (éw(o; d/Z; —(Oc;ffz](o? d/2)> > hd/2 <C:‘ — CfU(é?; d/2)> } +o(1)

- p {hd/2 <é5,u(0;d/2()7n—(0(;ffy(0€d/2)> > a2 < v (0) ;:%)(0; d/2>> } +o(1),

where the equality uses (A.41). Then we observe that

e (0) — afly(0:d/2)  &@*(0) —af(0) | ay*(0) — affy(0:d/2)
o (0) o (0) on(0)

af™*(0) — al’;(0;d/2)
_ hd/2 ax () n 6,U\M) .

As for the last term, we use Lemmas Al and A6 to deduce that

af*(0) — aiy(0;d/2) = af(0) — aji;(0;d/2) + op(h'/?)
= a,(0) — asp(0;d/2) + op(h¥?).

9]

As for a,(0) — as(0;d/2), we observe that

(A43)  0u(0)7 A2 {E [Aay (WL (2,0) + h207, (2))] — B [Aa (W) (2,0))] }
) )

= 0a(0)'R?{E [/\Ap(Wn1 A@,0) + W27, ()] = B [Aa, (W (2,0))]}
= 77DTLAT<O CE)T(SEU/@ (hd/Q)
so that
—d/2 (g —asy T
et O) Sl 0:0) 6, (@)dQGe )+ o)
n AEN;

= - Z /qu— 0 .CL’ Té‘?am( )dQ($,7)+0(1),

AcN;
where the last equality follows by the Dominated Convergence Theorem. On the other hand,

by Lemma A7, we have

- (ewm 1d/2) — afyy (0 d/2>> N1

7,(0)
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Since 75*(0) = Ya.00 + 0p(1) by Lemma A4, we use this result to deduce that

lim P {hd/2 (é‘;’U(O; d/2) — GEU(O; d/2)> S pd/2 (ﬂr){*(o) - CL?U(O; d/2)> }

@)

oo o, (0) o, (0)

= 1-9 (21 « Z /¢A7- O [L’ Tégom( )dQ(l‘,T)) :
AeN;

Similarly, we also use (A.37) to bound P {é > sz} from below by

P {h—d/2 (ém(o? d/Q;n_(oigL(O; d/2)) > pd2 (cg*(o) ;:%)(0; d/Q)) } +o(1),

and using similar arguments as before, we obtain that

. —aja [ 05.0(05d/2) — af(0;d/2) L [ E7(0) = af(0;d/2)
sm P {h ( o (0) > h 7 (0)

= 1-9 (Zl a Z /wAT O ZL’ Tdfam( )dQ(va)> :
AeN;

We conclude from this and (A.36) that for any small x > 0,

-0 ( -y /w (0:2)76%, ( >d@<asm>) +o(1)

AE/\/]

< P{0>can}<1— <z1 o

Note that ¢1(417)T(0;x)T5U () and w (O x)T6L__(x) are bounded maps in (z,7) by the

T,0,K T,0,K

Y [ >d@<x,7>> o).

AENJ

assumption of the theorem, and that

L U —
£%5Ton( ) - }{11}1570.4( ) - 6770(‘%)7

for each (z,7) € S. Hence by sending x — 0 and applying the Dominated Convergence

Theorem to both the bounds above, we obtain the desired result. &

Proof of Theorem 5. First, observe that Lemma A5 continues to hold. This can be seen by
following the proof of Lemma A5 and noting that (A.32) becomes here

Tnd‘{@nmjA(fL’) G }’ log 11 + hd/4) —0p (@) :

(z,7)ES O‘rj(

yielding the same convergence rate. The rest of the proof is the same. Similarly, Lemma A6

continues to hold also under the modified local alternatives of (6.2) with b, ; = r, ;h~Y%.
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We define
(A.44) O0ro() = h™45, ().
We follow the proof of Theorem 4 and take up arguments from (A.43). Observe that
on(0) 7 h 2 LB [Aay (WU (2,0) + /25, 5(2) ) | = B [Aap (W), (2, 0))] }
= 0u(0) 0 {E (A (W (2,0) + 5725, (2)) | = B [Aap(W) (2,0))] |
= O (0:2) 0o () + W25 o (2) THD) L (02)d, 0 (2) /2.
By the Dominated Convergence Theorem,
/ﬂﬁggmxf&p@mQu;m = /ﬂﬁnmxf&pqu@ﬂq+ou)m@
/ O (0:2) 6, o (2)dQ(w, 7) = / Vi (052) 07 (2)dQ(, 7) + o(1).

Since Y 4, fwAT (0:2)T6,.,(x)dQ(z, 7) = 0, by the condition for 8, ,(z) in the theorem,

o | B[ Aap (W, 0) + 035, () )|
ZN/ | B Ay (W (,0))]

= 5 3 [ ) U006 () 7) o).
AENJ

Now we can use the above result by replacing 6, (z) by 0¥, () and 6%, . (x) and follow the

T,0,K

dQ(x, 1)

proof of Theorem 4 to obtain the desired result.

APPENDIX B. PROOFS OF RESULTS FOR THE EXAMPLE IN SECTION 5

We first offer a general asymptotic linear representation theorem for quantile regression
functions that can be useful for other purposes. While the proof employs some arguments
from Guerre and Sabbah (2012), the result is different from theirs. The main difference is
that their result pays attention to uniformity in A over some range, while our result pays
attention to uniformity in P.

Let (BT, X7, L), with B= (By,---,B;)T € R, and X € R%, be a random vector such
that the joint distribution of (BT, X ")T is absolutely continuous with respect to Lebesgue
measure and L is a discrete random variable taking values from N, = {1,2,---, L}. For each
r € RY and k € Ny, the conditional distribution of B; given (X, L) = (x,k) is the same
across [ =1,-- -, k.

Let gx(7|z) denote the 7-th quantile of B; conditional on X = z and L = k, where

€ (0,1). That is, P{B; < qx(7|x)|X = x, L = k} = 7 for all x in the support of X and all
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ke{l,--- L} We write
By = qi(7|X) + 7, 7€ (0,1), forall k € {1,-- -,E},

where e, is a continuous random variable such that the 7-th conditional quantile of €,
given X and L = k is equal to zero. Note that g(7|z) is the same across k = 1,-- -, L, by
our assumption.

Suppose that we are given a random sample {(B,", X;", L;) "}, of (BT, X", L)T. We use
a local polynomial method, similar to Chaudhuri (1991a) and Chaudhuri (1991b). Assume
that gx(7|z) is (r+1)-times continuously differentiable with respect to x, where r > 1. Then,

we construct an estimator 4, ,(x) as follows:

n k
Yr(T) = argmin cgia, Z 1{L;, =k} Z I (B — v e(Xi — 2)) Kn(Xi — 2),
i=1 =1

where [, (u) = u[r — 1{u < 0}] for any u € R, K;(t) = K(t/h)/h?¢, K is a d-variate kernel
function, and h is a bandwidth that goes to zero as n — oc.

We make the following assumptions.

Assumption QR1. (i) There exists an integer r > 1 such that for all (1,k) € T x Ny,
qe(T|) is 7+ 1 times continuously differentiable on S;(¢) with derivatives bounded uniformly
over (t1,P) € T x P.

(i) The density f of X is continuously differentiable on R with a derivative bounded uni-
formly over P € P.

Assumption QR2. For each k € Np, (i) infycs, (o) frx(0|x) is bounded away from zero
uniformly over (1, P) € T x P, with f;;(0]|x) being the conditional density of By — qi(7|X;)
given X; = x and L; = k. (ii) sup,cs, (o) fr1(0[7) is bounded uniformly over (1, P) € T x P,
and (iii) frr(E|lx) is continuously differentiable in (£, x) with a derivative bounded uniformly
over x € S;(¢), 7 € T, and P € P. (w) P{L;, = k|X; = x} is bounded away from zero
uniformly over x € S;(¢), 7 € T, and P € P, and continuously differentiable in x with a
deriwative bounded uniformly over v € S;(¢), T € T, and P € P.

Assumption QR3. (i) K is compact-supported, nonnegative, bounded, and Lipschitz con-
tinuous on the interior of its support, [ K(u)du = 1, and [ K (u)|[u||*du > 0. (it) As
n — oo, n~Y2h=42logn + /nh"t! — 0.

We define

Apriki = Biy— ’YTT,k(x)C(Xi — ),
Choi = c((Xi—x)/h), and K;,, = K ((X; —z)/h),
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where we recall ¢(2) = (2“)uea,, for z € R and v, 4(2) = (Vrk.u(T))uea, with

1
‘Duqk(7'|l‘)

Tkl =

We also define for a,b € R4,

i Ls l; (Ax riki — (@+b) e/ V nhd)
CTL,ZD,T,]C a,b = 1 L’L =k T o Kh,x,iy
( ) ; { } 121: _lT (Ax,f,lk,i - aTch,x,i/ \% nhd)

n L;
1 ~-
wn,x,r,k = _\/W ;:1 1 {L'L = k} ;1 lT (Ax,r,lk,i) Ch,x,iKh,:p,ia

where we recall [, (z) = 7 — 1{z < 0}. Define Coarin(0:0) = Crari(a,b) =0 Uy g 1

Lemma QR1. Suppose that Assumptions QRI-QR3 hold. Let {01,}5°, and {d2,}52, be

positive sequences such that 61, = Op(1) and ds, < 41, from some large n on. Then for each
k € Ny, the following holds uniformly over P € P:

(1)

E

sup sup |<—nA,ac,T7k<a7 b) - E[gnA,m,T,k(aﬂ b)] |]

a,b:]|a||<1n,||b]||<d2n TET ,2€S-(€)

= 0 (52”\/m> .

nl/Apd/4

(i)

E| sup |nerll| =0 (Viogn).
TET ,x€S-(€)
(iii)
b' M, . 1(x)(b+ 2a
sup sup E[Cﬁxmk(a,b)] — i (2)( )
a,b:||al|<81n,||b]|<82n TET ,xES-(€)

8on0%,
= 0 (n12/2h1d/2 + 527151"”“) )

where we recall the definition of M, . r(x) as

My p(2) = k / P{L; = K|X; = &+ th} fox (02 + th) f(& + th) K (t)e(t)e (1)t

Proof of Lemma QR1. (i) Define

(B.1) On,re(2132) = {qu(7|21) — vr(@1) "e(ar — 2)}{|on — 2| < A},
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where the dependence on P is through g (7|z1) and ~, x(z1). We also let
(B.2) Onri(x1) = sup  sup |On - k(x1; ).
TET, z€8-(e) PEP

It is not hard to see that

(B.3) SUD-cr pyes, ol nmi ()] = OU ),

because qx(T]|21) — Vr1(71) Tc(x1 — 2) is a residual from the Taylor expansion of g (7|z1) and
X is bounded, and the derivatives from the Taylor expansion are bounded uniformly over
PeP.

Let fk7x(t|x’) be the conditional density of A, ., given X; = /. For all 2/ € R? such that

|z — 2’| < h, we have

(B.4)
0
S’f@@’x/) = ap {Ax,‘r,lk,i < t’Xi = x’}

8 / / / /
= gp {Bi — qp(7Xi) <t —0prp(@;2)|Xi = 2"} = frp(t — Onri(2sx)|2).

Since f;(-|2’) is bounded uniformly over 2’ € S;(¢) and over 7 € T (Assumption QR2(iii)),
we conclude that for some C' > 0 that does not depend on P € P,

(B.5) sup sup  fo.(t2') < C.
TET 2/, 2€85,(e)

We will use the results in (B.3) and (B.5) later.

Following the identity in Knight (1998, see the proof of Theorem 1), we write
-z —y) = lr(2) = =y - 1 (2) + p(z,y),
where p(z,y) = yfol{l{ac <ys} —1{z <0}}ds and
L (z)=7—1{x <0} +(1/2) - 1{z = 0}.

Write CnA,a:,T,k(aa b) o E[ . (CL, b)] as

n,x, .k

n

Z {Gn,x,T,k’(Si; a, b) -E [Gn,x,T,k(Si; a, b)]} )

=1

where S; = (Y;", X", L))", Vi = (Y1, -+, Yz,) ", and

1
(B6) Gn,m,T<Si; a, b) = / gn,z,T,k(Si; S, b7 a)ds
0
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and g .- x(Si; s, b, a) is defined to be
(L= k) i 1 {Ax,q—,lk,i — a" cppi/Vnhd < (sb)" Ch,:p,i/\/W} M
=1 -1 {Ax,T,lk,i — aTCh,x,i/\/W < 0} nhd
Let G, = {Grari(-5a,b) : (a,b,2) € [—81p, 01n]" " X [—02p, 02, )" X So(e), 7 € T},
Gin = {Man(a,2) : (a,7) € [~61n, 010) T X S, (6), 7 € T}
Gon = {0 "Mran(52) 1 (b, 1) € [=0an, 02n]) ™ x Sp(e),7 € T} and
Gon = {Arsn(52) 12 €8:(e), 7€ TH,
where
Ain(Sia,2) = (Dpruri — a Aran(Sis2))E,
Aron(Sisz) = ch,x,i/m and A; 3, (5 %) = Kp .-

First, we compute the entropy bound for G,. We focus on Gy, first. There exists C' >
0 that does not depend on P € P, such that for any 7 € T, any (a,z) and (da/,2') in
(=G, 61a)7+! x S (e), and any 7,7 € T,

|>\T,1n(si; CL,Z') - AT',l’n(Si; CL,,ZE,)| < ¢

= pl/2pr+d/2 {lla =d|l + |7 =7 + [l = 2"|[}.

Since [—01,,, 01,) T X S, () is bounded in the Euclidean space uniformly in 7 € T, there is
C > 0 such that for all £ € (0, 1],

log N (g, Gin, ||+ o) < —Clog(amin{n’l/zh’“d/z, 1}),

where || - ||, denotes the usual supremum norm. Applying similar arguments to Go,, and Gs,,,

we conclude that
(B.7) log N (&, G, || * loo) < C = Clog(e/n), m =1,2,3,

for some C > 0.
Define for x € R, § > 0,

15(x) = (1—min{z/5 1})1{0 < 2} + 1{x < 0} and
1¥(z) = (1 —-min{(z/8)+1,1)1{0<z+0}+1{x+5 <0}
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We also define for x,y, z € R,
1
wlx,y,z) = zy/ {H{z <ys} — 1{z < 0}}ds,
0
1
ez = 2y [ (1o < s} - 1§ (e))ds, and
0

k(e y,2) = 2y / {1{z < ys} — 15 (x)}ds.

Then observe that

(B.8) g (e,y,2) < pla,y, 2) < pg (e,y,2)
s (2,0, 2) — pla,y, 2)| < zyl1{]a] < 0}
|5 (2, 2) — (. 2)| < Jzyli{|2] < 6}
|15 (2,9, 2) — pg (', 2| < C{ly —y'| + |2 = 2| + [« — 2’| /6}, and
s (0, 2) = ps (20, 2)| < Clly =y + 12 = 2| + |z = 2'| /6},

for any y, vy, z,2’, z, 2" € R. Define
GYs = {1 (91(5),92(5),93(5:)) : gm € Gn, m =1,2,3}, and
#,5 = {MaL(gl(Si),92(51')793(52‘)) " 9m € Gmn, M = 1,2,3} :

From (B.8) and (B.7), we find that there exists C' > 0 such that for each § > 0 and € > 0,

(B.9) log Nj(Ce, G5, L,(P)) < C —Clog(ed/n) and
log Ny(Ce, Gy, Ly(P)) < C —Clog(d/n).
We fix € > 0, set § = ¢, and take brackets [g@,gf)U], . [g](\?L,g](\?U] and [g@,gﬁ,},

) [gj(\é;,)L7 QS?U] such that
(3:10) B (1g(5) — 92(S)F) < *and
B (19 (5) - a2(5)1) < &,
(e)

and for any g € GY and § € GZ| there exists s € {1,---, N} such that gff% <g<g,y and
f]f% <g< §§E()] Without loss of generality, we assume that ggz, ggg[)] € GY and gﬂ, QEE[)] e gk
By the first inequality in (B.8), we find that the brackets [gg, gfg]], k=1,--- N, cover G,.

