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Abstract

This paper studies the asymptotic efficiency in factor models with serially correlated

errors and dynamic panel data models with interactive effects. We derive the efficiency

bound for the estimation of factors, factor loadings and common parameters that describe

the dynamic structure. We use double asymptotics under which both the cross-sectional

sample size and the length of the time series tend to infinity. The results show that the

efficiency bound for factors is not affected by the presence of unknown factor loadings and

common parameters, and analogous results hold for the bounds for factor loadings and

common parameters. The efficiency bound is derived by using an infinite-dimensional con-

volution theorem. Perturbation to the infinite-dimensional parameters, which consists in an

important step of the derivation of the efficiency bound, is nontrivial and is discussed in

detail.
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1 Introduction

This paper studies asymptotic efficiency in factor models and dynamic panel data models.

We derive the efficiency bound for the estimation of parameters including infinite-dimensional

parameters such as factors. We consider the setting in which we observe a variable ynt for

many individuals over long time periods, and ynt can be written as the sum of the interaction

of factors, ft, and factor loadings, λn, and an idiosyncratic component, wnt:

ynt = f ′tλn + wnt.

The factors, ft, vary over time but are constant across individuals; and the factor loadings, λn

are fixed over time but vary across individuals. The idiosyncratic component, wnt, is assumed to

be Gaussian stationary and independently and identically distributed (i.i.d.) across individuals.

We further assume that its dynamics can be characterized by a finite number of parameters, θ.

The vector θ consists of common parameters that do not depend on either n or t. This setting

includes cases in which wnt follows a stationary autoregressive-moving-average (ARMA) model,

but is not restricted to them. The objective of this paper is to derive the efficiency bound for

the estimation of functions of ft, λn and θ.

This paper contributes to two different, although highly related, areas of the literature: fac-

tor analysis and dynamic panel data models. In factor analysis, factors are used to summarize

the information contained in ynt when there are many cross-sectional units.1 See the introduc-

tion of Bai (2003), Bai (2009a), Breitung and Tenhofen (2011) or Choi (2011) for an overview

of economic applications of factor models. The estimation of factors is discussed in Stock and

Watson (2002), Bai (2003), Forni et al. (2005), Breitung and Tenhofen (2011) and Choi (2011)

among others.

In dynamic panel data analysis, the dynamic structure of wnt is of interest, and the factor

specification is used as interactive effects for characterizing unobserved heterogeneity across

individuals and unobserved common macro shocks. For example, when wnt follows an autore-

gressive (AR) process, the model is called a panel AR model, which has been used in many

economic applications. Note that our specification includes models with individual effects in

which ft = 1 and λn control time-invariant unobserved heterogeneity and that are commonly

used in empirical applications. There have been many estimators proposed for dynamic panel

1This paper considers “exact factor models” in which wnt is cross-sectionally independent, and any cross-

sectional dependence in ynt is captured by the interactive effects f ′
tλn. In the recent literature, “approximate

factor models” originated by Chamberlain and Rothschild (1983), in which cross-sectional dependence in wnt is

allowed, are popular. However, it would be very difficult, if not impossible, to discuss efficiency in the presence

of general cross-sectional dependence in wnt.
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data models. For example, the estimation of panel AR models is discussed by Anderson and

Hsiao (1981), Arellano and Bond (1991), Hahn and Kuersteiner (2002), Alvarez and Arellano

(2003), Hayakawa (2009), Lee (2012) and Han, Phillips and Sul (2014) for cases with indi-

vidual effects, and by Hahn and Moon (2006) for cases with both individual and time effects.

Holtz-Eakin, Newey and Rosen (1988), Bai (2009b), Moon and Weidner (2010) and Sarafidis and

Yamagata (2010) discuss estimation of dynamic panel data models in the presence of interactive

effects.

Our main purpose is to derive the efficiency bound; i.e., the lower bound of the asymptotic

variances of any regular estimators of a function of parameters. We examine the asymptotic

efficiency in factor models with serially correlated errors (or dynamic panel data models with

factor structure) when both the cross-sectional sample size (N) and the time-series length (T )

tend to infinity. We allow some elements of ft and/or λn to be known. Thus, our analysis can

be applied to simpler specifications that are popularly used in dynamic panel data analysis,

such as models with only individual effects.

We derive the efficiency bound for the estimation of infinite-dimensional parameters, ft

and λn. The presence of the common parameters (whose dimension is finite) does not affect

the efficiency bound for infinite-dimensional parameters. It is remarkable that the efficiency

bound for factors is not affected by the estimation of the factor loadings and vice versa. The

results indicate that the principal component analysis (PCA) estimator of factors by Stock and

Watson (2002) and Bai (2003), which is arguably the most popular estimator in factor models,

is efficient.2 The PCA estimator of factor loading is efficient only if wnt is serial uncorrelated.

The estimator developed by Breitung and Tenhofen (2011) is shown to be efficient when it is

applied to the current setting.3

We examine the efficiency bound for the estimation of the common parameter, θ, which is

the parameter of interest in dynamic panel data analysis. Our results reveal that the efficiency

bound in the presence of factor structure is the same as that in the case when factors and factor

loadings are known.

We apply the efficiency results to various dynamic panel data models. First, we consider

the panel AR(1) model. Note that the efficiency bound has been derived by Hahn and Kuer-

2More precisely, we consider the efficient bound for the estimation of some linear transformation of the factors.

The factors themselves are not identified, but some linear transformation of them is identified and can be estimated

by the principal component analysis.
3Breitung and Tenhofen (2011) show that their estimators are more efficient than the PCA estimator. However,

they do not examine the efficiency bound. We also note that they consider more general settings than ours; for

example, they allow heteroscedasticity. The efficiency bounds in those general settings are not known.
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steiner (2002) for cases with individual effects. We derive the same efficiency bound based on

our general efficiency result. However, as discussed in Section 5.1, the argument of Hahn and

Kuersteiner (2002) is not complete, and we conclude their analysis. We also consider the esti-

mation of the parameter in panel MA(1) models and the estimation of autocovariances. For the

estimation of autocovariances, we provide conditions under which Okui’s (2010) autocovariance

estimator achieves the efficiency bound. In particular, we show that if the true data-generating

process follows a Gaussian stationary ARMA(p, q) model, Okui’s estimator for the k-th-order

autocovariance is asymptotically efficient if and only if p ≥ q and 0 ≤ k ≤ p− q. These results

are analogous to the results of Kakizawa and Taniguchi (1994), who derive the lower bound of

the variances of autocovariance estimators in a time-series setting.4

The notion of efficiency used in this paper is that of the convolution theorem by Hajék

(1970), which is extended to the cases with infinite-dimensional parameters by van der Vaart

and Wellner (1996). The derivation of the efficiency bound is nontrivial because we consider

double asymptotics, and there are infinitely many nuisance parameters (i.e., there are as many

factors as T and as many factor loadings as N).

The main difficulty is how to specify the parameter space for the “localized” factors and

factor loadings. The convolution theorem requires that the parameter space be a linear subspace

of a Hilbert space with an inner product that is consistent with the formula of the limiting

process of the local log-likelihood. However, it is not trivial to construct appropriate local

parameter spaces for factors and factor loadings that satisfy the conditions for a linear subspace

of a Hilbert space. We discuss the difficulty of constructing an appropriate local parameter

space in detail in Section 5. In particular, we argue that extending the approach taken by Hahn

and Kuersteiner (2002) does not provide the efficiency bound for factors and factor loadings.

To construct a local parameter space, we adopt an approach that is based on the theory of

l2 space. We assume that the localized factors and factor loadings are square summable and

prove that the local parameter space is a Hilbert space with an appropriate inner product. We

then derive the efficiency bound for the estimation of factors and factor loadings, as well as the

common parameters.

Our approach for constructing local parameter spaces deviates from that considered in the

related literature in statistics. There have been a number of studies on asymptotic efficiency in

“functional models” in statistics.5 A functional model is one that contains nonrandom infinite-

dimensional parameters. In that literature, there have been several attempts to construct

appropriate local parameter spaces to derive the efficiency bound. However, this paper does

4See Porat (1987) and Walker (1995) for alternative derivations of the efficiency bound.
5See, e.g., Sprent (1966), Kumon and Amari (1984), Pfanzagl (1993) and Strasser (1996, 1998).
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not take this approach because it turns out that factors are not regular parameters under this

approach and we cannot derive the efficiency bound for the estimation of factors under this

alternative approach.