Hence by putting § = ¢ in (B.9) and redefining constants, we conclude that for some C' > 0
(B.11) log Ny(Ce, Gy, L,(P)) < C — Clog(e/n),

for all e > 0.
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Now, observe that
-
b Ch,x,iKh,a:,i

vnhd

where ¢ > 0 is the diameter of the compact support of K.
For any g € G,/L and any m > 1, E[|g(S;)|™|X;, L; = k] is bounded by
‘chh,x,iKh,m,i "
nhd

Therefore, by (B.12), for some constants C, Cy > 0, it is satisfied that for any m > 2,

< EHKHOOCS%

B.12 su ,
(B.12) b Vo

bi||b]|<02n,TET 28 (¢)

Son \
sup E [|g(S;)|™] < C - csup P< max | X;s — x| < h/23F < Cyb™ 252,
up Blg(S)I"] < G (2 ) sup P { w1 = ol < 02 < 023,

where
52n d o §2n
— an Sn:—n3/4hd/4'

By (B.8), (B.10), and (B.12), and the definition of b, and s, in (B.13), there exist constants
C1,Cy > 0 such that for all m > 2,

E (Ig5(8) = 2801") = E (1ol (50 — g8 219l (50 — 35050 2)
Cr -7 B (1ol (5) — 352 (S)P)

201 5372 E (1ol (5 — 952 (S)P)
201472 B (1950 - 61(S) )

205 - b2 {e? +b2e} <20, - b2 e

(B.13) b, =

IN

IN

IN

(The term b%e is obtained by chaining the second and third inequalities of (B.8) and using
the fact that § = € and the uniform bound in (B.5). The last inequality follows because
b, — 0 as n — 00.) We define £ = /2 and bound the last term by Csb™~22% for some
C3 > 0, because b, < 1 from some large n on. The entropy bound in (B.11) as a function of
€ remains the same except for a different constant C' > 0 there.

Now by Theorem 6.8 of Massart (2007) and (B.11), there exist C;,Cy > 0 such that

sup E sSup |CnA,x,T,k(a7 b) - E[ nA,z,T,k(a’ b)] |]
PepP a,b:||al|<81n,||b]|<d2n,TET,2E€S- (¢)
< C’l\/ﬁ/ \/n A {—log (£> }dzE + C1(by, + s,) logn
0 n
dan/logn
S CQSn\/nlogn—i—C'gbnlogn:O (W s
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where the last equality follows by the definitions of b, and s, in (B.13) and by Assumption
QRA3(ii).

(i) Define A; 4, (Si; ) = Ay rip; and Lyg = {ZT()\TATL(-;[E)) T e T,z e S(e)}, and Ly =
{ Ao 2) A an(52) 7€ T, € S:(e)}. We write

wn,mﬂ-,k - {wn,z,nk —E [¢n,x,7‘,k:]} +E [wn,m,r,k] .

The leading term is an empirical process indexed by the functions in £, = Ly - L.
Approximating the indicator function in I by upper and lower Lipschitz functions and
following similar arguments in the proof of (i), we find that

sup log Ny(e, Ly, Ly,(P)) < C — Cloge + Clogn,

PeP
for some constant C' > 0. Note that we can take a constant function C' as an envelope of

L. Then we follow the proof of Lemma 2 to obtain that

E sup  |{Ynark — E[Unzril | = O(y/logn), uniformly in P € P.

TET €S- (¢)

By using (B.3) and (B.4), we find that

E [¢n,z,r,k] - O(hT—H)-

Since y/nh"™ ™ — 0, we obtain the desired result.
(iii) Recall the definition of g, , r.x(Si; s, b, a) in the proof of Lemma QR1(i). We write

1
B2, . (a,b)] = n / E [gro(Si: 5, b, a)] ds.
0

Using change of variables, we rewrite

1
/ E [9n2.k(Si;s,b,a)]ds = kP {L; = k| X;} - ¢n(X;;a,b),
0

where

Pn(Xi; a,b) :/

(b a)TCh,a:,i/\/ﬁd J— (; X x .
+ Fnk_ (u n,‘r,k( “x)| Z) du ](h,:p,i'
a Ch,z,i/\/r

_FT,k (_5n,‘r,k(Xi; x)|Xz)

By expanding the difference, we have

(b+a) Tep i /Vnhd

¢n(Xi; a,b) —/ udu - frp (—0nri(Xi; )| X5) - Knwi + Rosi(a,b),
aTcp,e,i/Vnhd
where R, ,;(a,b) denotes the remainder term in the expansion. As for the leading integral,
(b+a) T cp o /Vnhd . ] ]
/ﬂcm’i/m udu = S {b Ch,:r,ich,x,i(b 4 2@)} _
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Hence, for any sequences a,, b,, we can write E[C2, _, (a,,b,)] as

1
§b1h7dE [P {L; = E|Xi} frn (—0n6(Xi;2)| X5) Ch,x,iclm : Kh,gc,i} (bn, + 2a,)
—|—TL]€E [P {Lz - k|Xz} Rn,x,i(an7 bn)]

1
= inMm,k(a:)(bn +2a,) + nkE[P{L; = k| X;} Rpri(an, by)],

where the last O(h""ta,b,) term is due to (B.3). We can bound

(bn+an)Tch,m7i/W
nk |E [P {LZ = k|XZ} Rn,x,i(ana bn)” S OlnkE / u2du . Kh,x,i + O(h?“-‘rlanbn)
a} cp z,i/Vnhd
Cgbnai .
nl/2pd/2 + O anby),

where C; > 0 and C5 > 0 are constants that do not depend on n or P € P. g

Lemma QR2. Suppose that Assumptions QRI1-QRS3 hold. Then, for each k € Ny,

sup nhiH (Yrx(x) — vrp(x)) — Mn’ik(x)wnmk )
TET €S- (¢)
logl/ “n .
= OP (W 5 P—umformly.

Proof of Lemma QR2. (i) Let

(B.14) Upgr = _M;i,k(x)¢n,$77,ka
&n,xﬂ',k(b) = bTwn,x,T,k + bTMn,T,k<x)b/2a and
qzn,x;r,k (CL> b) = &n,xmk(a + b) - &n,x,r,k(a)'

For any a € RI4"l, we can write

(B15) 77271,1‘,7,]@ (amx,ﬂ a— ﬁ'n,xﬂ') = 772}"»9577'7]’3(0') B '(an,:(;,r,k(an,xﬂ')
= (Cl — ’l]n’x,r)—r Mn,T,k (IE) (a - {Ln,xﬂ') /2

Z ClHa - an,z,THZa

where C; > 0 is a constant that does not depend on 7 € T, = € S,(¢) or P € P. The last
inequality uses Assumption QR2(ii) and the fact that K is a nonnegative map that is not
constant at zero.
Let
Un, 2,7 = \/WH(&T,k(x) — Yk (2)),
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where z € S;(¢) and 7 € T. Since Gy 47k (Un e, b) is convex in b, we have for any 0 < § <1
and for any b € R+l such that |[b|| = 1,

(B.16) (6/D)Cnszrk(Unzry 1) = Coark(Ung,r, 0D)
> Ui (T, 00) — Ay i(6),
where
Auk(0) = sup  Curi(ln,r: 00) = Ynart(@ngz, e 0)|-

beRIATL||b]|<1

Therefore, if ||t zr — Unz-|| > 9, we replace b by ﬁﬁm = (Ungr — Ungr)/||Unor — Unorll

and [ by ||tz r — Unz-|| in (B.14), and use (B.16) to obtain that

(B.17) 0 > GCrark(lner |iner — Unesllin, ;)
> Coork(Ung,r, (mﬁxﬁ)
> Ynwrk (e &ﬁ’ﬁxﬂ') — A k()
> C10%|[dy . |1? = Ani(8) = C16% — A (0),

for all 6 < ||ty 4+ — Una.r||, Where the first inequality follows because (4 7k (Unz.rs ||Unwr —

ling,r||b) is minimized at b = 45, . by the definition of local polynomial estimation, the
fourth inequality follows from (B.15), and the last equality follows because ||a5, ||> = 1.

We take large M > 0 and let
M+/logn

(B18> 5171 =M logn and 52n = W

If 69y < ||Gpzr — Unr||, We have
Clégn S An,k(52n)>
from (B.17). We let

1, =1 sup  ||Gnar|| < Moy, o .
TET ,x€Sx(€)
Then we write

P f Aan_Nnac7'2>52 <P An 6n1n>62 El—ln
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Now, we show that the first probability vanishes as n — oco. For each b € RI4"!, using the
definition of ¥y, 4k (tnzr,0) = Unzrk(Unzr +0) — Unark(Uner), We write
Unari(lingr0) = Unorillng: +b) = Unari(lna.r)
= b Wngrh + (Tnayr +0)T Myor (T +0)/2 = Gy Moo rlin a7 /2
= 0 g 0 My ob/2 4+ 0T My 1Tl e
= b'M,,.b/2.

Therefore,

Cneire (e 0) = Vi (lina s 0) = Gt (lnaes ) = B[ (T, D)
+E [k (linars )] = 0T Mo 20/2 4 b 4 1
= CnAw Tk(un,:cm b) —E [Cﬁxmk(an,xﬂ'? b)]
+E [ (s, 0)] = 0T My, g (b + 2002 7) /2.
By Lemma QR1(i),

sup sup |<nA,ac,T,k (a”@ffﬂ b) —E |:CHA,£E,T,]€ (ﬂ’n,l"ﬂ" b)] |
TET,xE€Sx(€) beRIAT1:||b]|<d2p,
danr/logn 9, logn danr/logn
= Op + =0p\ —777 | >

nl/Apd/4 nl/2pd/2 nl/Apd/4

by the definition in (B.18). And by Lemma QR1(iii),

sup sup ‘E [Cﬁxmk(&n,m, b)] — b" M,..(b+ 21’1,1,3;,7)/2‘
TET €S- (g) beRIATL:||b]|<ban,

5Qn dan logn i1 dan, logm
by the definition in (B.18) and Assumption QR3(ii). Thus we conclude that

(52n\/logn)

(B.19) | Ank(d20)] = Op ( nl/Apd/a

where the last Op term is uniform over P € P. We deduce from (B.19) that

pPeP T7€T,x€8- (e

sup P {An7k(52n)1 { sup  ||tp ool < (51n} > (5§n} —0asn— o
()

and as M 1T oco. The proof is completed because

sup P{ sup ||'L~Ln,q:,7-|| > 6171} — 0,
PeP TET,IGST(E)
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as n — oo and as M 1 oo by Lemma QR1(ii). Thus, we conclude that

R ~ Viogn
||un,x,7 - Umx,TH =0Op nl/4pd/4

uniformly in P € P. 1

For z = (z,7) € Z, define A, =Y — 4] (x)e(X] — ),

n k l<A;chzm (a""b)Tszi/\/_d)

Guaraloh) = DML =R I L ) [ e 00,

n k
* 1 * *
wn,x,T,k = _\/W Zl 1{Ll = k Z x‘rlkl “Chapi Khzz’

where ¢, ,; and Kj ; are cp,; and K}, ; except that X; is replaced by X;. We also define
o wlad) = ¢ op(a,b) —bTyr o The following lemma is the bootstrap analogue of

Lemma QRI.

Lemma QR3. Suppose that Assumptions QRI-QRS3 hold. Let {01,}5°, and {d2,}52, be
positive sequences such that 01, = O(1) and dq, < 1., from some large n on. Then for each
k € Ny, the following holds uniformly over P € P:

(i)

E*
a,b:]|a||<1n,||b||<d2n TET €S~ (€)

<52n\/10gn)
Op | = ———).

nl/Apd/A

sup sup |§nA,:,T,k(a7 b) E* [Cn ; T, k<a7 b)] |]

(i)
b" My, 1 (x)(b+ 2a)
2

a,b:||al|<1n,||b]|<d2n TET €S (¢)

— Op (—52“10g” 52n51nh’"“).

nl/apd/4 +

Proof of Lemma QRS3. (i) Similarly as in the proof of Lemma QR1(i), we rewrite (;*; . ;. (a, b)—
E*[ ni"rk(aﬂ b)] as

Z {Grari(S10,0) — E[Grri(Sa,0)]}

where S; = (YT, X:")T. Let 7 = (z,7,5,a,b) and II,, = S(g) x T x [0, 1] X [=01n, 1) T ¥
[— 09y, 02", where S(g) = {(x,7) € X x T : x € S;(¢)}. Using Proposition 2.5 of Giné
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(1997),
E |E° sup sup |G (0, 0) = EX[G - i(a, b)]l”
a,b:||al|<1n,||b||<d2n TET ,x€S(g)
n 1 n
< CE |Ey, su Nz_l N2, T, SZ‘;S,b,CL - n,T,T SZ';S,b,CL )
> N; <W€£ Z( ){9,,,k( ) nzg,,,k( )}D]

i=1 i=1
where {N;}"_, arei.i.d. Poisson random variables with mean 1 independent of {(Y;", X,")T}>°,,
En, denotes expectation only with respect to the distribution of {N;}?,, and g,(-;s,b,a)
is as defined in the proof of Lemma QR1(i). Here the constant C' > 0 does not depend on
P € 'P. We can bound the above by

n

CE

sup

mell,
1 n
+CE ( ) x B <sup —>  gnark(Siis.b,a0) = Elgnsrr(Si 5,0, a)] > .
well, |1 i—1

The leading expectation is bounded by O(dy,+/logn/(n*/*h%/4)) similarly as in the proof of
Lemma QR1(i). And the product of the two expectations in the second term is bounded by
7r€Hn

= 0 (Bnv/logn/(n*h1)

where the constant C' > 0 does not depend on P € P, and the last equality follows similarly
as in the proof of Lemma QRI1(i).
(ii) Note that

(BQO) E” [ nx’rk(a b)] [ ank(a b)] [ nx’rk(a b)] [ nka(a b)]
The difference between the first two terms on the right hand side is

0, (52n\/logn N don, logn) _o, (52n\/logn> 7

nl/Apd/4 nl/2hd/2 nl/Apd/4

(Nz - 1) (gn,x,q—,k(si; S, b, a) —E [gn,:p,r,k(si; S, b: a)]) u
1=1

> (V-1

=1

O(v/n) x E (sup

1 n
- Z {gn,x,T,k(Si; S, ba (l) -E [.gn,:c,T,k(Si; S, ba CL)]}
=1

uniformly in P € P, as we have seen in (i). We apply Lemma QR1(iii) to the last expectation
in (B.20) to obtain the desired result. §
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Lemma QRA4. Suppose that Assumptions QRI1-QRS3 hold. Then for each k € Ny,
sup | VAhTH(37,(2) = () = Mo (@)

n, 7,k n,x, 7.k
(z,7)EX1XT

log/ n ‘
= Op-~ (W) , P-uniformly.

Proof of Lemma QR4. The proof uses Lemma QR3 in the same way as the proof of Lemma
QR2 uses Lemma QR1. Details are omitted. i

Proof of Theorem AUC. First, let us turn to Assumption Al. Since vVnhd x op(n=/?) =
op(h*?) by Assumption AUC-4, it suffices to consider ,.5(x) that uses b instead of b. Hence

By Lemma QR2, the asymptotic linear representation in Assumption A1l follows. The error
rate op(V'h?) is satisfied, because

1/2
B—4/2 <1Ci%4hd;1> — o l/ap—3d/4 logl/Q n—0,
n

by Assumption AUC-3(ii) and the condition r > 3d/2 — 1. Assumption A2 follows because
both B, 4 -1(Si,2) and By, 4.+2(S;, 2) have a multiplicative component of K(z) which has a
compact support by Assumption AUC-3(i). As for Assumption A3, we use Lemma 2 in
Appendix A. First define

~ v
Corpsi = L= k}lr (Bli — v p(x) - H-c ( Zh x)) and

_ XZ—ZL' XZ—ZE
rne = elM e (S0 e (B0

First observe that for each fixed o € R4, 7 € T, and A > 0,

2
Xi— 1 X — 13
sup Qnaym2 | Vi, A — Qg2 | Y, A
[lze—z3||+||T2—73||<A

sup (er,Tg,k,li - €:p3,73,k,h) |X] m 0.k l]

[[z2—z3||+[|T2—T3]|<A

Il
o
A

(B21) E

2
sup (51‘2,7’2,]@2' - 51‘3,7'3,.%,2')
[[w2—zs||+||T2—T3]|<A

Using Lipschitz continuity of the conditional density of By given L; = k and X; = x in
(,7) (Assumption AUC-2(iii)) and Lipschitz continuity of v, x(z) in (z,7) (Assumption
AUC-1(i)), we find that the first term is bounded by Ch~**A for some C' > 0 and s; > 0.
Since

My (&) = kP {Li = k|X; = 2} £ (02) /K ()T dt + o(1),



GENERAL FUNCTIONAL INEQUALITIES 93

we find that M~ ik(x) is Lipschitz continuous in (z,7) by Assumptions AUC-1(i), AUC-
2(iii)(iv) and AUC-3(i). Hence the last term in (B.21) is also bounded by Ch=2\? for some
C > 0 and sy > 0. Therefore, the condition in (4.11) holds with

X, -
bn,ij<x77_) = Onz12 (Y;, x) .

h
X; —
O 7,2 (Y;, h x)

because v, ;r2(-,-) is uniformly bounded. We also obtain the same result for o, ., 3(-,-).
Thus the conditions of Lemma 2 are satisfied with b,, ;;(z, 7) taken to be 5, 5 -1(Y;, (X;—x)/h)

or Byar2(Yi, (X; —x)/h). Now Assumption 3 follows from Lemma 2. Since we are taking

Also, observe that
4

E <C,

0-;(z) =1, it suffices to take o, . ;(z) = 1 in Assumption A5. Assumption A6(i) is satisfied
because B, ;- is bounded. Assumption Bl follows by Lemma QR4. Assumption B4 follows
by taking M — oo, because 3, ;. is bounded. §

ApPPENDIX C. PROOFS OF AUXILIARY RESULTS FOR LEMMAS A2(1), LEMMA A4(1),
AND THEOREM 1

The eventual result in this appendix is Lemma C9 which is used to show the asymptotic
normality of the location-scale normalized representation of 0 and its bootstrap version,
and to establish its asymptotic behavior in the degenerate case. For this, we first prepare
Lemmas C1-C3. To obtain uniformity that covers the case of degeneracy, this paper uses
a method of regularization, where the covariance matrix of random quantities is added by
a diagonal matrix of small diagonal elements. The regularized random quantities having
this covariance matrix does not suffer from degeneracy in the limit, even when the original
quantities have covariate matrix that is degenerate in the limit. Thus, for these regularized
quantities, we can obtain uniform asymptotic theory using an appropriate Berry-Esseen-type
bound. Then, we need to deal with the difference between the regularized covariance matrix
and the original one. Lemma C1 is a simple result of linear algebra that is used to control
this discrepancy.