While efficiency is an important issue, there have not been many studies on efficiency bounds

in factors models or dynamic panel data models. Hahn and Kuersteiner (2002) provide the semi-

nal contribution and derive the efficiency bounds for panel AR(1) models with individual effects.

They also apply the convolution theorem. However, they do not discuss how to specify the local

parameter space. While their efficiency result is valid by simply adding an assumption that the

local parameter space is a linear subspace of a Hilbert space, constructing an appropriate local

parameter space is far from obvious as argued above. This paper complements their analysis

by providing concrete examples of local parameter spaces for models with individual effects.

Gagliardini and Gourieroux (2010) examine the asymptotic efficiency in dynamic panel data

models with factor structure. They assume that the dynamics of factors can be characterized

by finite-dimensional parameters. Therefore, their analysis does not need to face the difficulty

associated with the presence of infinite-dimensional parameters. We treat factors as infinite-

dimensional parameters and do not specify their dynamics.

The reminder of this paper is organized as follows. The next section presents the setting.

Section 3 gives the summary of the results. Section 4 provides the theoretical derivation of the

efficiency bound and presents the results given in Section 3 in a more mathematically formal

way. Section 5 contains detailed discussion on the specification of the parameter space for

localized infinite-dimensional parameters. Section 6 concludes the paper. All mathematical

proofs are given in the Appendix.

2 Setup

Suppose that we have available a panel data set {ynt} for n = 1, 2, · · · , N and t = 1, 2, · · · , T .

We assume that ynt follows a factor model:

ynt = f ′tλn + wnt,

where wnt is independently and identically distributed (i.i.d.) across individual n and follows

a Gaussian stationary process over time t with mean zero. We call ft factors and λn factor

loadings, respectively, and we regard them as parameters. The interaction, f ′tλn, is called

interactive effects. Let p denote the number of factors so that ft and λn are p× 1 vectors. We
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assume that p is known.6 We allow some elements of ft and λn to be known.

It is assumed that the autocovariance structure of {wnt}t∈Z (Z is the set of all integers) is

completely characterized by a finite-dimensional parameter θ ∈ Θ where Θ is some open subset

of RL. We denote the k-th-order autocovariance by γk(θ); i.e., γk(θ) := Eθ[wntwn,t−k], where Eθ

denotes the expectation under θ. Note that because {wnt}t∈Z is a Gaussian stationary process,

the parameter θ completely determines the law of the process {wnt}t∈Z. We also impose an

absolute summability condition on the autocovariance function k 7→ γk(θ). Thus far, we have

assumed the following restrictions on wnt.

Assumption 1.

(i) wnt is i.i.d. across individual n.

(ii) wnt follows a Gaussian stationary process over t with Eθ[wnt] = 0.

(iii)
∑∞

k=−∞ |γk(θ)| <∞ for every θ ∈ Θ.

This class of models includes many models that are popularly used in the literature. This

class includes factor models in which factors, {ft}Tt=1, are the parameters of interest. It also

contains many dynamic panel data models that are popularly used in applied studies. For

example, if p = 1, ft = 1 and wnt follows an AR(1) process so that wnt = αwn,t−1 + unt where

unt ∼ i.i.d.N(0, σ2), then a panel AR(1) model with individual effects is obtained:

ynt = αyn,t−1 + (1− α)λn + unt.

If we set p = 2, ft = (1, f1t)
′ and λn = (λ1n, 1) and assume that wnt follows an AR(1) process,

we obtain the panel AR(1) model with both individual and time effects:

ynt = αyn,t−1 + (1− α)λ1n + (1− α)f1t + unt.

3 Summary of the results

In this section, we present the summary of the results on the efficiency bound in dynamic panel

data models with factor structure. The assumptions used for the derivation and the formal

theoretical results are presented in the following section.

6Choice of p is an important topic in the recent econometric literature. See, e.g., Bai and Ng (2002), Onatski

(2009) and Ahn and Horenstein (2013).
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3.1 Factors and factor loadings

We first present the efficiency bound for the estimation of J ′
NT ft, where JNT is a nonrandom p×p

invertible matrix, possibly depending on N and T , and limN,T→∞ JNT = J . The reason that we

consider the estimation of J ′
NT ft, not ft itself, is that the factors ft may not be identified. For

any invertible p× p matrix A, the pair of ft and λn and that of A′ft and A
−1λn yield the same

interaction effect f ′tλn and the same observable distribution of ynt. Therefore, without further

restrictions, we cannot identify ft and λn.
7 On the other hand, some linear transformation of

ft is identified and can be estimated. We thus consider the efficiency bound for J ′
NT ft. The

efficiency bound is presented in Theorem 4.3. Let Σλλ = limN→∞
∑N

n=1 λnλ
′
n/N . The efficiency

bound is:

γ(0)J ′Σ−1
λλJ,

and the rate of convergence is
√
N . This efficiency bound is the same as the asymptotic variance

of the OLS estimator from the regression of ynt on λn using observations at time t. This result

indicates that the efficiency bound for factors is unaltered even when the common parameters

and factor loadings are known.

Next, we give the efficiency bound for factor loadings, J−1
NTλn. We introduce the following

notation. Let Ω(θ) be the variance–covariance matrix of the vector wn = (wn1, . . . wnT )
′ so that

Ω(θ) := Eθ[wnw
′
n]. Let FT = (f1, . . . , fT )

′. Let DT be the diagonal matrix whose diagonal

elements are the square roots of the diagonal elements of F ′
TFT . When factors are stationary,

then the order of DT is
√
T . However, when some factor exhibits a deterministic trend or

is slowly varying, the order of the corresponding element of DT is different from
√
T . The

efficiency bound for the estimation of J−1
NTλn is presented in Theorem 4.4 and is:

J−1

(
lim
T→∞

D−1
T F ′

TΩT (θ)
−1FTD

−1
T

)−1

J
′−1,

and the rate of convergence is DT . Similar to the result for factors, the efficiency bounds for

factor loadings are the same even when common parameters and factors are known. If θ and FT

were known, this efficiency bound would be attained by the GLS estimator of ynt on ft using

observations from individual n.

Lastly, we provide the efficiency bound for an interactive effect, f ′tλn. Let dk denote the k-th

diagonal element of DT , and rNT := min{
√
N, d1, d2, . . . , dp}. The efficiency bound is given in

7Bai and Ng (2013) provide conditions under which they are identified.
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Theorem 4.5. It is:

f ′t

(
lim

N,T→∞
D−1

T rNT

)(
lim
T→∞

D−1
T F ′

TΩT (θ)
−1FTD

−1
T

)−1(
lim

N,T→∞
D−1

T rNT

)
ft

+λ′n

(
lim

N,T→∞

rNT√
N

)2

γ(0)Σ−1
λλλn,

and the rate of convergence is rNT .

We now examine the efficiency of the PCA estimator. The PCA estimator is obtained as

follows. Let Y be the T×N matrix whose (t, n) element is ynt. The PCA estimator of factors F̂T

is the
√
T times the eigenvectors that correspond to the p largest eigenvalues of Y Y ′. The PCA

estimator of factor loadings is Λ̂′
N = F̂ ′

TY/T so that the PCA estimator of λn is the n-th row of

Λ̂N . We assume that DT = O(
√
T ). Bai (2003) derives the asymptotic distribution of the PCA

estimator. To introduce the asymptotic distribution, we need the following notation. Υ is the

eigenvector matrix of Σ
1/2
λλ (limT→∞ F ′

TFT /T )Σ
1/2
λλ , and V is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues. Define Q = V 1/2Υ′Σ
−1/2
λλ . Bai (2003) considers

the distribution of
√
N(f̂t − Ĵ ′

PCA,NT ft) for some random matrix ĴPCA,NT . In Appendix B, we

show that ĴPCA,NT can be replaced with a nonrandom matrix JPCA,NT so that we can apply

our efficiency result. Moreover, we show that limN,T→∞ JPCA,NT = Q−1.

We show that the PCA estimator of factors is efficient. By Bai (2003) and Appendix B, if

N,T → ∞ and
√
N/T → 0:

√
N(f̂t − J ′

PCA,NT ft) →d N
(
0, γ(0)V −1QΣλλQ

′V −1
)
.