Lemma C2 has two sub-results from which one can deduce a uniform version of Levy’s
continuity theorem. We have not seen any such results in the literature or monographs, so we
provide its full proof. The result has two functions. First, the result enables one to deduce
convergence in distribution in terms of convergence of cumulative distribution functions and
convergence in distribution in terms of convergence of characteristic functions in a manner
that is uniform over a given collection of probabilities. The original form of convergence

in distribution due to the Poissonization method in Giné, Mason, and Zaitsev (2003) is
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convergence of characteristic functions. Certainly pointwise in P, this convergence implies
convergence of cumulative distribution functions, but it is not clear under what conditions
this implication is uniform over a given class of probabilities. Lemma C2 essentially clarifies
this issue.

Lemma C3 is an extension of de-Poissonization lemma that appeared in Beirlant and
Mason (1995). The proof is based on the proof of their same result in Giné, Mason, and
Zaitsev (2003), but involves a substantial modification, because unlike their results, we need a
version that holds uniformly over P € P. This de-Poissonization lemma is used to transform
the asymptotic distribution theory for the Poissonized version of the test statistic into that
for the original test statistic.

Lemmas C4-C5 establish some moment bounds for a normalized sum of independent quan-
tities. This moment bound is later used to control a Berry-Esseen-type bound, when we
approximate those sums by corresponding centered normal random vectors.

Lemma C6 obtains an approximate version for the scale normalizer ¢,,. The approximate
version involves a functional of a Gaussian random vector, which stems from approximating
a normalized sum of independent random vectors by a Gaussian random vector through
using a Berry-Esseen-type bound. For this result, we use the regularization method that
we mentioned before. Due to the regularization, we are able to cover the degenerate case
eventually.

Lemma C7 is an auxiliary result that is used to establish Lemma C9 in combination with
the de-Poissonization lemma (Lemma C3). And Lemma C8 establishes asymptotic normality
of the Poissonized version of the test statistics. The asymptotic normality for the Poissonized
statistic involves the discretization of the integrals, thereby, reducing the integral to a sum
of 1-dependent random variables, and then applies the Berry-Esseen-type bound in Shergin
(1993). Note that by the moment bound in Lemmas C4-C5 that is uniform over P € P, we
obtain the asymptotic approximation that is uniform over P € P. The lemma also presents
a corresponding result for the degenerate case.

Finally, Lemma C9 combines the asymptotic distribution theory for the Poissonized test
statistic in Lemma C7 with the de-Poissonization lemma (Lemma C3) to obtain the asymp-
totic distribution theory for the original test statistic. The result of Lemma C9 is used to
establish the asymptotic normality result in Lemma A7.

The following lemma provides some inequality of matrix algebra.

Lemma C1. For any J x J positive semidefinite symmetric matriz ¥ and any € > 0,
H@ +el)'? - 52 < Ve,

where ||Al| = \/tr(AA") for any square matriz A.
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Remark 1. The main point of Lemma C1 is that the bound v/ Je is independent of the matrix
Y. Such a uniform bound is crucially used for the derivation of asymptotic validity of the
test uniform in P € P.

Proof of Lemma C1. First observe that
(C.1) tr{(S 4 I)'/? — £1/%)?

= tr(25 +¢el) = 2tr((S + 1)/ T2,
Since ¥ < ¥ + el, we have /2 < (S +¢eI)"?. For any positive semidefinite matri-
ces A and B, tr(AB) > 0 (see e.g. Abadir and Magnus (2005)). Therefore, tr(¥X) <
tr((2 +el)* £Y2). From (C.1), we find that

tr (25 + el) — 2tr((S + 1) /* B1/2)
< tr(28+¢el) —2tr(X) =eJ.

The following lemma can be used to derive a version of Levy’s Continuity Theorem that

is uniform in P € P.

Lemma C2. Suppose that V,, € R is a sequence of random vectors and V € R? is a random
vector. We assume without loss of generality that V,, and V live on the same measure space
(Q,F), and P is a given collection of probabilities on (2, F). Furthermore define

en(t) = Elexp(it'Vi)], o(t) = E [exp(it'V)],
F.it) = P{V,<t},and F(t)=P{V <t}.

(1) Suppose that the distribution P oV~ is uniformly tight in {P oV~ : P € P}. Then for
any continuous function f on RY taking values in [—1,1] and for any e € (0,1], we have
sup [Ef(V,) —Ef(V)| < e ?Cysup sup |F,(t) — F(t)| + 4,
PeP PeP teR4

where Cyq > 0 is a constant that depends only on d.
(ii) Suppose that suppep B||V||* < co. If

sup sup | (u) — @(u)|] =0, as n — oo,
PeP yweRd

then for each t € RY,

sup |F,(t) — F(t)| = 0, as n — oo.
PeP
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On the other hand, if for each t € R?,

sup |F,(t) — F(t)| = 0, as n — oo,
PeP

then for each u € R?,

sup |¢on(u) — e(u)| = 0, as n — oco.
Pep

Proof of Lemma C2. (i) The proof uses arguments in the proof of Lemma 2.2 of van der
Vaart (1998). Take a large compact rectangle B C R? such that P{V ¢ B} < e. Since
the distribution of V' is tight uniformly over P € P, we can take such B independently of
P € P. Take a partition B = Uj;lBj and points z; € B; such that J. < Cg.e7%, and
|f(z) — fo(x)] < e for all z € B, where Cy; > 0 is a constant that depends only on d, and

fe(x) = if(xj)l{x € B;}.

Thus we have
[Ef(Va) —Ef(V)] < [Ef(Va) = Ef(V)l+ [Efe(Va) = Ef(V)| + [Ef(V) — Ef (V)]
< 26+ P{Vi & B} + P{V & B} + [Ef:(Va) — Ef(V)
< de+ |P{Vn ¢ By = P{V ¢ B} + [Ef:(V,) — Ef(V))]
de + |P{V,, € B} — P{V € B}| + |Ef.(V,,) — Ef.(V)].

The second inequality following by P{V ¢ B} < . As for the last term, we let

(
(

b, = sup sup |F,(t) — F(t)],
PeP tcR4

and observe that

BV -BLOVI| < Y IP(V € B}~ PV € BHI7(w))

JE
< N |P{Vi € B;} — P{V € B;}| < Caab e,

j=1
where Cyo > 0 is a constant that depends only on d. The last inequality follows because
for any rectangle B;, we have |P{V,, € B;} — P{V € B;}| < Cy2b, for some Cyo > 0. We

conclude that
Ef(V,) —Ef(V)| <4de+ Cya (Caae™® + 1) by, < de + Cue™,,

where Cy = Cy2{Cy1 + 1}. The last inequality follows because ¢ < 1.
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(ii) We show the first statement. We first show that under the stated condition, the sequence
{PoV,1}% | is uniformly tight uniformly over P € P. That is, for any ¢ > 0, we show there

n

exists a compact set B C R? such that for all n > 1,
sup P {V,, e R\B} <e.
PeP
For this, we assume d = 1 without loss of generality, let P, denote the distribution of V,, and

consider the following: (using arguments in the proof of Theorem 3.3.6 of Durrett (2010))

P{|Vn| > %} < 2/x|>2/u <1 _ ﬁ) dP, ()
< 2/ (1— Sizgx) dP,(z)

_ %/u (1 — () dt.

—Uu

Define €,, = suppep sup;er |¢n(t) — ¢(t)|. Using Theorem 3.3.8 of Durrett (2010), we bound

1 [ t?’EV?
L[ (i B
uJ_, 2

1 u
—/ tQEVth‘ .

the last term by

1 u
2én+—/ (1= o) dt < 26, +
u

—Uu

+2
U

The supremum of the right hand side terms over P € P vanishes as we send n — oo and
then u | 0, by the assumption that suppepE|V|* < co. Hence the sequence {P oV, 1}, is
uniformly tight uniformly over P € P.
Now, for each t € R, there exists a subsequence {n'} C {n} and {P,} C P such that
(C.2) limsup sup |F,(t) — F(t)| = lim |F.(t; Py) — F(t; Py)|,
n—oo PEP n/—0o0
where
F.(t; P,) = P, {V,, <t} and F(t; P,) = P, {V <t}.

(Hence, F(t; P,) is the cdf of distribution P, o V71.)

Since {P, o V;'}%5_, is uniformly tight (as shown above), there exists a subsequence

{n}.} € {n'} such that
(C.3) Fy (t; Py ) — F*(t), as k — oo,
for some cdf F*. Also {P, o V7'}%_, is uniformly tight (because supp.p E||V]]*> < o0),

{ Py o V1132, is uniformly tight and hence there exists a further subsequence {ny,} € {ni}
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such that

(C.4) F(t; Pnzj) — F**(t), as j — oo,

for some cdf F**. Since {nj } C {n}}, we have from (C.3),

(C.5) Fnzj (t; Pnij) — F*(t), as j — oo.

By the condition of (ii), we have

(C.6) P, (u; Pn;j) — o(u; Pnij) — 0, as j — 00,

where
on (u; Py) = Ep, (exp (1uVy)) and ¢ (u; P,) = Ep, (exp (iuV)),
and Ep represents expectation with respect to the probability measure P,. Furthermore,

by (C.4) and (C.5), and Levy’s Continuity Theorem,

im ¢,y (u; Py ) and lim @(u; By )
Jj—oo kj kj Jj—o0 kj

exist and coincide by (C.6). Therefore, for all ¢t € R,
F*(t) = F*(t).

In other words,
Tim [Fy (6 P) = F (6 P)| = lim |Fy (t; Pn/kj) .y (t; Pn;%)‘ — 0.

Therefore, the first statement of (ii) follows by the last limit applied to (C.2).

Let us turn to the second statement. Again, we show that {P o V,"1}>  is uniformly tight

uniformly in P € P. Note that given a large rectangle B,

P{V, e RA\B} < |P{V, e R\B} — P{V e R\B}|+ P{V € R"\B}.
There exists N such that for all n > N, the first difference vanishes as n — oo, uniformly in
P € P, by the condition of the lemma. As for the second term, we bound it by

d 2

EV:

P{Vi>a; j=1d <> —L
j=1

a;

where V} is the j-th entry of V and B = x?zl[aj, b;], b; < 0 < a;. By taking a;’s large enough,
we make the last bound arbitrarily small independently of P € P, because sup PGPE‘/]-Q < 00
for each j =1, - -, d. Therefore, {P oV "1} is uniformly tight uniformly in P € P.
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Now, we turn to the proof of the second statement of (ii). For each u € RY, there exists
a subsequence {n'} C {n} and {P,/} C P such that
limsup sup [on(u) = ()] = T o (u; Pur) = @(u; o)l

n—oo Pe

where @, (u; P,) = Ep, exp(iu'V,,) and ¢(u; P,) = Ep, exp(iu'V). By the condition in the

second statement of (ii), for each t € RY,

(C.7) lim |E, (t; Py) — F (t; Py)| = 0.
n’—o00
Since {P, o V;'}%5_, is uniformly tight (as shown above), there exists a subsequence
{ni} C {n'} such that F, (t; Py ) — F*(t), as k — oo, and hence by Levy’s Continuity
Theorem, we have @, (u; Py ) — ¢*(u), as k — oo. Similarly, we also have p(u; Py ) —
©**(u), as k — oo. By (C.7), we have F*(t) = F**(t) and ¢*(u) = ¢**(u). Therefore,

ou, (1P, ) = (1, )| =0

lm |, (u; Py) — ¢ (u; Py)| = lim
n’—00

n/—oo

Thus we arrive at the desired result. g

The following lemma offers a version of the de-Poissonization lemma of Beirlant and Mason
(1995) (see Theorem 2.1 on page 5). In contrast to the result of Beirlant and Mason (1995),

the version here is uniform in P € P.

Lemma C3. Let Ny ,(«) and Ny, () be independent Poisson random variables with Ny ,(c)
being Poisson (n(1—a)) and Ny, (a) being Poisson (na), where oo € (0,1). Denote N, (a) =
Nin(a) + Noyy(a) and set

Up(a) = Nl \_/ﬁn U=9 g V(o) = W

Let {S,}22, be a sequence of random variables and P be a given set of probabilities P on a

measure space on which (S, U, (ap), Vao(ap)) lives, where ap € (0,1) is a quantity that may
depend on P € P and for some € > 0,

(C.8) e<inf ap <supap <1-—c.
pep Pep

Furthermore, assume that for each n > 1, the random vector (S,,U,(ap)) is independent
of Vi(ap) with respect to each P € P. Let for ty,ty € R?,

bu,p(t1, ta;0p) = [P {S, < t1,Un(ap) < o} — P{opZy < t1,V/1 — apZs < t2}

9

where Zy and Zy are independent standard normal random variables and 0% > 0 for each
P € P. (Note that inf pep 0% is allowed to be zero.)
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(i) As n — oo,

sup sup
PEP teR

2
< 2e+ (4Cd sup an,p(s)) \/ —W,
PcP €

where a, p(e) = e b, p+e,b,p = SUDy, t,er Un,p(t1,t2;0p), and € is the constant in (C.8).
(ii) Suppose further that for all ti,ts € R, as n — oo,

Elexp(itSy) | Nn(ap) = n] — exp (_UétQ) ‘

sup by, p(t1,t2;0) — 0.
PeP

Then, for allt € R, we have as n — oo,

sup |E[exp(itS,)|Nn(ap) = n] — 1] — 0.
PeP

Remark 2. While the proof of Lemma C3 follows that of Lemma 2.4 of Giné, Mason, and
Zaitsev (2003), it is worth noting that in contrast to Lemma 2.4 of Giné, Mason, and Zaitsev
(2003) or Theorem 2.1 of Beirlant and Mason (1995), Lemma C3 gives an explicit bound for
the difference between the conditional characteristic function of S, given N, (ap) = n and
the characteristic function of N(0,0%). Under the stated conditions, (in particular (C.8)),
the explicit bound is shown to depend on P € P only through b, p. Thus in order to obtain

a bound uniform in P € P, it suffices to control ap and b, p uniformly in P € P.
Proof of Lemma C3. (i) Let ¢, p(t,u) = Elexp(itS,, + iuU,(ap))] and

op(t,u) = exp(—(o5t> + (1 — ap)u?)/2).
By the condition of the lemma and Lemma C2(i), we have for any € > 0,

(C.9) |onp(t,u) — op(t,u)| < (a’dCdbn,p + 4e)
< 4e7Cub, p + de = 4Cya, p(e).

Note that a, p(c) depends on P € P only through b, p.
Following the proof of Lemma 2.4 of Giné, Mason, and Zaitsev (2003), we have

Unp(t) = Elexp(itS,)|Ny(ap) = n]
1 m/n

= =1+ 0(1) /_ ot VBl (ioVaor)] dv

uniformly over P € P. Note that the equality comes after applying Sterling’s formula to
21 P{N,(ap) = n} and change of variables from u to v/y/n. (See the proof of Lemma 2.4 of
Giné, Mason, and Zaitsev (2003).) The distribution of N, (ap), being Poisson (n), does not

depend on the particular choice of ap € (0,1), and hence the o(1) term is o(1) uniformly
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over t € R and over P € P. We follow the proof of Theorem 3 of Feller (1966, p.517) to

observe that there exists ng > 0 such that uniformly over o € [e,1 — €],
m/n

/ |Eexp(ivVn(a)) — exp(—aw®/2)| dv + /

/R fol>myA

for all n > ny. Note that the distribution of V,,(ap) depends on P € P only through

ap € [e,1 — €] and & does not depend on P. Since there exists ny such that for all n > ny,

exp (—av?/2) dv} < e,

sup/ exp (—apv2/2) dv < g,
PEP J|v|>my/n

the previous inequality implies that for all n > max{ng, n1},

v
(C.10) Isalég/_ o |G, p(t, u) (Eexp(iuV,(ap)) — exp(—apu®/2))| du

m/n
< sup/ (sup ‘an’P(t,U)') |E exp(iuV,,(ap)) — exp(—apu?/2)|du
PEP J—nyn \P€EP

VR
< sup/ |E exp(iuV,(ap)) — exp(—apu?/2)|du < €.
PeP J —my/n

By (C.9) and (C.10),

m/n m/n
sup / On.p(t, u)E [exp(iuV,(ap))] du — / op(t,u)exp (—apu2/2) du
PeP —W\/ﬁ —Tr\/ﬁ
m/n
< sup sup / |dn,p(t,u) (Eexp(iuV, (o)) — exp(—au®/2))| du
PeP acle,1—¢€] J —ny/n
m/n
[ sup sup [6p(tu) — dn(t )| exp(—an?/2du
—my/n PEP acle,1—¢]
m/n
< e+ (4Cd sup an,p(e)) sup / exp(—au?/2)du
PeP a€le,l1—¢] J —m\/n

2 2
< e+ <4C'd sup amp(s)) sup 4/ il €+ (4Cd sup amp([‘:)) ]
PcP acle,1—¢] Q PeP €

as n — 0o. Since
242 o0 2
oht 1 / ( apu >
exp | — = t,u)exp | — du,
p( 5 ) o _oo¢p( ) exp 5
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and from some large n on that does not depend on P € P,

00 2 m/n 2
‘/ op(t,u)exp (_apu ) du — / op(t,u) exp (_apu ) du
—00 2 —m/n 2

242 00 2 m/n 2
= exp (—U;t > ‘/ exp (—%) du —/ exp (—%) du
—00 —my/n

we conclude that for each t € R,
2t /2
Un.p(t) — exp <—JP ) < 2+ (4Cd sup CLn,p(é‘)) —W,
2 Pep €

as n — 00. Since the right hand side does not depend on t € R and P € P, we obtain the

<e,

desired result.
(ii) By the condition of the lemma and Lemma C2(ii), we have for any t,u € R,

sup |¢n7P(t7 U) - ¢P(07 u)‘ - 07
PeP

as n — 0o. The rest of the proof is similar to that of (i). We omit the details. 1
Define for x € X, 71,75 € T, and j, k € Ny,

Xi — X "
ﬁn,xﬂ—,j <}/ij7 T) :| .

Lemma C4. Suppose that Assumption A6(i) holds. Then for all m € [2, M|, (with M > 0
being the constant that appears in Assumption A6(i)), there exists Cy € (0,00) that does not

1
kn’ﬂj,m(x) = WE |:

depend on n such that for each j € Ny,

sup sSup kn,T,j,m(x) S Ol‘
T€T x€S () PEP

Proof of Lemma C4. The proof can be proceeded by using Assumption A6(i) and following
the proof of Lemma 4 of Lee, Song, and Whang (2013). &

Let N be a Poisson random variable with mean n and independent of (Y;", X,")%,.

Also, let B, (Yi, (X; — x)/h) be the J-dimensional vector whose j-th entry is equal to
B,z (Yij, (Xi —x)/h). We define

N
ZN,T(:E) = d E Bn,x,r (Y:w ) - dEﬁn,x,T (Y;a ) and
nh — h h

1 — X, —x 1 X, —x
— § j Y; - _E Y; .
nhd — 5n,x,7’ ( (3 h ) hd ﬁn,az,T ( (3] h )

Zp ()
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Let Ny be a Poisson random variable with mean 1, independent of (Y;", X,")%°,. Define

X, — X. —
{Bn,x;r (Y;, - x) - E/BTL,CC,T (Y;a Z—x)} and
1<i<Ny h h

q_n,f(x) = \/ﬁ Bn,m,f <}/;7 T) - Eﬂn,x,r (eru T) } .

3~
ISH

Onr(x) =

Lemma C5. Suppose that Assumption A6(i) holds. Then for any m € [2, M| (with M >0
being the constant in Assumption A6(i))

(€1) sup Sup E [lgn (2)lI"] < Crhdt-n/2) g
(z,7)€S PEP
sup _sup B [||g,-(2)||"] < CohU=m/2),
(z,7)ES PEP

where Cy,Cy > 0 are constants that depend only on m.
If furthermore, limsup, ,  n~(M/2A+F1pd0=(m/2) < C for some constant C' > 0, then

(C.12)  sup supE [||n'?h P2y (2)|"] < (15m> max {Cy,2C,C} and

(z,7)€S PEP IOg m

15 m _
sup_sup B [0, (@] < (s ) max {Ca2,C).
(z,7)€S PEP logm

where Cy,Cy > 0 are the constants that appear in (C.11).

Proof of Lemma C5. Let g, . () be the j-th entry of ¢, ,(x). For the first statement of the
lemma, it suffices to observe that for some positive constants C; and C,

d
Clhf kn,T,j,m

LTI < A n/2)
hdm/z = ’

(C.13) sup sup E [[g, -;(2)["] <
(z,7)eS PeP

where the first inequality uses the definition of k,, ; ;», and the last inequality uses Lemma
C4 and the fact that m € [2, M]. The second statement in (C.11) follows similarly.

We consider the statements in (C.12). We consider the first inequality in (C.12). Let
Znrj(x) be the j-th entry of zy (). Then using Rosenthal’s inequality (e.g. (2.3) of Giné,
Mason, and Zaitsev (2003)), we find that

sup sup E[|Vnhizy . ;(x)|™]
(z,7)eS PEP

15m \" 2 m/2 /241
sup Supmax{ Eq, . . (z ;R g (T m}
(logm) (z,7)eS PEP ( ’ J( )) | J( >|
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Since Eq? () < (Elgn,-;(z)[™)¥™, by (C.13), the last term is bounded by

L5 ) e {©, G (m/2)41 d—m/2) y
logm ’

( Lom > max {C_', QC_'C'} ,

logm

from some large n on by the condition limsup,,_,cn~ /21 pd1=0m/2) < O
As for the second inequality in (C.12), for some C' > 0, we use the second inequality in

(C.11) and use Rosenthal’s inequality in the same way as before, to obtain the inequality. 1

The following lemma offers a characterization of the scale normalizer of our test statistic.

For A, A’ C Ny, define ¢, -(z) = Vnhizy ,(x),

(C14)  Crpan(@a’) = h7Cov(Aay (Gur(2)), Aay (Grr(a'))) , and
Chrraa(x,u) = Cov (AA,p (WS)TT/(x,u)> Ay (WS)”, (z, U)>> )

where we recall that [V\\/g)ﬁﬁ2 (x, u)T,Y\/V,(f,)nn(x,u)T]T is a mean zero R*/-valued Gaussian

random vector whose covariance matrix is given by (6.9).
Then for Borel sets B, B’ C S and A, A’ C Ny, let

of (B, B) = / / CF 4wl )dQ (e, T)dQ(!, 7)
’J B

and

(C.15) Onan(B,B) = / / / / Chrrran(z, u)dudzdrdr’,
7J7 BB, Ju
where B, ={xr € X : (z,7) € B} and B, ={zx € X : (z,7') € B'}.

The lemma below shows that o, 4 (B, B') and 0y, 4.4/ (B, B) are asymptotically equiva-
lent uniformly in P € P. We introduce some notation. Recall the definition of ¥, ., ,,(x, u),
which is found below (6.7). Define for £ > 0,

i ( ) En,‘rl,ﬁ (l’, O) + &:IJ Zn,n,‘m (CC, 'U,)
n,m1,72,e\L, U
T Yoy (T, 1) Yo (T +uh,0)+E1;

)

where [; is the J dimensional identity matrix. Certainly in77177275(m,u) is positive definite.

We define

~ Zy 7 (2
'SN,TLTQ (l’, u;m, 772) =V nhdzn;{iﬁﬁ_(l” U) N, 1( 771) ’
ZN,TQ (l‘ + /U/h, 772)

where 17 € R’ and 7, € R’ are random vectors that are independent, and independent of
(V;", X,")22,, each following N (0,&15), and zy . (z;m1) = zy . (x)+m1/Vnhd. We are prepared

(2

to state the lemma.
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Lemma C6. Suppose that Assumption A6(i) holds and that nh® — oo, as n — oo, and

limsup n~ (/2 H1pd=(m/2)

n—oo

for some constant C > 0 and some m € [2(p+ 1), M].
Then for any sequences of Borel sets B, B!, C S and for any A, A" C Ny,

UﬁA,A’(Bna B:z) = Un,A,A’(Bm Bg) +o(1),

where o(1) vanishes uniformly in P € P as n — oo.

Remark 3. The main innovative element of Lemma C6 is that the result does not require
that o, 4.4/ (Bn, B),) be positive for each finite n or positive in the limit. Hence the result
can be applied to the case where the scale normalizer UTIZ aa(Bn, By) is degenerate (either

in finite samples or asymptotically).

Proof of Lemma C6. Define B, . = {x € X : (x,7) € B,}, w,,(x) = 1p, (). For a given
g >0, let
Jinime(t,u) = h™Cov(Auy(Vihiayq, (wm)), Aap(Vihizy g, (z + uhins))),
an,n,Tzf(m? u) = COU(AA,P(ZMH,TQ,E(‘T))? AA’,p<Zn,T1,7'2,5(x + Uh)))a
and (Z,)

n,T1,72,€

same covariance matrix as that of [Vnhdzy . (x;m1), Vnhizy . (v;n2)]". Then we define

OT]zA’A/’E—(Bn,B;) E/r[r/B /ugm,n,m,g(x,u)wﬁ,Bn(m)me;L(x+uh)dud:zcd71d7-2,
n,Tl

(:1&'),Z,Twhmg(v))T is a centered normal R*/-valued random vector with the

and
O'n,A,A’,E_(an B;L) = /7;/%/5; 5 /MCTL,Tl,T%A’Alvg(x’ u)ddedTldT27
'n,,7'1m ;1,,7'2
where
(C.16) Chmraanz(x,u) = Cov <AA7P(W1(,373—1’7—2’§($7u))?AA/7;D(W1(’LZ,3'1,T2,€_($7U>)) )
and, with Z ~ N(0, I5),
WS)T T E(xvu) s1/2
(C.17) [ W(é)F ) (z,u) - E"{ﬁﬁzf(x’u)z'
n,T1,72,€ Y

Thus, 0713,4714/’6-(3”, B)) and 0, 4,4 :(By, B],) are “regularized” versions of aff’A’A,(Bn, B!) and
Onaa(Bn, Bl). We also define

Tn.aaz(Bn, B)) E/// /gmn,m’s(:ﬂ,u)le,Bn(x)wTQ,Ba(x+uh)dudxdTldTg.
TJT JBory Ju
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Then it suffices for the lemma to show the following two statements.
Step 1: Asn — oo,
sup |on 4 a0 e(Bn, Bp) — Tnaare(By, By)| — 0, and
pPeP

}Sjug‘Tn,A,A/,é(BnaB;)_O'n,A,A’,z-f(BmB?I«LH — 0.
S

Step 2: For some C' > 0 that does not depend on ¢ or n,

]S;égng,A/,é(BmB;)_O'r?,A,A’(anB;z” < C\/E‘, and

sup |0-n,A,A’,§(Bn7 B:L) - O-n,A,A’(Bna B;)| S C(\/E
pPep

Then the desired result follows by sending n — oo and then & | 0, while chaining Steps 1
and 2.

Proof of Step 1: We first focus on the first statement. For any vector v = [v{, v, | € R*,

we define
Mgt (V) = Ay ([ s uv] ).,
Az (V) = Awy ([E5 nc@wv] ).
and
(C.18) Cop(V) = At (V) Rarp (),

where [a]; of a vector a € R* indicates the vector of the first J entries of a, and [a], the
vector of the remaining J entries of a. By Theorem 9 of Magnus and Neudecker (2001, p.
208),

3 i En T1,T s 0 Zn T ,
(Clg) )\min (En 1,72 E—(x’ u)) 2 )\min Tl 2(37 ) 1, 2(33 U)
o ) E”,TQ,TQ (l’ + uh, 0)

+)\min

Z )\min gIJ 0
0 €&l

Let Gnrj(2;715) = Pnrj(2) + m1j, where

pn,T,j (IE) \/ﬁ 1;}\7 {Bn,zn',j <Yvij7 T) - E |:ﬁn,x,7',j (Y;j; T):| } P
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1, is the j-th entry of )y, and N is a Poisson random variable with mean 1 and ((11;)en,, V1)
is independent of {(Y;", X,")}:°;. Let p,.(x) be the column vector of entries p,, , j(x) with j
running in the set N;. Let [p%,)n( ), pih, (z + uh)] be iid. copies of [P (2), P (x + wh)]

and ny) and ng) be also i.i.d. copies of 71 and 7,. Define
Qo (@) = P2 (@) + i and g7 (o + uh) = p0 (@ + uh) + 5.
Note that

qnnl
\/_Z[ 2x—|—uh

qn 72,

IZ[ P (e

pnT2 :L’—I—uh

n (4)
1 Ui
Vi 2 [ )’ ]
The last sum has the same distribution as [, 7, ]" and the leading sum on the right-hand

side has the same distribution as that of [z . (), 2y ,,(x + uh)]". Therefore, we conclude

that
d

€NT1T2(:E U 771a712 = \/—Z n,T l‘ u)

where

(i)
W(l) T,u)= En %'/27' r,u -qn’n’1<x>
,T1, 7'2( ) 1 26( ) q7(1@7)7272<x+uh>
Now we invoke the Berry-Esseen-type bound of Sweeting (1977, Theorem 1) to prove Step

1. By Lemma C5, we deduce that

(C.20) sup _sup Ellq)), (2)|* < Ch~”2,
(z,7)ES PEP

for some C' > 0. Also, recall the definition of p,, -, -, ;;(z,0) in (6.7) and note that

(C.21) sup  sup  suptr (inm,mg(x, u))
TET (z,u)€S,(e)xU PEP

< sup SUPZ (P, (@, 0) + Py g (2, 0) + 28) < C,
TET 2ES:(2) PEP 25

for some C' > 0 that depends only on J and £ by Lemma C4. Observe that by the definition
of €y, in (C.18), and (C.21),

Crop(v) = Clp(0)]
: i < (.
vers L+ [[v|Z 2 min {||v], 1} =




108 LEE, SONG, AND WHANG

We find that for each u € U, [|W') -, (z, u)||? is equal to

i O () e T
C.22 tr E,_LlT/igx,u 1,1 iq"’Tz’l E;lT/QTEx,u
(€22 & | 0 k) | | @O+ un) | O
.

(%)

n,ri,2 (.1' + Uh) qn77'2,2 (33 + Uh)

(4)
Gy 1 (7)
< Amax (Enln Tza( au)) tr [q(i) !

[ ¢ \(x)

Therefore, E||[W,\%, - (z,u)|® is bounded by
; 3
qT(L,)Tl,l(x)

A3/2 (2_ (x,u)) E ;
qﬁL’)T%Q(x + uh)

max n,T1,72,&

From (C.19),
N2 (5L (u) = A (S ez ) < E732,

max n,T1,72,€ min
Therefore, we conclude that
sup  sup  sup B[, (z,u)|?
TET (z,u)€S, () xU PEP T
< GEPe sup sup gl ()]
T€T,2ES- () PEP Y

+Cie ¥ sup  sup  sup Bllgy), o(x + uh)|P < Cos ¥V,
T€T (z,u)ES,(e)xU PEP

where C'} > 0 and C5 > 0 are constants depending only on J, and the last bound follows
by (C.20). Therefore, by Theorem 1 of Sweeting (1977), we find that with £ > 0 fixed and

n — 0o,
(C.23) sup  sup sup

EC, W EC, ( o xu)
TET (z,u)ES(e)xU PEP P <\/_ Z 1 2 ) P 1, 2( )
— O () = of),

where Zn,ﬁﬂ (2,0) = [Znry my (X)) T, Loy p (@ +uh) 7] T
Using similar arguments, we also deduce that for j = 1,2, and A C Ny,

- 1 < - : - -
EAAvP,j <% Z WTS,,‘)Fl,TQ (1’, u)) - EAA,;DJ (Zn,ﬁﬂ? (*T7 u)) | = 0(1)
1

sup sup sup
TET (z,u)€S-(e)xU PEP

For some C' > 0,

sup sup sup Cov (Ap(Zy, 7y 10 (%)), Ap(Zy 7y 7y (@ + uh)))
TET (z,u)€Sr(e)xU PEP

< s swp 5w (B 1 Zm @B [Ty e+ u)][ < C.
TET (z,u)€Sr(e)xU PEP
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The last inequality follows because Z,, r, ,, () and Z, -, -, #(x + uh) are centered normal
random vectors with a covariance matrix that has a finite Euclidean norm by Lemma C4.
Hence we apply the Dominated Convergence Theorem to deduce the first statement of Step
1 from (C.23).

We turn to the second statement of Step 1. The statement immediately follows because for
each v € U, the covariance matrix of %, 174272 =
matrix of [W ol (x,u), wer (z,u)]"and

nTlTQS n7'17'25

(z,u)&n ry me(x,u) is equal to the covariance

‘lean (I)sz,Bg (:B + Uh) — Wr B, (m)sz,Bil (ZL‘)l — 0’

as n — 0o, for each u € U, and for almost every z € X' (with respect to Lebesgue measure.)