Simple algebra shows that the asymptotic variance is simplified to:

γ(0)V −1QΣλλQ
′V −1 = γ(0)V −1V 1/2Υ′Σ

−1/2
λλ ΣλλΣ

−1/2
λλ ΥV 1/2V −1 = γ(0)V −1.

The efficiency bound is:

γ(0)(Q−1)′Σ−1
λλQ

−1 = γ(0)V −1/2Υ′Σ
1/2
λλ Σ−1

λλΣ
1/2
λλ ΥV −1/2 = γ(0)V −1.

The asymptotic variance is equal to the efficiency bound, and the PCA estimator is efficient.

On the other hand, the PCA estimator of factor loadings is not efficient, in general, and is

efficient only if wnt is serially uncorrelated. By Bai (2003) and Appendix B, the asymptotic

distribution is:

√
T (λ̂n − J−1

PCA,NTλn) →d N

(
0, (Q′)−1 lim

T→∞

1

T
F ′
TΩT (θ)FTQ

−1

)
.

The efficiency bound is:

Q

(
lim
T→∞

1

T
F ′
TΩT (θ)

−1FT

)−1

Q′.
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The asymptotic variance is not equal to the efficiency bound in general. Thus, the PCA estima-

tor of factor loadings is not efficient. However, when wnt is serially uncorrelated, it is efficient.

In that case, ΩT (θ) = γ(0)IT , and the asymptotic variance is:

(Q′)−1 lim
T→∞

1

T
F ′
TΩT (θ)FTQ

−1 = γ(0)V −1/2Υ′Σ
1/2
λλ lim

T→∞

1

T
F ′
TFTΣ

1/2
λλ ΥV −1/2 = γ(0)Ip,

by the properties of eigenvalues and eigenvectors. Similarly, the efficiency bound is:

Q

(
lim
T→∞

1

T
F ′
TΩT (θ)

−1FT

)−1

Q′ =γ(0)V 1/2Υ′Σ
−1/2
λλ

(
lim
T→∞

1

T
F ′
TFT

)−1

Σ
−1/2
λλ ΥV 1/2

=γ(0)Ip.

Thus, the asymptotic variance and the efficiency bound match, and the PCA estimator of factor

loadings is efficient when wnt is i.i.d.

We next show that the PC-GLS estimator of Breitung and Tenhofen (2011) indeed at-

tains the efficiency bound even in the presence of serial correlation.8 Suppose that wnt =∑K
k=1 αkwn,t−k + unt, where unt ∼ i.i.d.N(0, σ2). Assume also that DT = O(

√
T ). Consider

the following approximate Gaussian log-likelihood function:

−N(T − p)

2
log σ2 −

N∑
n=1

T∑
t=p+1

((ynt − f ′tλn)−
∑p

k=1 αk(yn,t−k − f ′t−kλn))
2

2σ2
. (3.1)

The PC-GLS estimator is the local maximum of the function (3.1) in the neighborhood of

the principal component estimator by Stock and Watson (2002).9 Let f̂GLS
t and λ̂GLS

n be the

PC-GLS estimators of ft and λn, respectively. Applying Theorem 1 of Breitung and Tenhofen

(2011) in the current setting (see also the proof of Theorem 2 in Breitung and Tenhofen (2011))

gives that if N,T → ∞ with
√
N/T → 0:

√
N(f̂GLS

t − J ′
PCA,NT ft) →d N

(
0, γ(0)(Q−1)′Σ−1

λλQ
−1
)
,

and, if N,T → ∞ with
√
T/N → 0:

√
T (λ̂GLS

n − J−1
PCA,NTλn) →d N

(
0, Q

(
lim
T→∞

1

T
F ′
TΩT (θ)

−1FT

)−1

Q′

)
.

The asymptotic variances are the same as the efficiency bounds, and the PC-GLS estimator is

asymptotically efficient.

8As written in footnote 3, Breitung and Tenhofen (2011) consider more general settings in which there is no

Gaussianity assumption, and heteroscedasticity and weak cross-sectional dependence are allowed. Moreover, the

AR model used for the estimation can be misspecified.
9The global maximum is not well defined because the likelihood function is unbounded, in general. See

Breitung and Tenhofen (2011, Section 3) for the detail of this problem and how to compute the estimator.
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Note that Choi (2011) and Bai and Li (2012) also develop estimators that are more efficient

than the principal component estimator under the set of conditions different from ours. Choi’s

focus is on heteroscedasticity and cross-sectional dependence, and serial correlation is basically

excluded. Bai and Li (2012) account for heteroscedasticity, but serial correlation is not allowed.

On the other hand, we consider serial correlation, but we do not account for heteroscedasticity

across individuals nor cross-sectional correlation. Note that they do not derive the efficiency

bound, and the efficiency bounds under heteroscedasticity or cross-sectional dependence are not

known.

3.2 Common parameters

This section presents the efficiency bound for the estimation of functions of the common param-

eters. The parameter of interest is β(θ), where β(·) is a differentiable function from Θ to RM .

For example, when we are interested in the model parameter itself, we set β(θ) = θ. When an

autocovariance is estimated, we have β(θ) = γk(θ).

We first derive the result for general β(θ). We also discuss several applications in which

specific forms of β(θ) are presented. Let β̇(θ) = ∂β(θ)/∂θ. Let gθ(·) be the spectral density of

wnt:

gθ(s) =
1

2π

∞∑
m=−∞

γm(θ) exp(−ims),

where i :=
√
−1. Note that Assumption 1 guarantees the existence of gθ. We also define:

Γ(θ) :=
1

4π

∫ π

−π

∂

∂θ′
gθ(s)

∂

∂θ
gθ(s)

ds

g2θ(s)
.

The efficiency bound for the estimation of β(θ) is given in Theorem 4.6. It is:

β̇(θ)Γ(θ)−1β̇(θ)′,

and the rate of convergence is
√
NT .

The efficiency bound has the same form as the limit of the Cramér–Rao lower bounds for

estimation of β(θ) in a time-series setting without an intercept under Gaussianity. Indeed,

in the time-series literature, the matrix Γ(θ) is called the Gaussian Fisher information matrix

associated with spectral density gθ (see, e.g., Taniguchi and Kakizawa (2000, p. 58)). We note

that the closed form of the matrix Γ(θ) for ARMA models is available in, e.g., Box and Jenkins

(1970).

An important implication of this finding is that the presence of factors does not affect the

form of the efficiency bound. This result is interesting in the sense that the sequence of factors
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and factor loadings is an infinite-dimensional parameter, but the efficiency bound is the same

as that for the case in which they are known. An interpretation of this result is that it is related

to the well-known fact that the sample average and the sample variance are independent when

observations are Gaussian. Note that in factor models, the interactive effects, f ′tλn, determine

the mean of ynt, and the parameter θ determines the variance–covariance structure of ynt.

We apply this efficiency result to the panel AR(1) model, the panel MA(1) model and the

estimation of autocovariances.

3.2.1 Panel AR(1) model

The first application deals with the case in which wnt follows an AR(1) model:

wnt = αwn,t−1 + unt,

where unt ∼ i.i.d.N(0, σ2). The parameter θ, in this case, is θ = (α, σ2)′. In terms of ynt, this

specification can be written as:

ynt = αyn,t−1 + (ft − αft−1)
′λn + unt.

This specification, in particular the one with individual effects (i.e., ft = 1), has been examined

in many studies as mentioned in the introduction. Because ψ(θ) = θ in this case, the efficiency

bound is:

Γ(θ)−1 =

1− α2 0

0 2σ4

 .

The efficiency bound for α is the same as that derived by Hahn and Kuersteiner (2002). The

efficiency bound for σ2 is a new result. Note that the estimation of σ2 is important; for example,

when we provide a forecasting interval for a future value of yit.

There are many estimators that achieve the efficiency bound for α for models with individual

effects. For example, all of the bias-corrected, fixed-effects estimators of Hahn and Kuersteiner

(2002), the GMM estimator developed by Hayakawa (2009), and the random- effects, pseudo-

maximum-likelihood estimator discussed by Alvarez and Arellano (2003) are asymptotically

efficient. Therefore, to distinguish many existing estimators in terms of efficiency, the first-

order efficiency result considered here is not sufficient, and we may need alternative efficiency

criteria, such as higher-order efficiency.

3.2.2 Panel MA(1) model

This subsection considers the following panel MA(1) model with individual effects:

ynt = λn + αun,t−1 + unt,

11



where |α| < 1 and unt ∼ i.i.d.N(0, σ2) across both n and t. The parameter is θ = (α, σ2).

MA models are also popularly used to analyze the dynamic nature of economic variables. For

example, Abowd and Card (1989) employ MA models to study income dynamics.

Noting that β(θ) = α in this case, the efficiency bound is:

{
∂

∂θ′
β(θ)

}
Γ(θ)−1

{
∂

∂θ
β(θ)

}
=
(
1 0

)1− α2 0

0 2σ4

1

0

 = 1− α2.

We note that the literature on the estimation of panel MA models is scarce, and we are not

aware of any estimator that achieves this efficiency bound.

3.2.3 Autocovariances

This section examines the asymptotic efficiency of the estimation of the k-th-order autocovari-

ance, γk(θ). By using the spectral density gθ, γk(θ) can be expressed as:

γk(θ) =

∫ π

−π
exp(−iks)gθ(s)ds =

∫ π

−π
cos(ks)gθ(s)ds,

by Fourier inversion. Therefore, the efficiency bound for the estimation of γk is given by:{∫ π

−π
cos(ks)

∂

∂θ′
gθ(s)ds

}
Γ(θ)−1

{∫ π

−π
cos(ks)

∂

∂θ
gθ(s)ds

}
. (3.2)

This expression demonstrates that the efficiency bound has the same form as the limit of the

Cramér–Rao lower bounds for estimation of γk(θ) in a time-series setting obtained by Kakizawa

and Taniguchi (1994).10 We use their results to investigate the conditions under which existing

estimators of autocovariances achieve the efficiency bound. In particular, we consider Okui’s

(2010) bias-corrected autocovariance estimator.11

We define Okui’s (2010) estimator and derive its asymptotic distribution. We consider the

case with individual effects only: ynt = λn + wnt. Okui’s (2010) estimator is a bias-corrected,

within-group sample autocovariance estimator and is defined as:

γ̃k :=
1

N(T − k)

N∑
n=1

T∑
t=k+1

(ynt − ȳn)(yn,t−k − ȳn) +
1

T
V̂T ,

10See Porat (1987) and Walker (1995) for alternative derivations of the lower bound. Note that these three

papers examine the limit of the Crámer–Rao lower bound such that it gives the lower bound of the variances of

(exactly) unbiased estimators, while the convolution theorem gives the lower bound of the variances of regular

estimators. Considering regular estimators allows estimators to be only asymptotically unbiased but does not

require that they be unbiased in finite samples. Moreover, it is difficult to develop estimators that are unbiased

in finite samples in our setting because of the presence of interactive effects.
11Okui (2010) analyzes models with individual effects. Cases with incidental trends and cases with both

individual and time effects are considered by Okui (2011) and Okui (2013), respectively.
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where V̂T is an estimator of the long-run variance of wnt. The first term on the right-hand-side

is the within-group sample autocovariance estimator, and the second term is added to correct

the bias that arises because λn cannot be estimated at
√
NT . Okui (2010, Section 4) suggests

using the kernel estimators (Parzen (1957) and Andrews (1991)) for V̂T . Under Gaussianity,

the asymptotic distribution of γ̃k is obtained as a corollary of Okui (2010, Theorem 4):

√
NT (γ̃k − γk(θ))

d→ N

(
0,

∞∑
s=−∞

{γs(θ)2 + γk+s(θ)γk−s(θ)}

)
.

Because this asymptotic variance of γ̃k is exactly the same form as that of its time-series

counterpart (see, e.g., Anderson (1971, Chapter 8)), we can use the results in time-series analysis

to investigate its efficiency. Kakizawa and Taniguchi (1994) present the necessary and sufficient

condition for this variance to be equal to (3.2). Using their result, it follows that if {wnt}t∈Z is

a Gaussian stationary ARMA(p, q) process, then γ̃k(θ) is asymptotically efficient if and only if:

p ≥ q and 0 ≤ k ≤ p− q. (3.3)

The condition (3.3) implies that if {wnt}t∈Z is a stationary AR(p) process and k ≤ p, then we can

efficiently estimate γk(θ) using γ̃k. Porat (1987) states that this is not surprising in time-series

contexts because AR coefficients can be efficiently estimated by Yule–Walker estimators, which

are functions of sample autocovariances. On the other hand, if {wnt}t∈Z is a Gaussian MA(q)

process, then none of γ̃k are asymptotically efficient. As an intermediate case, if {wnt}t∈Z is,

for example, a stationary ARMA(3, 1) process, then γ̃k is asymptotically efficient if and only if

0 ≤ k ≤ 2. The results for MA models and ARMA models are nontrivial and interesting, as

argued by Porat (1987).

4 Derivation of the efficiency bound

In this section, we present the derivation of the efficiency bound formally. We start with a

general discussion on the convolution theorem. We then present the regularity conditions on

the spectral density of wnt and infinite-dimensional parameters, and we explain how to specify

the parameter space for the localized factors and factor loadings. It turns out that how to

specify the local parameter space is not a trivial question, and it is discussed in detail in the

next section.
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4.1 A convolution theorem

The efficiency bound is derived by employing the infinite-dimensional convolution theorem by

van der Vaart and Wellner (1996). In this subsection, we briefly review their result.12

We follow the notation and terminology used by van der Vaart and Wellner (1996). Let

H be a linear subspace of a Hilbert space with an inner product ⟨·, ·⟩ and norm ∥ · ∥. We call

H the local parameter space. For each N (sample size) and h ∈ H, let PN,h be a probability

measure on a measurable space (XN ,AN ). Consider a problem of estimating a parameter

κN (h) ∈ B, where B is a Banach space, given a sample with law PN,h. Let {∆h : h ∈ H} be

an iso-Gaussian process indexed by H such that it is a Gaussian process with mean zero and

covariance function E∆h1∆h2 = ⟨h1, h2⟩. The sequence of experiments {XN ,AN , PN,h : h ∈ H}

or, simply, {PN,h : h ∈ H} is said to be locally asymptotically normal (LAN) if we can write:

log
dPN,h

dPN,0
= ∆N,h −

1

2
∥h∥2,

for a sequence of random variables ∆N,h such that as N → ∞:

∆N,h
0⇝ ∆h. (4.1)

Here,
h⇝ denotes weak convergence under PN,h. By the iso-Gaussianity assumption on {∆h : h ∈

H}, the condition (4.1) is equivalent to saying that for any finite subset {h1, h2, · · · , hd} ⊆ H:
∆N,h1

∆N,h2

...

∆N,hd


0⇝ N(0, (⟨ha, hb⟩)), (4.2)

as N → ∞ where (⟨ha, ha⟩) is a d×d matrix whose (a, b)-th component is ⟨ha, hb⟩. The sequence

of parameters κN (h) is assumed to be regular, in the sense that as N → ∞:

rN (κN (h)− κN (0)) → κ̇, ∀h ∈ H,

for some bounded linear map κ̇ : H → B and the sequence of certain linear maps rN : B 7→ B.

A sequence of estimators τN is said to be regular with respect to rN if, as N → ∞:

rN (τN − κN (h))
h⇝ L, ∀h ∈ H.

12While we consider double asymptotics under which both N → ∞ and T → ∞, the convolution theorem

stated here considers only N as the index that tends to infinity. However, it is sufficient to show the convolution

theorem with N → ∞ by the following argument. The theorem can be directly applied to the case of diagonal

asymptotics under which T depends on N , say T = T (N), and T (N) → ∞ as N → ∞. Phillips and Moon

(1999) state in their Remark (a) after Definition 2 that if a weak convergence result holds under any diagonal

asymptotics in which T (N) is monotonic in N , then that result holds under double asymptotics. This condition

is satisfied in our convolution theorem.
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It should be emphasized that this definition requires that the limit distribution L be the same

across h.13 Let B∗ denote the dual space of B. A bounded linear map κ̇ : H 7→ B has an

adjoint map κ̇∗ : B∗ 7→ H̄, where H̄ is the completion of H. The adjoint map is determined by

the relation:

⟨κ̇∗b∗, h⟩ = b∗κ̇(h),

for h ∈ H and b∗ ∈ B∗.

Under the setting above, van der Vaart and Wellner (1996) establish the following infinite-

dimensional convolution theorem.