Proof of Step 2: We consider the first statement. First, we write

(C.24) ‘(anAA/ A(Ba,BL)) — (0 4 (B, B;))Q\

/ / / / |AY 1@ w)| wey g, ()W, g, (2 + uh)dudzdrdr
/ / / / AT o(@,w)| Wy g, (@)W, (4 uh)dudzdrdr,

where
AZ 1,72, 1(23, u) = EAAJJ( Vnhizy )T (x))EAA’,P( v nhdZN,Tz (23 + Uh))
—EA4p(Vnhizy r (z;m)) EAw (VRhizy 5, (x + uh;)),
and

A" (z,u) = EAap(Vnhizy . ())Aa,(Vnhizy ., (x+ uh))

n,T1,72,2
—EA 4, (Vnhizy 1, (25m))Aa p(Vnhizy ., (x4 uh;ng)).
By Holder inequality, for C' > 0 that depends only on P,
‘A u)‘ < CApp(z,u) + CAgy (2, u),

n,Ti, 7'22( )
where, if p =1 then we set s =2, and ¢ =1, and if p > 1, weset s = (p+1)/(p — 1) and
g=(1-1/s)7",

Aw(z,u) = (0P {E |lznn () = 2z (@5m) [}

1 1
< ({Blasn @I} 4 {B s ()00} )
< \VE ([2x(x + uh)[[ ),
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and

Agp(z,u) = (NN {E |2y (2 + uh) — zn.0, (2 + whyno) |27}

= 1
< ({Blmvala-+ )00} (B favnto + abim) 20} )
A (2,0 () [).

Now,

sup SUPEHV Uz () — ZN,T(w;m)}HQqZEH\/EZH%:C?],

(z,7)eS PEP
where Z € R’ is a centered normal random vector with identity covariance matrix I;. Also,
we deduce that for some C' > 0,

sup sup E Hv hizy . (x

(z,7)€S PEP

by (C.12) of Lemma C5 and by the fact that 2s(p — 1) = 2(p + 1) < M. Similarly, from

some large n on,
Qp)

2p
)<C,

sup sup sup (A, (z,u) + Agp(z,u)) < CVE,
(11,72)ETXT (z,u)€(Sry (€)USr (€))xU PEP

2s(p—1)

Y

sup sup E (H\/nhdzN,T(a: + uh;ng)
(z,r)ES PEP

< sup sup E (HV hizy - (x;12)

TET €S- (e) PEP

for some C' > 0. Thus we conclude that for some C' > 0,

and that for some C' > 0,

sup sup sup [A7 (@, u)| < C/E.
(11,72)ETXT (x,u)E(Sr; (€)USr, (€)) xU PEP

Using similar arguments, we also find that for some C' > 0,

sup sup sup [A7 L (z,u)| < C/E.
(11,72)ETXT (x,u)€(Sr; (€)USr, (€)) xU PEP

Therefore, there exist C7 > 0 and Cy > 0 such that from some large n on,

sup‘UnAA/ (B, By) — nAA’(Bn?B/)‘

< Cl\/_/ // /wTth ng B/( +uh)duda:d7'1d7'2

Since the last multiple integral is finite, we obtain the first statement of Step 2.
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We turn to the second statement of Step 2. Similarly as before, we write

|O'nAA”Bn7B/> nAAf(BnaB/)|

/ // / AT (@ u) | wey g, (2)wn,, By (€ + uh)dudzdrdr

/// /|A271 (T u)‘le,Bn(x)wTQ,Ba(x+uh)duda:dﬁd¢2,

where
AL () = BAL(WY (e ) BAy (W, (e, u)
—EA a4, (W, o, (2, u)EA L, (WS, (2, 1)),
and
Ag ,T1,72 (’CC? U) = EAA p(Wn 2’1 ,T2 (l‘, u))AA,vp(ng%zﬁ,Tz (ZL', u))

—EA4 p(W7(1171 T2, e<x? u))AA’,p(Wg)n ,Tg,e‘(xa U))

Now, observe that for C' > 0 that does not depend on &, we have by Lemma C1(i),
X 0 )Y i
sup sup Zn/ﬁ T2, E(x U) o (x7 ) e (x’ U) < O\/E
(2,0)€(Sr, (£)USry (£)) xU PEP Ve (2,0) Xy (2 + uh)
Using this, recalling the definitions of WS}MQ (x,u) and Wﬁflm (z,u)in (C.17), and following

the previous arguments, we obtain the second statement of Step 2.

Lemma C7. Suppose that for some small v, > 0, n=/2h=%" — 0, as n — oo and the
conditions of Lemma C6 hold. Then there exists C' > 0 such that for any sequence of Borel

|

Remark 4. The result is in the same spirit as Lemma 6.2 of Giné, Mason, and Zaitsev (2003).
(Also see Lemma A8 of Lee, Song and Whang (2013).) However, unlike these results, the
location normalization here involves E[A 4 ,(Vnhizy ,(x))] instead of E[A4,(Vnhiz, .(z))].
We can obtain the same result with E[A 4, (Vnhizy . (2))] replaced by E[A4,(Vnhiz, ,(z))],

but with a stronger bandwidth condition.

sets B, C S, and A C Ny, from some large n on,

sup E th/2 /n {AA,p(Wzn,T(x)) —E [AA7P(\/WZN7T(IL’))} } dQ(x, 1)

Pep

CvQ(B,).

IN

Like Lemma C6, the result of Lemma C7 does not require that the quantities vnhiz, . (z)

and Vnhizy -(z) have a (pointwise in z) nondegenerate limit distribution.
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Proof of Lemma C7. As in the proof of Lemma A8 of Lee, Song, and Whang (2013), it
suffices to show that there exists C' > 0 such that C' does not depend on n and for any Borel
set B C R,

Step 1:

sup E Hh‘d/2 / { Mg (Vihiz, - (2)) = Aap(Vihtzy () } dQ(z, 7) ] < CQ(B,), and
Step 2:

]sglégE Hh_d/Q /n {AA,p(WZN,T(x)) - E [AA,p(WZN,T@))} } dQ(x,T) } < CVQ(By).

By chaining Steps 1 and 2, we obtain the desired result.
Proof of Step 1: Similarly as in (2.13) of Horvéath (1991), we first write

(C.25) Znr(T) = 2N (2) + Vo (@) + sp. (),

where, for £, ;.- (Y, (X; — x)/h) defined prior to Lemma C5,

— N 1 X —
Vn,T(x) = (n n ) : WE [Bn,m,ﬂ— <}/’L71Tx>:| and

- X; — X; —
Sn,T(x) = # Z {ﬁn,m,’r (Yz L x) -E |:Bn,m,7- ()/z Tx):| }7

i=N+1

and we write N =n, > v, =0, and if N >n, 3" | = _Zij\in-f—l'

Using (C.25), we deduce that for some C7, Cy > 0 that depend only on P,

(C.26) / My (Z0r (2)) — Ay (22 (2))] dQ (2, )

n

< 01/ Vo @) (12 ()P + [z (2)]77) dQ(r, 7)

+02/B 807 ()] ([|Znr ()" + [l232(2)77) dQ(x, 7)
= Dy, + Doy, say.

To deal with Dy, and D,,, we first show the following;:
CLAIM 1: sup(, ;s 5D pep Bl [Var (2)[[2] = O(n ), and

CLAIM 2: SUP(, e SUPpep B[S0, (2)]?] = O(n=2h~1).

WE |:Bn,a:,7 (}/17 h ):|

Proor or CLAIM 1: First, note that

2

. sup
(z,7)ES

2
n —

wp B [va, (@)|] < B
(z,7)ES
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Since E[n~'/2(n — N)|? does not depend on the joint distribution of (Y;, X;), E|n='/?(n
N)|?> < O(1) uniformly over P € P. Combining this with the second statement of (C.12),
the product on the right hand side becomes O(n™!) uniformly over P € P.

ProOF OF CLAIM 2: Let m; € R’ be the random vector defined prior to Lemma C6, and
define

. _ (N - n)m
Snr(T3m) = Sp-(2) + TR32Rd2
Note that
(C.27) E 5, @)]]" < 2B s, (aim) [ + —o H

As for the last term, since N and 7, are independent, it is bounded by

N Ce i
i (2[5 ) i< o,

from some large n on.

As for the leading expectation on the right hand side of (C.27), we write

n 2

2 1 i
E H Vv nhdsn,T (.T, 771) E % Z q7(z7)7',1(x)

i=N+1
J n (@) 2
_ 1 —2 qn,‘r,l,j('r>
T on ZU”’T’j(x)E (Z Tnrj(t) |
7=1 i=N+1 2

where qs)T (x)'s (1 =1,2,---) are i.i.d. copies of ¢, () +m and q,(f)ﬂj(x) is the j-th entry
of qff)ﬂ( ), and G, () = Var(qr(f’)ﬂu (x)). Recall that g, ,(z) was defined prior to Lemma

C5. Now we apply Lemma 1(i) of Horvéath (1991) to deduce that

no (i) 2
(x
sup supE( Z M)

(x,7)eS PEP Nt Un,T,j(x)
(4) 3
xXr
< E|N —n|-E|Z? + CE|N —n|"?. sup supE Gn,r,1,(7)
(z,7)ES PEP O-nT,](l')
(i) 4
xXr
+C sup supE M ’
(z,7)ES PEP O-n’r,j(«r)

for some C' > 0, where Z; ~ N(0,1).

First, observe that sup(, ;yes SUppep On rj(7) < 00 by Lemma C5, and

(C.28) (xlg)gsérelg Onr () >E>0,
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due to the additive term 7 in ¢, -(z) +m1. Let 1, be the j-th entry of ;. We apply Lemma

Cb to deduce that for some C' > 0, from some large n on,

(C.29) sup  sup B|(qnr;(x) +11;)/0nri(x)]? < Ch™@D=(1/2) and
(z,7)eS PEP
sup sup E|(gnr;(z) +1m1;)/Fnrg(@)[! < O
(z,7)eS PEP

Since E|N — n| = O(n*/2) and E|N —n|"? = O(n'/4%) (e.g. (2.21) and (2.22) of Horvath
(1991)), there exists C' > 0 such that

- qg)rl (:E) i C d d
(C.30) sup sup E Z ML) < o {n1/2 4+ /AR d/2)=(1/2) 4 g il
(z,7)ES PEP N1 On,r,j ('T> €
This implies that for some C' > 0, (with € > 0 fixed while n — c0)
(C.31) sup sup E H\/ s, . (x )H
(z,7)eS PEP

< O(nflh 1/1) —|—O(n 1/2+n73/4h7(d/2)7(y1/2) _i_nflhfdful)

= 0 (n_lh_l’l) +0(n~?) =0mn1?),

since n~1/2h=41 — 0. Hence, we obtain Claim 2.
Using Claim 1 and the second statement of Lemma C5, we deduce that

sup B [n?/?h"*~V2Dy, ] < C1Q(B,) sup sup \/EH\/_VM )|*

Pep (2.7)eS PEP
2p—2 2p-2
x|/ E Hv nhiz, . () H +E H Vnhizy . (x)
S CQQ(BTL)v

for C,Cy > 0. Similarly, we can see that

sup E [np/th(p_l)/QD%} = O(n Y2h™%) = o(1),

PeP
using Claim 2 and the second statement of Lemma C5. Thus, we obtain Step 1.
Proof of Step 2: We can follow the proof of Lemma C6 to show that

E {hd/z /Bn (AAyp(\/WZN,T(l')) - E [AA,p(WZN,T(x))]) dQ(ﬂf,T)} 2

/// /C’nﬂ,TQ,A,A/(x,u)dudazdﬁdTQ+0(1),
TJIT Bn,TlmBn,Tz u
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where C, -, r,.4,4/(x,u) is defined in (C.14) and o(1) is uniform over P € P. Now, observe
that

sup  supsup sup |Chry .44/ (T, u)|
(11,72)ET XT u€U zEX PEP

< sup supsupsup JEHWS’M@,u)H?pEHW%%%,m (,)|[2 < oc.
(11,m2)€T XT ueld zeX PP

Therefore,
E Hh—d/2/ (AA,p(\/WzN,T(:E)) ~E [AA,p(WZN,T(w))D dQ(x, 7) ]
By
< \// / / / Cn,n,TQ,A,A/ (.Z', u)da:dudTldTZ + 0(1)
TJTJU B""Flan,TQ
<

C //// drxdudrydry + o(1),
T JT JU J Bp,ryNBp,ry

for some C' > 0. Now, observe that

/// d:L‘dTldTgS/dTg- // dxdr | < CQ(B,),
T J7 JBor "By T T J By

because T is a bounded set. Thus the proof of Step 2 is completed. 1

The next lemma shows the joint asymptotic normality of a Poissonized version of a nor-
malized test statistic and a Poisson random variable. Using this result, we can apply the
de-Poissonization lemma in Lemma C3. To define a Poissonized version of a normalized test
statistic, we introduce some notation.

Let C C R? be a compact set such that C does not depend on P € P and ap = P{X €
RY\C} satisfies that 0 < infpep ap < suppep ap < 1. Existence of such C is assumed in
Assumption A6(ii). For ¢, — oo, we let By, 4(c,;C) = By oa(c,) N (C x T), where we recall
the definition of B, a(¢,,) = By a(cn, ¢n). (See the definition of By, 4(¢p 1, ¢n2) before Lemma
1.) Define

Cn,A

/ Aa,(Vnhiz, (x))dQ(x, ), and
Bn,A(Cmc)

Cha = / A p(Vithizy o (2))dQ(x, 7).
By, a(cniC)
Let p4’s be real numbers indexed by A € NV, and define

o2(C) = Z Z papiarcn aa(Bna(cn;C), By a(cn:C)),

AeENy A'eN;y
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where we recall the definition of ¢, 4 4/(-, ) prior to Lemma C6. Define

S, = h~? Z pa{lna—ECna}.

AENJ
Also define
1 N
U, = — HX,eCt—nP{X,€C};, and
\/ﬁ{g; { } { }}
1 N
Vi, = —) X, eRACH-nP{X; e RN\C} ¢
Vi i=1
Let

=[]

L@ VI—ap
The following lemma establishes the joint convergence of H,. In doing so, we need to be
careful in dealing with uniformity in P € P, and potential degeneracy of the normalized test
statistic .S,,.

Lemma C8. Suppose that the conditions of Lemma C6 hold and that ¢, — oo as n — oo.
(1) If liminf, . inf pep 02(C) > 0, then

sup sup |P{H, <t} — P{Z <t}| =0,
PeP teR?

where Z ~ N(0, I5).
(i) If limsup,, .. 02(C) = 0, then for each (t1,t3) € R?,
Un
— < tQ} — 1{0 < tl}P{Zl < tz} — 0,
1 ap

P {Sn <t and

where Zy ~ N(0,1).

Remark 5. The joint convergence result is divided into two separate results. The first case
is a situation where S,, is asymptotically nondegenerate uniformly in P € P. The second

case deals with a situation where S,, is asymptotically degenerate for some P € P.

Proof of Lemma C8. (i) Define € > 0 and let

Sn,é Un i
O'n7§<C)’ \/1—OéP ’

where S, = is equal to S, except that (x 4 is replaced by

H,:= [

Cnas = / Aoay (V- (3 m))dQ (e, 7),
By, A(cn;C)
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and zy . (x; 1) is as defined prior to Lemma C6, and 0, =(C) is ¢,,(C) except that ,, -, ., (2, u)

is replaced by X, 7, m.2(2,u). Also let
C,=EH,H, and C,:=EH,:H, .

First, we show the following statements.
Step 1: For some C' > 0, suppcp |[Cov(S, c — Sn, Up)| < C/E, for each fixed & > 0.
Step 2: suppcp |Cov(S,z, Uy)| = o(h¥?), as n — oo.

Step 3: There exists ¢ > 0 such that from some large n on,

inf A\pin(Ch) > c.
PeP

Step 4: As n — oo,

sup sup | P {C,'?H, <t} — P{Z <t}| — 0.
PeP teR?

From Steps 1-3, we find that suppcp ||Cr, — I2|| = 0, as n — oo and as € — 0. By Step 4,

we obtain (i) of Lemma C8.

Proof of Step 1: Observe that from an inequality similar to (C.26) in the proof of Lemma
CT,

p—1
Gne = Cual <Climll [ |Vabas, (o) da,m).
Bn,A(CmC)

Using the fact that S is compact and does not depend on P € P, for some constants
C1,C5y, C5 > 0 that do not depend on P € P,

E|C(vae—Cval® < CE[|Im]]*] - /

Bn,A(Cn§

< Oy - / E ’ \/nhdzN,T(x)‘
Bn,A(CrﬁC)

by the independence between 7, and {zy .(z) : (z,7) € S}, and by the second statement of
Lemma C5. From the fact that

2p—2

dQ(x,T)

E H Vnhizy ,(x)
)

2p—2

dQ(iL’, T) S 0357

sup BUZ < sup(1 — ap) < 1,
PeP PeP

we obtain the desired result.

Proof of Step 2: Let ¥y, .- be the covariance matrix of [(gn(z) + m)",Uy,]", where
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U, = Un,/v/P{X € C}. We can write X, - as

En,rﬂ'(x7 0) + 5_]{ E[(qnﬂ'(x) + 7]1>ﬁn]
E[(¢nr(x) +m) Uyl 1

[ S VI=EE@0G] | e o], .
B \/1—§E[ql7(:c)[7n] 1-¢ 0" ¢ e

where

. 0 (1 — T =2)Elgn,(2)U,]
T (1=vT=9) E[er(f)ﬁn] 0

The first matrix on the right hand side is certainly positive semidefinite. Note that
Na [l w L S A
q?%'ﬁ (l‘), U’ﬂ) = = qn T ($)7 = Un )
(0 ¢ (G a0 53
(k) 7 (k)

where (g, ;(x),Un")’s with k = 1,- - -, n are ii.d. copies of (¢nr;(x),U,), where

0, ﬁ{ > 1{Xiec}—P{Xiec}},

where N is the Poisson random variable with mean 1 that is involved in the definition of
qn,rj(x). Hence as for A, ;(x), note that for Cy,Cy > 0,

< swpswp [B[gf), (2)0] |
(z,7)ES PEP Y

(C.32) sup sup |E [qnmj(x)ffn}
(x,7)eS PEP

E n,T,j
< ap sup Blonss@l]
(z,r)es PeP /P{X; € C}
Cyh? SUP (z,7)es SUPpep Knr,j1

< C,hY?,
< o) <G

We conclude that
sup_sup || Ay (2)]| = O(%2).

(z,7)€S PEP

Therefore, from some large n on,

' . . ' N> E/9
(C 33) (a:B—l)ES Iyelfp Amin (2271,7—,5) = E/2
Let
W (i) = 552 | Brl@)
n, 7\ — “2n,7,E 7
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Similarly as in (C.22), we find that for some C' > 0, from some large n on,

sup sup E ||, (z;m)]|°

(z,7)eS PEP
< C swp_sup N2 (35 0) sup sup {E [llgns(2) +mll*] + E[10,8] }
(z,7)€S PEP (z,7)€S PEP

g\ —3/2 , .
< 0(5)  sw_sup {E[llgns () + ml] + E[10.) }
(z,7)eS PEP

where the last inequality uses (C.33). As for the last expectation, note that by Rosenthal’s
inequality, we have

sup sup E [\Unl‘g] <C
(z,r)€S PEP

for some C' > 0. We apply the first statement of Lemma C5 to conclude that

sup sup B ||[W,,(z;m)|* < C&73/2n/2
(z,7)€S PEP

for some C' > 0. For any vector v = [v{,v5]" € R7*!, we define

Dyrp(v) = Aay ([257/127 év] ) [257/127 év] )
SR bt T ]

where [a]; of a vector a € R7™! indicates the vector of the first J entries of a, and [a]y the
last entry of a. By Theorem 1 of Sweeting (1977), we find that (with & > 0 fixed)

1 =
Dy (—HZWTSM;m))

where Z ;1 ~ N(0,I;41) and Wffl(x, m)’s arei.i.d. copiesof W, .(x;m;). Since O(n~Y/2h=42) =
o(h%/?) (by the condition that n=/2h=4"" — 0, as n — 00),

Cov (AA,p (WZN,T@; 771)> 7Un> =E |Dnqp ( Z W(Z) )

Noting that E[D,, ;, (Z;+1)] = 0, we conclude that

=E [Dnﬂ',p (ZJ—H)] + O(n_l/zh_d/2)>

+ o(h¥?).

sup sup |Cov <AA7p <\/WZN7T($;771)) ,Un> = o(hd/z).

(z,7)eS PEP

By applying the Dominated Convergence Theorem, we obtain Step 2.

Proof of Step 3: First, we show that

(C.34) Var (S,) = a2(C) + o(1),
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where o(1) is an asymptotically negligible term uniformly over P € P. Note that

Var (S,) = Z Z papeaCov(tn a, tn ar),

AGNJ A’GNJ
where 1, 4 = h™%?(Cy.a — ECy.a). By Lemma C6, we find that for A, A’ € N,
COU(%,A, 77Z)n,z4’) = gn,A,A’(Bn,A(Cn; C), Bn,A’(Cn; C)) + 0<1)7

uniformly in P € P, yielding the desired result.
Combining Steps 1 and 2, we deduce that

(C.35) sup |Cov(S,,, U,)| < CVE + o(h?).

pep

Let 62 = infpep 02(C) and 75 = infpep(1 — ap). Note that for some C; > 0,
e 2.9
(C.36) }grelg; aia5 > Cf,

by the condition of the lemma. A simple calculation gives us

0y

2 ~2
(©31) An(Ca) = P57 = 5 (Vflot + o - a{ates - Cou(s,, U)

2

>

{ (52 4 62) — (\/(a% +a2)° — 4a§ag) } — |Cov(S,, Uy,)|
> 5153 — |Cov(S,, Uy)| > C1 — CVE + o(h¥/?),

DO | —

where the last inequality follows by (C.35) and (C.36). Taking & small enough, we obtain
the desired result.

Proof of Step 4: Suppose that liminf, .. infpep 02(C) > 0. Let x be the diameter of
the compact set Iy introduced in Assumption A2. Let C be given as in the lemma. Let
Z% be the set of d-tuples of integers, and let {R,; : i € Z%} be the collection of rectangles
in R? such that R,; = [@ni,,bni] X =+ X[@ni,, bni,), where i; is the j-th entry of i, and
ht < bni; — ang; < 20k, for all j =1,---,d, and two different rectangles R, ; and R, j do
not have intersection with nonempty interior, and the union of the rectangles R, ;, i € Z¢,
cover X, from some sufficiently large n on, where Z¢ be the set of d-tuples of integers whose
absolute values less than or equal to n.
We let

Bpaz(cn) = {7€T:(x,7) € Balcn)},
Bn,i = aniﬂC,

and Z,, = {i € Z¢ : B,; # @}. Then B, ; has Lebesgue measure m(B, ;) bounded by Ch?

and the cardinality of the set Z, is bounded by Cyh~? for some positive constants C; and
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(5. Now let us define
Apai=h" d/2/ / AAp Vnhizy  (x)) —E |[Aa,(V nhdzN,T(x))] } drdzx.
nA:v(Cn

And also define BmA,i(cn) = (Bni x T) N By alcy),

o ZAeNJ MAAN,AJ d
Oényi = an

Un(C)

N
1
Uni 7 {Z 1{X; € B,;} —nP{X, € Bn,i}} :

=1

Then, we can write

Zam and U, —Zum

i€Z, i€z,
By the definition of Ky in Assumptlon A2, by the definition of R, ; and by the properties

of Poisson processes, one can see that the array {(a, i, un;) biez, is an array of 1-dependent
random field. (See Mason and Polonik (2009) for details.) For any ¢i,¢2 € R, let y,; =
Q104 + @2uy ;. The focus is on the convergence in distribution of ZieIn Yn,i uniform over
P € P. Without loss of generality, we choose ¢1,¢2 € R\{0}. Define

Varp <Z yn) =qi + (1 — ap) + 2014260

i€eZ,

uniformly over P € P, where ¢, p = Cov(S,, U,). On the other hand, using Lemma C4 and
following the proof of Lemma A8 of Lee, Song, and Whang (2013), we deduce that

(C.38) sup Z Elyni|" = o(1)

PeP . ieT,

as n — oo, for any r € (2,(2p + 2)/p]. By Theorem 1 of Shergin (1993), we have

sup sup
PEP teR

)
1
P ym <t
\/(h + @3 (1 — ap) + 2q1q2¢n p iz,

< S Elyl’ } — o(1).

i 2 /2
pPep {ql + Q2(1 - aP) + 2Q1Q2cn,P} icZ,
for some C' > 0, by (C.38). Therefore, by Lemma C2(i), we have for each ¢ € R, and each

q € R*\{0}, as n — oo,
t2
—exp (-2 )| =0
exp < 2) S

sup |E

Pep

- q'H,
exp | tt——
V" Cug
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Thus by Lemma C2(ii), for each t € R?, we have

sup |P{C,"?H, <t} — P{Z < t}| — 0.
PeP

Since the limit distribution of C "/ °H,, is continuous, the convergence above is uniform in
t € R

(i) We fix P € P such that limsup,,_,»c2(C) = 0. Then by (C.34) above,
Var (S,) = d2(C) +o(1) = o(1).

Hence, we find that S,, = op(1). The desired result follows by applying Theorem 1 of Shergin
(1993) to the sum U, = ) ;.7 unj, and then applying Lemma C2(ii). n

Lemma C9. Let C be the Borel set in Lemma C8.
(i) Suppose that the conditions of Lemma C8(i) are satisfied. Then for each t € R, as

n — 00,

sup sup
PEP teR

o, (C)
(ii) Suppose that the conditions of Lemma C8(ii) are satisfied. Then as n — oo,

h_d/2 Z A {Cn,A — ECN,A} ﬁ) 0.
AeN;

P {h/ S acn #a (s = Bl _ t} -

Note that in both statements, the location normalization has E(y 4 instead of E(, 4.

Proof of Lemma C9. (i) The conditional distribution of S, /0,,(C) given N = n is equal to
that of

S aens 1 f, senore {AA7P(\/n_hdzn7T(x)) _ EAA7P(\/n_hdzN7T(J:))} dQ(x, )
hi/2¢,,(C)
Using Lemmas C3(i) and C8(i), we find that

W23 aen, Ha{Cna —Elnva} 4
() — N(0,1).

Since the limit distribution N(0,1) is continuous and the convergence is uniform in P € P,

we obtain the desired result.
(i) Similarly as before, the result follows from Lemmas C3(ii), C2(ii), and C8(ii). B

APPENDIX D. PROOFS OF AUXILIARY RESULTS FOR LEMMAS A2(11), LEMMA A4(11),
AND THEOREM 1

The auxiliary results in this section are mostly bootstrap versions of the results in Appen-

dix C. To facilitate comparison, we name the first lemma to be Lemma D3, which is used
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to control the discrepancy between the sample version of the scale normalizer o,, and its
population version. Then we proceed to prove Lemmas D4-D9 which run in parallel with
Lemmas C4-C9 as their bootstrap counterparts. We finish this subsection with Lemmas
D10-D12 which are crucial for dealing with the bootstrap test statistic’s location normal-
ization. More specifically, Lemmas D10 and D11 are auxiliary moment bound results that
are used for proving Lemma D12. Lemma D12 essentially delivers the result of Lemma Al
in Appendix A. This lemma is used to deal with the discrepancy between the population
location normalizer and the sample location normalizer. Controlling this discrepancy to the
rate op(h%/?) is crucial for our purpose, because our bootstrap test statistic does not involve
the sample version of the location normalizer a, for computational reasons. Lemmas D10
and D11 provide necessary moment bounds to achieve this convergence rate.

The random variables N and N; represent Poisson random variables with mean n and
1 respectively. These random variables are independent of ((V;*7,X;7)%2,, (Y7, X,1)%2,).
Let 7, and 7y be centered normal random vectors that are independent of each other and
independent of

(T, X7, (VL X)EL, NN

We will specify their covariance matrices in the proofs below. Throughout the proofs, the

bootstrap distribution P* and expectations E* are viewed as the distribution of

((Y*vX'*)?:lv N7 N17771>772) 5

K3 3

conditional on (Y;, X;) .

Define
_ 1., L XP—z L X —x
pn,n,w,j,k(x? U) = EE [Bn,m,n,j ( ij T) ﬂn,x,‘rg,k (Y;ka h + U>:| and
7 1 * * Xl* - "
kn,T,j,m(x) = WE |: 5n,:r:,7',j (Y;p T) :| .

Note that py, 1, k(2 u) and l%n”m(x) are bootstrap versions of py, 1, , jx (2, u) and /~€n7m-,m (x).
The lemma below establishes that the bootstrap version p, ;, - jx(®,u) is consistent for

pn,T1,72J7k<x7 u)

Lemma D3. Suppose that Assumption A6(i) holds and that n='/?h=%% — 0, as n — oco.
Then for each € € (0,e1), with &1 > 0 as in Assumption A6(i), as n — oo,

~ 2
sup sup sup E (|,0n,71,72,j,k(17 u) - pnm,md}k(x? u)| ) — 0.
(11,72)ETXT (2,u)€(Sr, (€)USr, (¢))xU PEP
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Proof of Lemma D3. Define 7, 4 ury .7 (Y, 2) = Brwr.j(Yjs (2—2) /1) Brzro ks (Yks (2 —2) /h41u)
for y = (y1,- - ',yJ)T € R/, and write

_ 1 O
pn,ﬁ,-rz,j,k: (I, U) - pn,Tl,Tg,j,k<x7 U) = W Z {Wn,:r,u,Tl,TQ (}/:M Xz) - E [ﬂ-n,:p,u,n,rz (Y:La X@)]} .
i=1

First, we note that

2
1 n
E <% Z {ﬂ-n@,u,n,m (}/7,7 Xz) - E [Wn,x,u,ﬁ,m (}/zy Xz)]}) S E [77-72%;57%7—177—2 (3/7,7 XZ)] .
i=1

By change of variables and Assumption A6(i), we have E [x2  _ (V;, X;)] = O(h?) uni-
formly over (11, 7) € T x T, (z,u) € (S,,(¢) US,,(¢)) x U and over P € P. Hence

E (|ﬁn,’rl,7'2,j,k(xa U) - pn,Tl,Tg,j,k<x7 u)|2) =0 (n_lh_d) )

uniformly over (11, 72) € T x T, (z,u) € (S;,(e) US,,(¢)) x U and over P € P. Since we
have assumed that n=/2h=%2 — (0 as n — 0o, we obtain the desired result. §

Lemma D4. Suppose that Assumption A6(i) holds and that for some C > 0,
limsup,_,. .n~Y*h~Y? < C.

Then for all m € [2, M] and all € € (0,e1), with M > 0 and €, > 0 being the constants that
appear in Assumption A6(i)), there exists Cy € (0,00) that does not depend on n such that
for each j € Ny,

sup supE [k’Q (x )] < (.

n,T.3,m
TET x€Ss(e) PEP

Proof of Lemma D4. Since B*[| By 7 (Y, (X7 =) /W)™ = £ 30 |Brars (Yij, (Xi—2) /1)
we find that

7.2 2 2
knTj m( ) < 2kn7’jm( ) + 2€n,r,j,m(x>7

Bn,z;r,j (Y;ja T) - EE ( ﬁTLij ( 77 T)
=1

1 n
i 2
Similarly as in the proof of Lemma D3, we note that

where

enﬂ-’j’m (l’) =

)|
sup  supE[|e} .. (2)]]

TET x€S- () PEP
X,L' — X
ﬁn.Z‘Tj ( ij T)

Hence the desired statement follows from Lemma C4. g

2m

1
< sup  sup

= O 'h™) = o(1), as n — oo.
T€T,2€S- () PEP nh2d ( ) ( )
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Let

Z'I’L,’T(x) — W;BWLT (}/7, ) h ) - WE |:ﬂn,ar,7' (Yz ) h ):| 5 and
1 & X~z 1 X~z

Z}‘V’T(x) = W izlﬁnm_r (Yz*7 zh ) _ WE* lﬁn,r7T <YZ*’ zh ):| .

We also let

* 1 * * * * *

qn,T(x) = \/__d Z {Bner (V7 (XJ — ) /h) — E* B0 - (Y], (X] — ) /h)} and
h i<N1

— 1 * * * * *

qn,T(x) = W {Bn,:cT(Y; (X[ —x)/h) - E ﬁn,w,T(Yi (XT—x)/h)}.

Lemma D5. Suppose that Assumption A6(i) holds and that for some C > 0,
limsup, . .n~Y*h~Y? < C.

Then for any m € [2, M] (with M being the constant M in Assumption A6(i)),

(0.1 o sup 1B [(8* [l D"])7] < R0, ana
(z,7)€S PEP '

sup sup \/E [(E* [||cj,§T(x)||m])2} < Coph®=m/2)

(z,7)eS PEP
where Cy,Cy > 0 are constants that depend only on m. If furthermore,

lim sup n~ (/2 Hpd=m/2) o ¢

n—oo

for some constant C' > 0, then

02 sw swB [E [IVaids, "] < (o) max (G20}, and

(z,7)eS PEP 10g m

sup supE [E* [HWZZT(:C)H’”H < ( Lom )mmax{Cg,QCgC},

(x,7)eXe/2xT PEP logm

where C1,Cy > 0 are the constants that appear in (D.1).