Theorem 4.1 (van der Vaart andWellner, 1996, Theorem 3.11.2). : Assume that {PN,h, h ∈ H}

is LAN. Furthermore, assume that the sequence of parameters κN (h) and that of estimators

τN are regular. Then, the limit distribution L of rN (τN − κN (0)) equals the sum G +W of

independent, tight, Borel-measurable random elements in B such that:

b∗G ∼ N(0, ∥κ̇∗b∗∥2), ∀b∗ ∈ B∗.

The law of G concentrates on the closure of κ̇(H).

This theorem implies that the law of G is optimal in the sense that the variance of the

estimation of a linear combination of parameters cannot be smaller than the variance of the

corresponding linear transformation of G. In particular, when the parameter of interest is finite

dimensional, the variance of G is the efficiency bound. We apply this convolution theorem to

derive the efficiency bounds for parameters in factor models. To do so, we need (1) to find

some appropriate local parameter space, (2) to derive the LAN result, and (3) the parameter

of interest to be regular.

4.2 Regularity conditions on the spectral density

In this subsection, we state the regularity conditions on the spectral density of wnt that are

needed to apply Theorem 4.1. Recall that gθ denotes the spectral density of wnt and that

Assumption 1 (iii) guarantees its existence.

Assumption 2.

13Intuitively speaking, a sequence of estimators is regular if its limiting distribution is unaffected by a disap-

pearing small change of the parameters (see, e.g., van der Vaart (1998, p. 115)). The regularity requirement is

a desirable property for reasonable estimators to have, and it is not very restrictive. It excludes, for example,

Hodge’s super-efficient estimator (see van der Vaart (1998, p. 109)). For a detailed study of the regularity

condition, see, e.g., Bickel et al. (1993, Chapter 2).
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(i) θ 7→ gθ(s) is differentiable at any point θ ∈ Θ.

(ii)

lim
ϵ→0

sup
s

|gθ+ϵ(s)− gθ(s)| = 0, ∀θ ∈ Θ.

(iii) ∫ π

−π

∣∣∣∣ ∂

∂θm
gθ(s)

∣∣∣∣2 ds <∞, ∀m = 1, 2, · · · , L, ∀θ ∈ Θ,

where θm is the m-th component of θ, and:

lim
ϵ→0

∫ π

−π

∣∣∣∣ ∂

∂θm
gθ+ϵ(s)−

∂

∂θm
gθ(s)

∣∣∣∣2 ds = 0, ∀m = 1, 2, · · · , L, ∀θ ∈ Θ.

(iv) There exists a positive number c > 0 such that:

gθ(s) > c, ∀θ ∈ Θ, ∀s ∈ [−π, π].

(v) The matrix:

Γ(θ) :=
1

4π

∫ π

−π

∂

∂θ′
gθ(s)

∂

∂θ
gθ(s)

ds

g2θ(s)
,

is nonsingular.

Assumptions 2(i)-(iv) are similar to the assumptions imposed in Davies (1973, A 1.1 to A

1.4). Assumption 2(v) is also assumed in Davies (1973, see, e.g., p. 482).14

As an example, consider the case where {wnt}t∈Z follows a stationary ARMA(p, q) process

such that:

wnt = a1wn,t−1 + a2wn,t−2 + · · ·+ apwn,t−p + unt + b1un,t−1 + · · ·+ bqun,t−q,

where unt ∼ i.i.d.N(0, σ2) across n and t. We also assume that the polynomials a(z) :=

1− a1z − a2z
2 − · · · − apz

p and b(z) := 1 + b1z + b2z
2 + · · ·+ bqz

q have no common zeros and

that a(z) and b(z) have no zeros on the unit circle. Then, the spectral density of {wnt}t∈Z is

given by:

gθ(s) =
σ2

2π

|b(e−is)|2

|a(e−is)|2
=
σ2

2π

b(e−is)b(eis)

a(e−is)a(eis)
, (4.3)

where θ = (a1, · · · , ap, b1, · · · , bq, σ2). After some algebra, we can easily show that the spectral

density of the ARMA model satisfies all the conditions in Assumption 2.
14The difference is that Davies (1973) states these conditions in terms of the autocovariance function k 7→ γk(θ),

while we state them in terms of the spectral density gθ. The reason that we state these conditions in terms of

the spectral density gθ is that it enables us to check these conditions relatively easily.
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4.3 Conditions on infinite-dimensional parameters

We first state the two sets of assumptions on the true values of factors and factor loadings.

These assumptions are used to prove that the log-likelihood ratio has a well-defined limit.15

The first set of assumptions concerns individual effects or factor loadings.

Assumption 3. There exists some positive numberM > 0 such that ∥λn∥E ≤M for all n ∈ Z,

where ∥ · ∥E denotes the Euclidean norm. The matrix Σλλ = limN→∞
∑N

n=1 λnλ
′
n/N exists and

is positive definite.

The second set of assumptions concerns time effects or factors, and these assumptions guar-

antee that they satisfy Grenander’s conditions (see, e.g., Grenander and Rosenblatt (1957) and

Anderson (1971)). Let ftl be the l-th element of ft. Let:

aTlm(j) :=

T−|j|∑
t=1

ft+|j|,lftm

for l,m = 1, 2, · · · , p.

Assumption 4. (i) aTll (0) → ∞ as T → ∞ for l = 1, 2, · · · , p.

(ii) flT /a
T
ll → 0 as T → ∞ for l = 1, 2, · · · , p.

(iii) The limit of:

rTlm(j) :=
aTlm(j)√

aTll (0)a
T
mm(0)

exists and is finite for l,m = 1, 2, . . . , p and j ∈ Z.

(iv) Define ρlm(j) = limt→∞ rTlm(j), and let R(j) be a p× p matrix whose (l,m)-th component

is ρlm(j). Assume that R(0) is nonsingular.

4.4 Local parameter space

We now discuss the space of local parameters and the sequence of statistical experiments. Let ℓp2

denote a space of one-sided sequences of p-dimensional vectors αn’s (n ∈ Z) with
∑∞

n=1 ∥αn∥2E <

∞. Set H† := RL × ℓp2 × ℓp2 and let (θ̃, {λ̃n}∞n=1, {f̃t}∞t=1) ∈ H†. This H† is the local parameter

space used to apply the convolution theorem.

Note that the choice of a local parameter space is an important and delicate issue. The

convolution theorem itself does not specify what kind of local parameter space is used as long
15When the additive-effects model (which is a special case of our model and is described as ynt = ft+λn+wnt)

is considered, these assumptions are not necessary. This is because ft and λn do not appear in the log-likelihood

ratio of the additive effects model.
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as it is a linear subspace of a Hilbert space with an inner product that corresponds to the

LAN result. Typically, using a “small” parameter space makes the derivation easy. However,

the efficiency bound associated with a “small” parameter space may not be attainable. For

example, the set {0} is a Hilbert space, and we can apply the convolution theorem withH = {0}.

However, the resulting efficiency bound is 0, which is a valid lower bound of the asymptotic

variance, but it is not attainable. Using a “large” parameter space ensures that the bound is

attainable, but handling a “large” space is often difficult. We thus need to find a local parameter

space that is sufficiently small so that we can handle it easily and sufficiently large so that the

resulting efficiency bound is attainable. It turns out that our choice of local parameter space,

“H†”, makes the analysis tractable and the resulting efficiency bound attainable.

The sequence of statistical experiments that we consider is as follows. Recall that DT is the

diagonal matrix whose l-th diagonal element is
√
aTll (0). We localize the parameters around the

‘truth’ as follows:

θ +
θ̃√
NT

,
{
λn +D−1

T λ̃n

}∞

n=1
and

{
ft +

f̃t√
N

}∞

t=1

.

If some elements of λn and/or ft are known, then we set the corresponding elements of λ̃n or

f̃t equal to zero. Furthermore, let wn = (wn1, wn2, · · · , wnT )
′. Recall that ΩT (θ) = Eθ[wnw

′
n].

For simplicity of notation, we write Ωθ̃ := ΩT

(
θ + θ̃/

√
NT

)
and Ω0 := ΩT (θ). Further-

more, we denote by PNT,h and PNT,0 the laws of observations {{ynt}Tt=1}Nn=1 under (θ +

θ̃/
√
NT, {λn + D−1

T λ̃n}∞n=1, {ft + f̃t/
√
N}∞t=1) and (θ, {λn}∞n=1, {ft}∞t=1), respectively. Recall

that FT = (f1, . . . , fT )
′. Define F̃T similarly. Lastly, define (θ̃∇Ω0) =

∑L
m=1(∂ΩT (θ))/(∂θm).

4.5 Main results

In this subsection, we show the convolution theorem for factor models. The log-likelihood ratio

is:

log
dPNT,h

dPNT,0

=
N

2
log detΩ0 −

N

2
log detΩθ̃ +

1

2

N∑
n=1

(yn − FTλn)
′Ω−1

0 (yn − FTλn)

−1

2

N∑
n=1

(
yn −

(
FT +

F̃T√
N

)(
λn +D−1

T λ̃n

))′

Ω−1

θ̃

(
yn −

(
FT +

F̃T√
N

)(
λn +D−1

T λ̃n

))
.

The limit of the log-likelihood ratio process is given by the following lemma.

Lemma 4.1. Suppose that Assumptions 1, 2, 3 and 4 are satisfied. Then, for a statistical

experiment PNT,h, h ∈ H†, it holds that:

log
dPNT,h

dPNT,0
= ∆†

NT,h −
1

2
∥h∥2† + oPNT,0

(1),
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where:

∆†
NT,h :=

1

2
√
NT

N∑
n=1

{
w′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn − tr

[
Ω−1
0 (θ̃∇Ω0)

]}
+

1√
N

N∑
n=1

λ′nF̃
′
TΩ

−1
0 wn +

N∑
n=1

λ̃′nD
−1
T F ′

TΩ
−1
0 wn, (4.4)

and:

∥h∥2† := θ̃′Γ(θ)θ̃ +

∞∑
n=1

λ̃′n

(
lim
T→∞

D−1
T F ′

TΩT (θ)
−1FTD

−1
T

)
λ̃n

+ lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
TΩT (θ)

−1F̃Tλn. (4.5)

Under PNT,0, as N → ∞ and T → ∞, ∆†
NT,h converges weakly to ∆†

h ∼ N(0, ∥h∥2†).

Note that Assumption 4 ensures the existence of limT→∞D−1
T F ′

TΩT (θ)
−1FTD

−1
T (see, e.g.,

Anderson (1971, Theorem 10.2.8)). The existence of limN,T→∞
∑N

n=1 λ
′
nF̃

′
TΩT (θ)

−1F̃Tλn/N is

guaranteed by Lemma A.9 and Assumption 3.

The following lemma shows that H† is a Hilbert space equipped with the inner product that

corresponds to the norm ∥ · ∥† that appears in the expression of the log-likelihood ratio process.

Because ℓp2 is a linear space, it is easy to see that H† is a linear space. It is technically involved

to show that the inner product in the lemma satisfies the conditions for an inner product and

that the space is complete.

Lemma 4.2. Suppose that Assumptions 1, 2, 3 and 4 are satisfied. Then, H† is a Hilbert space

with an inner product for ha, hb ∈ H† given by:

⟨ha, hb⟩† := θ̃′aΓ(θ)θ̃b +

∞∑
n=1

λ̃′aj

(
lim
T→∞

D−1
T F ′

TΩ(θ)
−1FTD

−1
T

)
λ̃bj

+ lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
aTΩT (θ)

−1F̃bTλn. (4.6)

The convolution theorem can now be applied because Lemmas 4.1 and 4.2 show that the

sequence of statistical experiments {PNT,h, h ∈ H†} is LAN.

Theorem 4.2. Suppose that Assumptions 1, 2, 3 and 4 hold. Consider the sequence of statistical

experiments {PNT,h, h ∈ H†}. Suppose that the sequence of parameters κNT (h) and that of

estimators τNT are regular with respect to rNT . Then, the limit distribution L of rNT (τNT −

κNT (0)) equals the sum G+W of independent, tight, Borel-measurable random elements in B

such that:

b∗G ∼ N(0, ∥κ̇∗b∗∥2†), ∀b∗ ∈ B∗,

where the adjoint map κ̇∗ and the norm ∥ ·∥† are defined under the inner product given in (4.6).
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4.6 Applications

This section presents the findings summarized in Section 3 in a more mathematically rigorous

manner. All of the results presented in this section are applications of Theorem 4.2. We do not

repeat the discussions on the implications of these findings as they are already given in Section

3, so the discussion here is brief.

4.6.1 Efficiency bounds for factors and factor loadings

We first present the efficiency bound for a factor.

Theorem 4.3. Suppose that Assumptions 1, 2, 3 and 4 hold. Consider the sequence of statistical

experiments {PNT,h, h ∈ H†}. Fix t ∈ Z and take a factor ft. Let JNT be a p× p (nonrandom)

matrix such that JNT → J as N,T → ∞, where J is invertible. The variance of the limit

distribution of
√
N(τNT − J ′

NT ft) for any regular estimator τNT is not smaller than:

γ(0)J ′Σ−1
λλJ.

Next, we give the efficiency bound for a factor loading.

Theorem 4.4. Suppose that Assumptions 1, 2, 3 and 4 hold. Consider the sequence of statistical

experiments {PNT,h, h ∈ H†}. Fix n ∈ Z, and take a factor loading λn. Let J∗
NT be a p × p

(nonrandom) matrix such that J∗
NT → J∗ as N,T → ∞, where J∗ is invertible. The variance

of the limit distribution of DT (τNT −J∗
NTλn) for any regular estimator τNT is not smaller than:

J∗
(

lim
T→∞

D−1
T F ′

TΩT (θ)
−1FTD

−1
T

)−1

(J∗)′.

Lastly, we provide the efficiency bound for an interactive effect.

Theorem 4.5. Suppose that Assumptions 1, 2, 3 and 4 hold. Consider the sequence of statistical

experiments {PNT,h, h ∈ H†}. Fix t ∈ Z and n ∈ Z, and take an interactive effect f ′tλn. Let

rNT = min{
√
N,
√
a11(0), . . . ,

√
app(0)}. The variance of the limit distribution of rNT (τNT −

f ′tλn) for any regular estimator τNT is not smaller than:

f ′t

(
lim

N,T→∞
D−1

T rNT

)(
lim
T→∞

D−1
T F ′

TΩT (θ)
−1FTD

−1
T

)−1(
lim

N,T→∞
D−1

T rNT

)
ft

+

(
lim

N,T→∞

rNT√
N

)2

γ(0)λ′nΣ
−1
λλλn.

4.6.2 Efficiency bounds for common parameters

The next theorem provides the efficiency bound for any regular estimators of β(θ), where β(·)

is a differentiable function from Θ to RM .
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Theorem 4.6. Suppose that Assumptions 1, 2, 3 and 4 hold. Consider the sequence of exper-

iments {PNT,h, h ∈ H†}. Let β be a differentiable function from Θ into RM , and let τN,T be

any regular estimator of β(θ) as N,T → ∞. Let β̇(θ) = ∂β(θ)/∂θ. The variance of the limit

distribution of
√
NT (τNT − β(θ)) for any regular estimator τNT is not smaller than:

β̇(θ)Γ(θ)−1β̇(θ)′.

We have discussed panel AR(1) models, panel MA(1) models and the estimation of auto-

covariances in Section 3. The efficiency bounds for panel AR(1) and panel MA(1) models can

be derived by directly calculating the bound in Theorem 4.6. On the other hand, calculating

the efficiency bound for the estimation of autocovariances requires some additional nontrivial

theoretical derivation.

As argued in Section 3.2.3, we can use the results of Kakizawa and Taniguchi (1994) directly

because the efficiency bound has the same form as that in the time-series context.

Theorem 4.7. Suppose that Assumptions 1, 2, 3 and 4 hold. Consider the sequence of experi-

ments {PNT,h, h ∈ H†}.) Then, Okui’s (2010) autocovariance estimator γ̃k(θ) is asymptotically

efficient if and only if there exists c ∈ RL such that:

g2θ(s) cos(ks) + c′
∂

∂θ
gθ(s) = 0, ∀s. (4.7)

In particular, if {wnt}t∈Z is a Gaussian stationary ARMA(p, q) process, then γ̃k(θ) is asymp-

totically efficient if and only if:

p ≥ q and 0 ≤ k ≤ p− q. (4.8)

The proof is omitted because it is essentially same as the matrix algebra given in Kakizawa

and Taniguchi (1994). They comment that condition (4.7) is easy to check. They also show

in Example 1 that for the case of a Gaussian stationary ARMA(p, q) process, condition (4.7)

reduces to (4.8).