Proof of Lemma D5. Let q;, . ;(z) be the j-th entry of g;; (). For the first statement of the
lemma, it suffices to observe that for each € € (0,¢;), there exist C; > 0 and C; > 0 such
that
; .
C'1 th Zj:l SupTGT,;EEST(a) Sup pep E [kz,r,j,m (‘T):|

* * m1)2 ~ —(m
sup E [(E [an”(x)| D ] < o < R0~ /2))’
TET €S- (¢)

where the last inequality uses Lemma D4. The second inequality in (D.1) follows similarly.
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Let us consider (D.2). Let 2y (z) be the j-th entry of z} (). Then using Rosenthal’s
inequality (e.g. (2.3) of Giné, Mason, and Zaitsev (2003)), for some constant C; > 0,

sup sup B [E|Vahiz,, (2)"]

T€T, xS, () PEP

15m 2m % [ %2 m/2 (m/2)+ 1| .
(o) s sun { (B[ (a2 @) + B [ Bl ()]

The first expectation is bounded by C; by (D.1).
The second expectation is bounded by Cyn~(m/2+1pd(1=(m/2) " Thig gives the first bound
in (D.2). The second bound in (D.2) can be obtained similarly. §

For any Borel sets B, B’ C § and A, A" C Ny, let

Gran(B,B) = / / / / A (T, v)drdudTdTy,
B,

where B, = {x € X : (z,7) € B},

(D.3) o (,0) = 000" (M (Vihzsy (), Mo o (Viihziy 1, (0)))
and C'ov* represents covariance under P*. We also define

(D.4) Gna(B) =6, 44(B,B),

for brevity. Also, let >*
P gk (T, w). Fix & > 0 and define

u) be a J x J matrix whose (j,k)-th entry is given by

n,Ti, T2( ?

S (2,0) + &1 (T, 1)

Brnme(® u)z[ o
o E717'1 Tg(x7u) En7_2 7.2(1', 0)+€IJ

We also define

N S Tigwr—1/2 zy - (z5m)
6N77—177—2 (l" w; M, 772) - nhdzn,Tl,/Tz,E(xa U) % N,y )
ZN,Tz (.’L’ + Uh; 772)

where 7, € R” and 7, € R’ are random vectors that are independent, and independent of
(Y7, X)), (Y, Xi)2y, N, Ny), each following N(0,£1;), and define z}y_ (v;m) = zy () +

(2

7]1/\/W.

Lemma D6. Suppose that Assumption A6(i) holds and that nh® — oo, and
limsup,,_, n~ "/ HLpdA=0m/2) o

for some C' > 0 and some m € [2(p+ 1), M].
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Then for any sequences of Borel sets B, B!, C S and for any A, A" C Ny,

S B (|(554.00(Bus B))" = 02 v (Ba B)
PeP

where o3 4 4(Bn, By,) is as defined in (C.15).

>—>0,

Proof of Lemma D6. The proof is very similar to that of Lemma C6. For brevity, we sketch
the proof here. Define for £ > 0,

nAA, A(Bn,B)) = /T//B /M§1n,71,7275($,u)le,Bn(x)sz,B;L(m—i—uh)dudmdﬁdTQ,

T z(Bn, B)) /// /g}gn,ﬁﬂﬁ(:c,u)le,Bn(x)me;I(:v—l—uh)dudxdnda,
7J7 B0y Ju

where
Ginmme(z,u) = hCov* (Aa,(Vnhizy . (2;m)), A p(Vnhizy , (x 4+ uh; 1)), and
§2n,7177275(‘r7 u) = COU*(AA,ID(ZH,TLTL&_(I))? AACP(ZH,TLW,E_('T + U’h» )

and [Zl 2 (T), Z;n e(2)]" 1s a centered normal R*/-valued random vector with the same
covariance matrix as the covariance matrix of [vnhiz?] (@), \/WZ”[VTT2 (2;m2)] " under the
product measure of the bootstrap distribution P* and the distribution of (n],7,)". As in
the proof of Lemma C6, it suffices for the lemma to show the following two statements.
(Step 1): As n — oo,

Sup E (|5-§,A,A’,5(Bm B;L) - 7~—n,xﬁl,A’,é(Bna B’:L)D — 0, and
PeP

sup E (|7~—n,A,A’,a‘(Bna B;) — O'nVA’A/ﬂg(Brm B:Z)D — 0.
pPepP

(Step 2): For some C' > 0 that does not depend on ¢ or n,
sup |UnAA’ (Bn, B,) — 65,A,A’<Bna B,)| < CVE.
PeP
Then the desired result follows by sending n — oo and € | 0, while chaining Steps 1 and 2

and the second convergence in Step 2 in the proof of Lemma C6.

We first focus on the first statement of (Step 1). For any vector v = [v{,vy]T € R* we
define
(D-5) Cup(¥) = Ay ([Z0E o] ) Ay ([E00 s c@iw)v] ).

where [a]; of a vector a € R* indicates the vector of the first J entries of a, and [a], the

vector of the remaining J entries of a. Also, similarly as in (C.19),

(D.6) Aunin (i; e, u)) > ¢
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Let @, .(x;m) be the column vector of entries g, . ;(z;n1;) with j running in the set Ny,
and with
qzvﬂj ([E, 771]') = pz,r,j(a’;) + My,

where

p”v—h—z{ﬁ<T> B [suars (1757 |

m; is the j-th entry of 7y, and V; is a Poisson random variable with mean 1 and ((71;);e4, N1)
is independent of {(Y;", X;,", Y;*T Xx")}* . Let | nf)l( ) pn(%(x + uh)] be the i.i.d. copies
of [p;, ., (x), P} ., (¥ + uh)] conditional on the observations {(Y;, X;)},, and nf) and néi) be

i.i.d. copies of n; and ny. Define
G () = i (@) + 0t and g0 (@ + uhinf”) = pild) (z + uh) + g,
Note that

L i Qn(;')l (25 775 )) Z pn T1
vn 1 qn(;)z (2 + uh; 772 pn 7'2 (z + Uh

1=

n (2)
1 T
\/ﬁ;[né)

The last sum has the same distribution as [ ,7, ]" and the leading sum on the right-hand

side has the same bootstrap distribution as that of [z}, (), 2z}, (z+uh)]", P-a.e. Therefore,
we conclude that

. i 1 " (i i %
fN,n,m(m u; ng)’né)) \/_Z 75}1,72(95,21;77%),77&)),

where £ indicates the distributional equivalence with respect to the product measure of the

bootstrap distribution P* and the joint distribution of (77{”, néi)) P-a.e, and

(4) (4)
WD (g gl =S (2 an (v3m7) _
nTl,TQ( 77]_ 772 ) ,T1, 2,6( ) q’r(L)(m + 'LLh 772 )
Following the arguments in the proof of Lemma C6, we find that for each u € U, and for

e € (0,e1) with ;1 as in Assumption A6(i),

swp s B (B, o (o, s n”)|F]
(2,u)€(Sr, USry ) xU PEP

< G s sE | (S ) B (@)l
(2,u)E(Sry (6)USry (e))xU PEP
+C sup sup B | Ny, (50272 oo, 0) ) Bl (o 4 whis )

(2,u)E(Sry (6)USry (€))xU PEP
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for some C; > 0. As for the leading term,

s swpE [\, (S0 (e 0) Bl ()l
(z,u)E(Sr; (6)USr, (e))xU PEP

< sup sup\/ {(E*Ilqnn(rc m)If? ) }
(2,u)E(Sr) (6)USry (€)) xU PEP

X sup sup \/E [)\?nm (EZ 71/722 (z, u))} <
(z,u)E(Sr; (6)USry (e))xU PEP

by Lemma D5 and (D.6). Similarly, we observe that
025_3
ViE

s s E [N, (S (e 0) Bl (@4 uhinf)1P] <
(x,u)E(Sr) (6)USr,y (€)) xU PEP

Define
s [ 1 @ 0
cn771ﬂ'2(x’u) =Cnp <_Z r(qu)- T (z,uym” i my”) | -
\/ﬁ — 1,72

Let @y, 7, 7, (-2, u) be the joint CDF of the random vector (Z! . .. (), Z} . . (x +uh))".
By Theorem 1 of Sweeting (1977),

(.7 B o) = [ CoplOd0n (G
(©,u)E(Sr, (£)USry (e)) xU PEP

Ch (i) C2§_3

sup sup E [E* WST (T u; '\ ] :

NG (,u)€(Sr, (€)USr (£)) xU PEP I b o)l nhe

Hence

E

/ / {gln,ﬁ,Tz,é(xv u) - §2n771,7'2,5(1" u)} wTLB(x)wD,B’ (x + Uh>dde
B, Ju

|

é / / E |§1n,7’1,7'2,5(xa ’LL) - §2n,7'1,7'2,§(x7 U)‘ wn,B(x)wTQ,B/<x + Uh>dU,d£E
By

< / Wry B(T)Wr,, pr () d
Br,
X sup sup E |§1n,71,T2,é(xv u) — §2nm,m,5($a )|
(z,u)E(Sry (6)USr, (e))xU PEP
— 0,

as n — oo. The last convergence is due to (D.7) and hence uniform over (7, 7) € T x T.
The proof of (Step 1) is thus complete.

We turn to the second statement of (Step 1). Similarly as in the proof of Step 1 in the
proof of Lemma C6, the second statement of Step 1 follows by Lemma DA4.
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Now we turn to (Step 2). In view of the proof of Step 2 in the proof of Lemma C6, it
suffices to show that with s = (p+1)/(p—1)ifp>1land s=2ifp=1,

2s(p—1)
(D.8) sup supE [E* H\/nhdz}‘\”(as) } < (C and
T€T,2€8; () PEP ’
2s(p—1)
sup supE {E* “VnhdzfvT(x;nl) } < C,
TET,2ES- () PEP ’

for some C' > 0. First note that for any ¢ > 0,

sup supE [E* anhd{z}‘w(:ﬁ) —zy ., (v;m)}
T7€T,x€S- () PEP 7 ’

~ B|vaz|” = c=

i

where Z € R’ is a centered normal random vector with covariance matrix ;. Also, we

deduce that for some constants C,Cs > 0,

2s(p—1)
sup supE {E* H Vnhizy () }
T€T,x€S-(e) PEP ’

< sup supE {E HV nhizy . (x;m) +Ci@P N < O+ G,

T€T, €S- (e) PEP

28(17—1)}

by the third statement of Lemma D5. This leads to the first and second statements of (D.8).

Thus the proof of the lemma is complete. &

Lemma D7. Suppose that for some small vy > 0, n=Y/2h=4"" — o0, as n — oo and the

conditions of Lemma C6 hold. Then there exists C' > 0 such that for any sequence of Borel

Proof of Lemma D7. We follow the proof of Lemma C7 and show that for some C' > 0, we
have the following:
Step 1: suppcp E <E* [
CQ(B,).

Step 2:

sets B, C S, and A C Ny, from some large n on,
sup E (E [ h? / {Map(Vrbitz; (@) = B7 [Aa,(Vihtas, (2))] } dQ(z, 7)
PeP o
< CVQ(By).

B2 [y, AN (Viha, () = Ay (Vihtas, () } Q. 7] ) <

)

sup B (7 |[102 [ {Map(Vata () = Ay (Vi (2)} 4@, )

pPepP

< CVQ(By).
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Proof of Step 1: Similarly as in the proof of Step 1 in the proof of Lemma C7, we first

write
z, . (v) =z . (z) + v, (¥) + 5, (),
where
— N 1 X* —
V:L,T(x) - (n n ) : WE* [BH,I,T <Y;,*7 Zh 'I):| and
S?’L,T(x) = W Z {Bn,x,‘r (1/7, ) h ) - E |:ﬁn,x,’r (}/z ) h ):| } .

i=N+1

Similarly as in the proof of Lemma C7, we deduce that for some C7, Cy > 0,

‘ /B ) {Aay (2, (2)) — Aay (2. (2)) } dQ(z, 7)

< 0 [ i@l (@ k@) dotar)
+Cy /Bn sy (2] <| z;,T(a;)prl + | z’fw(g;)HP*l) dQ(x,7)

= Dj, + D;,, say.

To deal with Dj, and D3, , we first show the following:
CLAIM 1: sup(,.ycs 5P pep B (B[|IVi, (2)|P]) = O(n).
CLAIM 2: sup, ;s Suppep E (E*[|[s) (2)[[°]) = O(n=32p~d).

ProOOF OF CLAIM 1: Similarly as in the proof of Lemma C7, we note that

STl % n—N 1, L XF—x
B (& (v, 0l < B (") B || [ (v 22
By the first statement of Lemma D5, we have

n
1 X* — 2\ 17
_E* Y* 7
'hd [5( . )]

Since E |(n — N)/n|> = O(n™"), we obtain Claim 1.

2

E

i

sup sup E = O(1).

(z,7)€eS PEP

Proor or CrLAIM 2: Let

Sn,T(‘T’ 771) = Sn,’r(x) + W’
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where 7, is a random vector independent of ((Y;*, X)), (Y;, X;)?,, N) and follows N (0,1;).
Note that

sup sup E (E HWSZJ(I)W)

(z,7)€S PEP

vinhts, - (x;m)

< 2 sup supE(E*

2 2 (N —n)m 2
L+ B || —
(z,7)ES PEP ) n H

NG

2 Ce?
< 2 sup supE (E* H\/nhdSZT(:B;m)H )—1——,
’ n

"~ (2,7)eS PEP

as in the proof of Lemma C7. As for the leading expectation on the right hand side of (C.27),
we let C; > 0 be as in Lemma D4 and note that

E(E 2) = Y E E*(\/_Zq,mwmj )2

JjENy 1=N+1

vnhts, - (x;m)

nowG) g (DY 2
~ qn‘r '('177771')
fd —_ E O-T?LT I‘ * % ,

o
]eN] i=N+1 T

where qn(T)(x 77§ )) (i=1,2,---) are as defined in the proof of Lemma D6 and ¢, T](x 778)

is the j-th entry of ;¥ (; 775 ) and &7 i (z) = Var* (qnm(x 77%})) > 0 and Var* denotes the

variance with respect to the joint distribution of ((Y;*, X)) |, 77§ j)) conditional on (Y;, X;) ;.

We apply Lemma 1(i) of Horvath (1991) to deduce that

¢ (|

On,rj ()

n *(i)' . (i,) 2
o9 E ( S M) PR

i=Ny1  Ommi (2)

¢ (|’

+CE”
T, ()

for some C' > 0. Using this, Lemma D5, and following arguments similarly as in (C.29),
(C.30) and (C.31), we conclude that

sup sup E (E* Vnhis; (r)

(z,7)ES PEP

2> < O W) + 0 (V2 4 n AR g )

= 0 (n_lh_”l) +0 (n_1/2) ,

since n~Y/2h=%1 — (. This delivers Claim 2.
Using Claims 1 and 2, and following the arguments in the proof of Lemma C7, we obtain
(Step 1).
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Proof of Step 2: We can follow the proof of Lemma C6 to show that

B 10 [ (Vi o) - B [ ()] a0 |

= E / / / / ;,T17T2,A7A/(I7 u)dudl’dTldTQ
L T T Bn,‘rl r‘ann—Z U

< C/ // dxdrdr +o(1) < CQ(B,),
T JT J Bn,ryNBn,ry
where Cy; 4 a(7,0) is as defined in (D.3). We obtain the desired result of Step 2. i

+o(1)

Let C C R4, ap = P{X € RU\C} and B, a(c,;C) be as introduced prior to Lemma C8.
Define

Ga = [ gVl (0)dQG. 7). and
By, a(cniC)

CN,A

[ May(Valia (0)dQe.7),
BmA(Cn;C)

Let 114’s be real numbers indexed by A C N;. We also define B,, 4(c,;C) as prior to Lemma
C8 and let

Spo= Y pa{Cia—ECGial

AcN;

N
1
u:. = — WX eC}—nP{X €C};, and
ﬁ{;{ } { }}
1 N
Vi = — X e RINC} —nP* {X; e RI\C} 3.
LS erie - ey
We let
= | Sn U,
"o O'n(C)’\/l—Oép

The following lemma is a bootstrap counterpart of Lemma C8.

Lemma D8. Suppose that the conditions of Lemma D6 hold and that ¢, — 0o, as n — oo.
(1) If liminf, o infpep o2(C) > 0, then for all a > 0,

supP{sup|P*{H:;§t}—P{Z§t}|>a} — 0.

pepP teR?2

(ii) If limsup,,_,. 02(C) = 0, then, for each (t1,t2) € R?* and a > 0,

sup P {
PeP

U*
P ¢S <t d———=<typ —1{0< 1} P{Z, <t
{sicnaa L <ul-1p<upriE<n)

>a}—>0.
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Proof of Lemma D§. Similarly as in the proof of Lemma D8, we fix £ > 0 and let

H _[ Sie Uy ]
"7 0ns(C) VT —ap

where S}, - is equal to S, except that (y 4 is replaced by

Chae = / Ml ), 7).
By, a(cnsC

and zy_(@;m) is as defined prior to Lemma D6. Also let
C,=E"H;H;" and C,- =E*H; _HL.

First, we show the following statements.
Step 1: suppepP {|Cov*(S; . — Si, Uz)| > My/E} — 0, as n — 0o and M — oo.

U*

n,e’ TL)

Step 2: For any a > 0, suppep P {}COU > ahd/Q} — 0, as n — o0.

Step 3: There exists ¢ > 0 such that from some large n on,

inf )\mm(é’n) > c

pPeP

Step 4: For any a > 0, as n — 00,

supP{sup pP* {C’;UZH;’; St} —>P{Z§t}‘ >a} — 0.