5 Discussion on local parameter spaces

In this section, we discuss subtle, yet important, issues concerning local parameter spaces for

the infinite-dimensional parameters. The convolution theorem requires that the local parameter

space be a linear subspace of a Hilbert space. However, it turns out that it is not a trivial task

to construct an appropriate local parameter space. We first discuss the result of Hahn and

Kuersteiner (2002), and then we discuss the difficulty arising when we apply their argument

to the current situation. We also discuss an alternative approach based on the literature on
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“functional models” in statistics. While this alternative approach is considered in statistics, it

is not possible to derive the efficiency bound for factors and factor loadings using this approach.

5.1 Models with individual effects

This subsection demonstrates the difficulty in constructing an appropriate local parameter space

in models with only individual effects. Hahn and Kuersteiner (2002) provide the efficiency bound

for panel AR(1) models, and their result is the seminal contribution to the literature on efficiency

in large panel data. However, they do not discuss how to specify the local parameter space.

We argue that specifying an appropriate local parameter space is far from trivial even in this

simple model. Our analysis indicates that it is very difficult, if not impossible, to derive the

efficiency bound for the estimation of individual effects (or factors and factor loadings in more

general models) under their approach.

Hahn and Kuersteiner (2002) consider panel AR(1) models with individual effects. For

expositional simplicity, we consider the following univariate model:

ynt = λn + wnt,

where λn is a scalar individual effect.16 While wnt is assumed to follow an AR(1) process

in Hahn and Kuersteiner (2002), the specification of the dynamics is not important in the

following discussion, and we merely assume that the law of wnt satisfies Assumptions 1 and 2.

The parameter set of the model is (θ, {λn}∞n=1).

Following Hahn and Kuersteiner (2002), we perturb the parameter (θ, {λn}∞n=1)) as follows:(
θ +

1√
NT

θ̃,

{
λn +

1√
NT

λ̃n

}∞

n=1

)
.

The local parameter is h = (θ̃, {λ̃n}∞n=1)). Under this perturbation, the local log-likelihood ratio

can be shown to be expanded in the following way; under PNT,0, as N,T → ∞:

log
dPNT,h

dPNT,0
= ∆+

NT,h −
1

2
∥h∥2+ + oPNT,0

(1),

where:

∆+
NT,h =

1

2
√
NT

N∑
n=1

{
w′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn − tr

(
Ω−1
0 (θ̃∇Ω0)

)}
+

1√
NT

N∑
n=1

λ̃n1
′
TΩ

−1
0 wn, (5.1)

and:

∥h∥+ := θ̃′Γ(θ)θ̃ + lim
N→∞

1

N

N∑
n=1

λ̃2n · lim
T→∞

1

T
1′TΩ

−1
0 1T .

16Hahn and Kuersteiner (2002) also consider multivariate models.
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Under PNT,0, the sequence ∆
+
NT,h converges weakly to ∆+

h ∼ N(0, ∥h∥2+) as N,T → ∞, provided

that limN→∞
∑N

n=1 λ̃
2
n/N exists and is finite (the limit of 1′TΩ

−1
0 1T /T always exists and equals∑∞

k=−∞ γk(θ) under our assumptions on gθ because the sequence (1, 1, · · · ) satisfies Grenander’s

condition).17

While one may think that we can straightforwardly apply the convolution theorem at first

glance, the situation is not that trivial. A key requirement of the convolution theorem is that

the local parameter space be a linear subspace of a Hilbert space. Thus, it must be a linear space

and must equip some appropriate inner product. We argue that it is not a trivial task to specify

an appropriate local parameter space. Note that Hahn and Kuersteiner’s (2002) argument is

incomplete in the sense that they do not specify the local parameter space concretely.

Here, we present a (failed) attempt to construct a local parameter space. Let Ξ denote

the local parameter space for individual effects. Because Hahn and Kuersteiner (2002) assume

that the true sequence of individual effects satisfies
∑N

n=1 λ
2
n/N = O(1) (Condition 4), we may

consider the following restriction on Ξ:18

lim
N→∞

1

N

N∑
n=1

λ̃2n exists and finite. (5.2)

However, it turns out that Ξ with this restriction does not yield an appropriate local parameter

space. The local parameter space given by the restriction (5.2) is not a linear subspace of a

Hilbert space.19 A sufficient condition for Ξ to be a linear space is that {λ̃n}∞n=1 is strongly Ces

� ro convergent in the following sense (see Theorem 17 of Maddox (1970, p. 190)):

lim
N→∞

1

N

N∑
n=1

(λ̃n − c)2 = 0 for some c ∈ R.

17Our expansion and Hahn and Kuersteiner’s do not coincide exactly, because of the difference of the parame-

terization for individual effects. More precisely, the formula in (5.1) does not reduce to that of Lemma 8 in Hahn

and Kuersteiner (2002). However, a one-to-one reparametrization turns our model into Hahn and Kuersteiner’s

and vice versa, so the difference of the parameterization does not change the information contained in the models.

In our case, we separate the parameter for the mean (λn) and the parameters for the variance (θ). On the other

hand, Hahn and Kuersteiner’s (2002) specification is ynt = λn/(1 − α) + wnt and wnt = αwn,t−1 + unt, so the

parameter α appears not only in the variance of ynt but also in the mean. Because of this, their formula is more

complicated than ours. Because the difference is not essential and our expansion is much simpler and easier to

deal with, we make our arguments here using our expansion (5.1).
18We note that assuming

∑N
n=1 λ̃

2
n/N = O(1) does not guarantee the existence of the limit of

∑N
n=1 λ̃

2
n/N . In

fact, we can construct an example where
∑N

n=1 λ̃
2
n/N is bounded but oscillates as N → ∞ (see, e.g., Davidson

(1994, p. 194)). Without assuming the existence of this limit, the first and second terms in the expansion of

(5.1) may not converge.
19For example, take an = 1 for all i and bn = (−1)k where k is determined by 2k < n ≤ 2k+1. Then

lim
∑N

n=1 a
2
n/N = lim

∑N
n=1 b

2
n/N = 1, but

∑N
n=1 anbn/N oscillates and so does

∑N
n=1(an + bn)

2/N .
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However, this condition is not sufficient either because Hilbert space requires an appropriate

inner product. The functional ({λ̃1n}∞n=1, {λ̃2n}∞n=1) 7→ limN→∞
∑N

n=1 λ̃1nλ̃2n/N does not define

an inner product but only defines a semi-inner product; i.e., the functional is not positive

definite. A successful way to turn a semi-inner product into an inner product is to take a

quotient space. In our case, however, taking a quotient of the space of strongly Ces � ro

convergent sequences by {{λ̃n}∞n=1 : limN→∞
∑N

n=1 λ̃
2
n/N = 0} implies that it is equivalent to

imposing a nonperturbation to individual effects. This aspect is extremely unfavorable.

Thus, we need to specify the local parameter space in a totally different way for the convo-

lution theorem to be applied. When there exist only individual effects, the approach considered

in this paper corresponds to using the space {{λ̃n}∞n=1 :
∑∞

n=1 λ̃
2
n < ∞} and the perturbation

to the parameter, (θ + θ̃/
√
NT, {λn + λ̃n/

√
T}∞n=1). Note that this approach is not adding

more restrictions on Ξ but considers a different perturbation because the rate of localization is

different.

On the other hand, there is an alternative approach based on the statistical literature on

“functional models.” We investigate this approach in more detail in the next subsection and

examine its advantages and its limitations. Under this approach, the rate of localization for

infinite-dimensional parameters is
√
NT . More precisely, in the context of Hahn and Kuer-

steiner (2002), we set Ξ = {{λ̃n}∞n=1|λ̃n = ϕ̃(λn), where ϕ̃(·) is continuous and bounded} and

the perturbation is (θ + θ̃/
√
NT, {λn + ϕ̃(λn)/

√
NT}∞n=1). Ξ is a Hilbert space, and θ is a

regular parameter under this alternative approach. Therefore, Hahn and Kuersteiner’s (2002)

argument becomes complete by specifying the local parameter space for individual effects using

the alternative approach. On the other hand, it turns out that an element of individual effects

is not a regular parameter, and the convolution theorem does not provide the efficiency bound.