PeP teR?

Combining Steps 1-4, we obtain (i) of Lemma C8.

Proof of Step 1: Observe that

CNA‘ < C||7h||/

-1

|Vaizy, @) dQ(, ).

nA Cnc)

As in the proof of Step 1 in the proof of Lemma C8, we deduce that
B ([Ghae - Gual] <02 [ B |[Vahtag, ()
Bn,A(CnSC)
Hence for some C7,Csy > 0,
(D.10) E (E* [|Goae = Gl ])
Vnhizy ()

oof o
Bn,A(Cn;C)

by the second statement of Lemma D5.

2p—2

dQ(z, 7).

2p—

) dQ(z, ) < Cye
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On the other hand, observe that E*U*? < 1. Hence

P{|C’ov*(S:5—S;,U:)| > M\/E} < |Ny| -P{maxE* [ G(,Aa-—CX,A‘Q] > M25}.
: ANy A :

By Chebychev’s inequality, the last probability is bounded by (for some C' > 0 that does not
depend on P € P)
M2 Y B (B [ |Goas — Gral’]) < ov2
AeN;

by (D.10). Hence we obtain the desired result.

Proof of Step 2: Let i;nms— be the covariance matrix of [(g;; (z) +m)", U*]" under P*,
where U* = U*//P{X € C}. Using Lemma D4 and following the same arguments in (C.32),
we find that

sup sup E [E* [q:;”(x)U;” < Cyh®?,
(z,7)eS PEP Y

for some C5 > 0. Therefore, using this result and following the proof of Step 3 in the proof

of Lemma C8, we deduce that (everywhere)
(D.11) Mnin (Shme) 2 8 = |45, @)
for some random matrix Ay, (x) such that

sup sup E [||A; (2)]|] = O(h?).
(z,7)€S PEP

Hence by (D.11),

(D.12) inf inf P {Amm (zzn) > 5/2}
(z,7)eS PEP "
>t P10 < )

1-— z sup sup E [||A: (2)]|]] = 1,
€ (z,7)eS PeP ’

v

as n — 0o.
Now note that

. SR SRR WSV U o
qn‘r(m)?Un> = an-($), Un )
( sTyJ \/ﬁ ; sTsJ \/ﬁ P

(k)*-(:v), U,S’“)*)’s with k =1,-- -, n are i.id. copies of (¢}, (x),U;), and

n7T’] n

ngm{ > 1{X,.*GC}—P*{X;ec}}.

where (g
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Note also that by Rosenthal’s inequality,
limsup,,_,, sup P {E* []U,(Lk)*\?’} > M} — 0,
PeP

as M — oo. Define
qn T( ) + T
U*

n

Wi (a;m) = Spn /2

2n,T,E

Using (D.12) and Lemma D5, and following the same arguments in the proof of Step 2 in
the proof of Lemma C8, we deduce that

limsupn_ﬂx) Sup sup P {E* W;’T(Z‘,nl)”?) > M&_‘73/2h7d/2} — 07

(z,7)eS PEP

as M — oo. For any vector v = [v{,v5]" € R/*! we define
Dnmp(v) = A, ([i;lz/f év] ) [i;lz/f gv] 5
T A P

where [a]; of a vector a € R/T! indicates the vector of the first J entries of a, and [a], the
last entry of a. By Theorem 1 of Sweeting (1977), we find that (with £ > 0 fixed)

n‘rp( ZW(’L 1'771>

where Zj1 ~ N(0,1;41) and anT*(x;m)’s are i.i.d. copies of Wy (z;m:) under P*. Since
O(n—1/2h—d/2) — O(hd/2),
* dr* . *\ _ () *
Cov (AAﬁp <\/nh ZN7T(337771)> ,Un> E* D, p (\/_Z A )
uniformly in P € P, and that E*[D,, ,, (Z41)] = 0, we conclude that
Cov* (AAJ, <\/ nhizy (r; 771)) ,U;)

E* =E [Dnmp (ZJ+1):| + Op(n~Y2n=%2) P-uniformly,

+ OP(hd/Q)

(D.13) sup
(z,7)ES

— Op(hd/z),

uniformly in P € P.
Now for some C' > 0,

P{|Cov(S} ., Uy)

n,e?

> ahd/Q} < P<C sup
(z,7)ES

Cov* (AAP (WZ},T(m;U1)> >U:)

> ahd/Q}.

The last probability vanishes uniformly in P € P by (D.13). By applying the Dominated

Convergence Theorem, we obtain (Step 2).

Proof of Step 3: First, we show that

(D.14) Var* (Sk) = o2(C) + op(1),
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where op(1) is uniform over P € P. Note that

Var (Sp) = > Y papaCov™ (¥ 4,05 ),

AGNJ A’ENJ

where ¢ , = h™2((y 4 — E*(4 4)- By Lemma DG, we find that for A, A € N,

COU*(@DZ,A, ¢Z,A’) = O-”vA»A/(Bn,A(Cn; C), Bn,A’ (Cn; C)) + OP(1)7
uniformly in P € P, yielding the desired result of (D.14).
Combining Steps 1 and 2, we deduce that for some C' > 0,

sup |Cov* (S5, UN)| < VE-Op(1) 4+ op(h?).

Pep
Let 61 = Var*(S:) and 63 = 1 — ap, where ap = P* {X; € R)\C}. Observe that
57 = 0,(C) + 0p(1) > Cy + op(1), P-uniformly,

for some C; > 0 that does not depend on n or P by the assumption of the lemma. Also note
that
ap =ap+op(l) <1—Cy+ op(l), P-uniformly,

for some Cy > 0. Therefore, following the same arguments as in (C.37), we obtain the desired

result.

Proof of Step 4: We take {R,; : i € Z%}, and define

Bag(cn) = {7 €T :(2,7) € Balea)},
Bn,i = Rn,i M Cv
Bn,A,i(Cn) = (Bn,i X T) N BA<Cn),

and Z,, = {i € Z¢ : B,; # @} as in the proof of Step 4 in the proof of Lemma C8. Also,

define
nAi = h_d/2/ / {Anp(zy (@) — E* [Aa,(zy . (2))] } drdz.
Bn,i BA,m(Cn)
Also, define
.« ZAeNJ VAT
Qi = and
’ Var* (Sr)
1 N
Wy = =4 SOUX € Bug} —nPH{X; € Bug)
and write

S;: * * *
\/W = Z O'/n,i and Un = Z un,i‘

i€, i€,
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By the properties of Poisson processes, one can see that the array {(a}, ;, u), ;) }iez, is an array
of 1-dependent random field under P*. For any ¢ = (q1, ¢2) € R*\{0}, let y} ; = quas ;+qouss;
and write
Var’ <Z yi;i) = qi + ¢3(1 — ap) + 201426, p,
i€T,
uniformly over P € P, where ¢, p = Cov*(S}, U). On the other hand, following the proof
of Lemma A8 of Lee, Song, and Whang (2013) using Lemma D4, we deduce that

(D.15) Z E*|y, ;" = op(1), P-uniformly,

i€z,
as n — oo, for any r € (2,(2p + 2)/p|, uniformly over P € P. By Theorem 1 of Shergin
(1993), we have

sup
teR

1
P* — = Yo, <t —0*(1)
{ VE+ @1 —ap) + 201260 p IEXI; 7 }
. 1/2
< ; Eynsl" = op(1),
{@d +3(1 = ap) +2q1q26n,p} /2 {16212 7 }

for some C' > 0 uniformly in P € P, by (D.15). By Lemma C2(i), we have for each t € R
and ¢ € R*\{0} as n — oo,

TH* t2
E* |exp it n — exp (——) = op(1),

V4" Cug 2

uniformly in P € P. Thus by Lemma C2(ii), for each ¢t € R?, we have

‘P* {é;l/QH;; < t} —P{Z< t}‘ = op(1).

Since the limit distribution of Cj "/ QH,’; is continuous, the convergence above is uniform in
te R
(i) We fix P € P such that limsup,, ,»02(C) = 0. Then by (D.14) above and Lemma D6,

Var® (S:) = 02(C) + op(1) = op(1).

Hence, we find that S* = op«(1) in P. The desired result follows by applying Theorem 1 of
Shergin (1993) to the sum U} = >, wu;, and then applying Lemma C2. 1

Lemma D9. Let C be the Borel set in Lemma D8.
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(i) Suppose that the conditions of Lemma D8(i) are satisfied. Then for each a > 0, as

n — 0o,
h*d/? T D)
sup P < sup | P Loaen; 1 {Cn’A gN’A} <tp—®F) >ap—0.
PeP teR Un(c)

(ii) Suppose that the conditions of Lemma D8(ii) are satisfied. Then for each a > 0, as

n — 0o,
sup P >ap — 0.
pPeP

Proof of Lemma D9. The proofs are precisely the same as those of Lemma C9, except that

hod/? Z A {C;:,A - E*C;/,A}

AcN;

we use Lemma D8 instead of Lemma C8 here.

Lemma D10. Suppose that the conditions of Lemma C5 hold. Then for any small v > 0,
there exists a positive sequence &, = o(h?) such that for all r € [2, M /2] (with M > 0 being
as in Assumption A6(1)),

sup_sup BI|S, 12 (2)gu (@i m)||” = O (n 2G4
(z,7)ES PEP
where n, € R is distributed as N(0,e,1;) and independent of ((Y;", X,")2,, N) in the

definition of qn-(x), and
(D.16) Ynren(®) = X0 (2,0) + 1y and gn . (251,) = Gnr () + My

Suppose furthermore that Ain(Xn.7.-(2,0)) > ¢ > 0 for some ¢ > 0 that does not depend on
n or P € P. Then

sup_sup B[S () (5 7| = O (0242
(z,7)€S PEP

Proof of Lemma D10. We first establish the following fact.
Fact: Suppose that W is a random vector such that E|[W||? < ¢y for some constant cy > 0.

Then, for any r > 2 and a positive integer m > 1,
r am(M1) /™)
E[||[W]['] < Cp (E [[W]|*"]) ,
where a,,(r) = 2™(r — 2) + 2, and C,,, > 0 is a constant that depends only on m and cy .
Proof of Fact: The result follows by repeated application of Cauchy-Schwarz inequality:
1/2

BI|W|" < (BIWICD)" (BIWI) " < 6 BIw(Pe),

where we replace r on the left hand side by 2(r — 1), and repeat the procedure to obtain
Fact.

Let us consider the first statement of the lemma. Using Fact, we take a small v, > 0 and
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en = h® and choose a largest integer m > 1 such that am(r) < M. Such an m exists
because 2 < r < M /2. We bound

. , . () 1/27)
E[|S, Y2 (2)gnr(@;m0)]]7 < Con (BIE, Y2 (@) g (23 7) [ ) :

n77—78n n7T787l

By Lemma C5, we find that

(D'17) sup sup EHZ_U2 (x)Qn,T(xan)HQM(r)

n,T,e
(z,7)ES PEP "

< sup sup X2 (5L (@) Bllgn (z;m,) ||
(z,7)eS PEP

N 72 (e 1) RO (om0)/201,

By the definition of ¢, = h4¥1,
ggam(T)/Qh(lf(am(T)/Z))d — p=am(r))d—am(r)v/2.
We conclude that
E||E;}r{52n (Sﬁ)qn,-r(x; nn)HT < C, (h(l*am(T))dfam(r)Vl/Q)1/2m
= O, (W22 =22 /2) V2
_ th(—Q_m—(r—2))d—((’r—2)+2_m+1)1/1/2.
Since a,,(r) < M, or 27™ > (r — 2) /(M — 2), the last term is bounded by

S |6 = L (N =y V)

By taking v; small enough, we obtain the desired result.
Now, let us turn to the second statement of the lemma. Since, under the additional

condition,
)\am(r)/Z (271 (il')) < Cfam(r)/27

max n,T,En

the last bound in (D.17) turns out to be
o am(1)/2 ], (1~ (am(r)/2))d.

Therefore, we conclude that

B[SV (@)gur(zima)l[T < Ch (c70m /20 amr)/2)a) 2"

_ Cmc—{(r—2)+21—m}/2h(2—m—{(r—2)+21—m}/2)d

_ Cmc—{(r—2)+21*m}/Qh—(r—2)d/2'

Again, using the inequality 2=™ > (r — 2) /(M — 2), we obtain the desired result. §
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Lemma D11. Suppose that the conditions of Lemma D5 hold. Then for any small v > 0,
there exists a positive sequence €, = o(h?) such that for all r € [2, M /2] (with M > 0 being
as in Assumption A6(1)),

sup B[S 12 (2)g; (@ m) | = Op (h702(

n,T,en
(z,7)ES

wheren, € R’ is distributed as N(0,&,1;) and independent of ((Y;*", X 1), (V;", X,")~,, N)
in the definition of q;, (), and

)d_”) , uniformly in P € P,

En,r,an ('T> = in77—’7—(x7 0) + 671-[J'
Suppose furthermore that

sup sup P {)\min(inﬁﬁ(x, 0)) > c} — 0,
(z,7)ES PEP

for some ¢ > 0 that does not depend on n or P € P. Then

sup E*||S 12 (x )@ (T;m0)|]" = Op (W= U=242) " uniformly in P € P.

(z,7)ES rEn
Proof of Lemma D11. The proof is precisely the same as that of Lemma D10, where we use

Lemma D5 instead of Lemma C5. 1

We let for a sequence of Borel sets B,, in S and A € {0,d/4,d/2}, A C Ny, and a fixed

bounded function § on S,

(B, = /B nE[AA,,,(WZN,T@)+hA5(x,T))] 40, 7)

e
oy
*
Sy
3
~—
Il

/ B (A, (Vihizy, (2) + 15(2,7))] dQ(z, 7). and

n

an(B,) = / E [Aa, (W, (2,0) + h*8(x, 7))] dQ(x, 7).

where z}, () is a random vector whose j-th entry is given by

Inr() = hdZanm i )/h)——E* [Brorg (Vi (X7 = 2)/h)] -

Lemma D12. Suppose that the conditions of Lemmas D10 and D11 hold and that

n-V2p- (G )
as n — 0o, for some small v > 0. Then for any sequence of Borel sets B, in S,

sup |af(Bn) — an(Bn)| = o(hd/Q) and
Pep

Isjlé[;P{‘aR* n) — an(By)| > ahd/Q} = o(1).
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Proof of Lemma D12. For the statement, it suffices to show that uniformly in P € P,

EAL (VN A
(D.18) Sup AP( hd ZNT(:E) +h>\5( z,7)) O<hd/2),
(z,7)ES EAAp( nTT( ) +h 5( ,T))
sup E*Aap(Vnh? zy,.(x )+ ho(x, 7)) Op(hd/2)
s | ~BAu, (W (2,0 + 1d(x, 7)) ’

uniformly in P € P. We prove the first statement of (D.18).

statement of (D.18) can be done in a similar way.

The proof of the second

Take small v > 0. We apply Lemma D10 by choosing a positive sequence ¢, = o(h?) such
that for any r € [2, M/2],

sup_sup BI|S, 12 (2)g - (wim)||7 = O (h 2G4
(x,7)eS PEP

where ¢, -(;1,) and X, ; ., (x) are as in Lemma D10. We follow the arguments in the proof
of Step 2 in Lemma C6 to bound the left-hand side in the first supremum in (D.18) by

(D.19)

sup sup |EA4,(Vnhizy (z;n,) +
(z,7)€S PEP

Po(, 7)) = EAap(WE, ... (2,0) + h6(z, 7))+ C /e,

for some C' > 0, where

ZN - (200) = 2,7 (T) + 10/ VR,
and WS . (z,0) is as defined in (C.17). Let

5N77<x;77n) =V hdzn%_/f (1:) 'ZNT<x'nn) and

Ly re, (2,0) = X202 (2) - W (2,0).
We rewrite the previous absolute value as
(D.20) sup sup |[EAY, (Vnhiéy -(z;m,)) — BAY (ZY) . (x,0))

(z,7)eS PEP

where A%, (V) = AA7p(E,11{72,5n (x)v+h*d(x,7)). Note that the condition for M in Assumption

A6(i) that M > 2(p+2), we can choose 7 = max{p, 3}. Then r € [2, M /2] as required. Using
Theorem 1 of Sweeting (1977), we bound the above supremum by (with » = max{p, 3})

1/2

Ch 3
— sup sup E|[X] 72 (2)gn - (25100
\/_(mespep 1 (@) Gn,r (3 1m0 ||

. sup sup El\Ean/2( )@ (T3 10) "
( £

z,7)ES PEP

C
Gy sup supEw, (Zn%zfm 0); CLE|SY2 (2 >qn,7<m;nn>|13),
(z,7)eS PEP vn
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for some positive constants C, Cs, C3, and Cy, where

wnp (Vie) = sup {|A%, (v) — A%, (v)| 1y e R |lv —y|| < c}.

An,p An,p
(3M 4 )dfzz

The proof is complete by (D.19) and by the condition n~'/2p~\2s=2 — 0. 1
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