Thus, if our objective is to derive the efficiency bound for the estimation of individual effects,

the approach taken by Hahn and Kuersteiner (2002) is not appropriate.20

5.2 Alternative approach

In this section, we come back to the factor model and examine the approach originated in

the “functional model” in the statistics literature for specifying the local parameter space.

We examine how this traditional approach works and discuss why we do not use it in this

paper. The main point is that under this approach, factors and factor loadings are not regular

parameters, and thus, we are not able to derive the efficiency bound for their estimation using

20Hahn and Kuersteiner (2002) provide the efficiency bound for the estimation of the AR(1) parameter and do

not discuss the bound for an individual effect.
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the convolution theorem. On the other hand, they are regular parameters in our specification

of the local parameter space, which enables us to apply the convolution theorem.

We first impose some conditions on the “true” value of the parameters. Let Cb(Rp) be the

space of continuous and bounded functions from Rp to Rp.

Assumption 5. 1. There exists a probability measure Φ such that:

(i) limN→∞(1/N)
∑N

n=1 ϕ(λn) converges weakly to
∫
ϕ(λ)dΦ(λ), ∀ϕ ∈ Cb(Rp);

(ii) limN→∞(1/N)
∑N

n=1 λnϕ(λn)
′ converges weakly to

∫
λϕ(λ)dΦ(λ), ∀ϕ ∈ Cb(Rp);

(iii) limN→∞(1/N)
∑N

n=1 λnλ
′
n =

∫
λλ′dΦ(λ) > 0.

2. There exists some continuous and bounded function g from [0, 1] to Rp such that ft =

ψ(t/T ) and that limT→∞(1/T )
∑T

t=1 ft =
∫ 1
0 ψ(a)da;

∫ 1
0 ψ(a)ψ(a)

′ds > 0.

Assumption 5.1 requires that the sequence of λn behave as if it were a realization of some

random vector whose law is Φ. This assumption is similar to that considered by Strasser (1996,

1998). Assumption 5.2 implies that the dynamics of ft is smooth. This specification of ft is

similar to that considered in Robinson (1989) for the space of time-varying parameters. These

conditions are used to guarantee that the log-likelihood ratio process has a well-defined limit.

Next, we define the space of local parameters. Let Cλ = (Cb(R))p such that ϕ̃ ∈ Cλ can

be written as ϕ̃(λ) = (ϕ̃(1)(λ1), . . . , ϕ̃
(p)(λp))

′. Each ϕ̃(m) is a function of λm only and does not

depend on λl for l ̸= m. Let ψ(m)(s) be the m-th element of vector ψ(s). Let C
(m)
b ([0, 1]) be

the space of continuous and bounded functions from [0, 1] to R that are orthogonal to ψ(m). Let

Cf =
∏p

m=1C
(m)
b ([0, 1]). The space of local parameters is H‡ = RL ×Cλ ×Cf . The restrictions

in Cf and Cλ are needed to make the functional appearing in the limit of the local log-likelihood

ratio an inner product.

We give several remarks on the parameter space. The space of factors is different from that

of factor loadings. These choices are made for technical reasons. The space Cλ is not suitable for

time-varying parameters in models with serially correlated errors. The factors need to satisfy

“Grenander’s conditions” (see, e.g., Grenander and Rosenblatt (1957) and Anderson (1971)) to

show the convergence of the log-likelihood ratio. However, the restriction imposed by Cλ does

not necessarily guarantee Grenander’s conditions. On the other hand, the space Cf is useful

to show the convergence but implicitly requires that the parameters be naturally ordered. The

factors depend on t, so it is naturally ordered. However, the factor loadings depend on n, but

there is no natural ordering among cross-sectional units. Therefore, it would not be appropriate

to use a space similar to Cf for the parameter space of local factor loadings.
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We consider localizing the parameters around the ‘truth’ (θ, {λn}∞n=1, {ft}∞t=1) with a disap-

pearing order of size O(1/
√
NT ):

θ +
θ̃√
NT

, λn +
λ̃n√
NT

and ft +
f̃t√
NT

, (5.3)

for n = 1, . . . , N and t = 1, . . . , T , where θ̃ ∈ RL, λ̃n = ϕ̃(λn) with ϕ̃ ∈ Cλ and f̃t = ψ̃(t/T )

with ψ̃ ∈ Cf . Note that under this approach, the orders of localization for factors and factor

loadings are different from those in the approach stated in Section 4.

We now examine the limit of the local log-likelihood ratio process. The local log-likelihood

ratio process is given by:

log
dPNT,h

dPNT,0

=
N

2
log detΩ0 −

N

2
log detΩθ̃ +

1

2

N∑
n=1

(yn − FTλn)
′Ω−1

0 (yn − FTλn)

−1

2

N∑
n=1

(
yn −

(
FT +

F̃T√
NT

)(
λn +

λ̃n√
NT

))′

Ω−1

θ̃

(
yn −

(
FT +

F̃T√
NT

)(
λn +

λ̃n√
NT

))
.

Under some regularity conditions, we can show that:

log
dPNT,h

dPNT,0
= ∆‡

NT,h −
1

2
∥h∥2‡ + oPNT,0

(1),

where:

∆‡
NT,h :=

1

2
√
NT

N∑
n=1

{
w′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn − tr

[
Ω−1
0 (θ̃∇Ω0)

]}
+

1√
NT

N∑
n=1

(F̃Tλn + FT λ̃n)
′Ω−1

0 wn, (5.4)

and:

∥h∥2‡ = θ̃′Γ(θ)θ̃ + lim
N,T→∞

1

NT

N∑
n=1

(F̃Tλn + FT λ̃n)
′Ω−1

0 (F̃Tλn + FT λ̃n).

The following lemma shows that H‡ is a linear subspace of a Hilbert space under the inner

product that is appropriate for our purpose.

Lemma 5.1. Suppose that Assumptions 1, 2 and 5 hold. Then, H‡ is a linear subspace of a

Hilbert space with an inner product for hl, hm ∈ H‡ given by:

⟨hl, hm⟩‡ := θ̃′lΓ(θ)θ̃m + lim
N,T→∞

1

NT

N∑
n=1

(F̃lTλn + FT λ̃ln)
′Ω−1

0 (F̃mTλn + FT λ̃mn) (5.5)

= θ̃′lΓ(θ)θ̃m +

∫
RL

∫ 1

0
(ψ(a)′ϕ̃l(λ) + λ′ψ̃l(a))(ψ(a)

′ϕ̃m(λ) + λ′ψ̃m(a))dadΦ(λ).
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We also show that {PNT,h, h ∈ H‡} is LAN.

Lemma 5.2. Suppose that Assumptions 1, 2 and 5 hold. Then, {PNT,h, h ∈ H‡} is LAN in the

sense that:

log
dPNT,h

dPNT,0
= ∆‡

NT,h −
1

2
∥h∥2‡ + oPNT,0

(1),

where ∆‡
NT,h is defined in (5.4) and converges weakly under PNT,0 to ∆‡

h ∼ N(0, ∥h∥2‡) and

∆‡
h is an iso-Gaussian process with a covariance function Eθ[∆

‡
h1
∆‡

h2
] = ⟨h1, h2⟩‡ and ⟨·, ·⟩‡ is

defined in (5.5)

Because we have shown that H‡ is a linear subspace of a Hilbert space and {PNT,h, h ∈ H‡}

is LAN, the convolution theorem can be applied, and the efficiency bound is derived.

Theorem 5.1. Suppose that Assumptions 1, 2 and 5 hold. Consider the sequence of statistical

experiments {PNT,h, h ∈ H‡}. Suppose that the sequence of parameters κNT (h) and estimators

τNT are regular with respect to rNT . Then, the limit distribution L of rNT (τNT −κNT (0)) equals

the sum G+W of independent, tight, Borel-measurable random elements in B such that:

b∗G ∼ N(0, ∥κ̇∗b∗∥2‡), ∀b∗ ∈ B∗,

where the adjoint map κ̇∗ and the norm ∥ ·∥‡ are defined under the inner product given in (5.5).

The efficiency bound for the estimation of θ can thus be derived using Theorem 5.1. It is

not difficult to show that the common parameter θ is a regular parameter. The efficiency bound

under this approach is the same as that presented in 4.6.

The problem of this approach is that factors and factor loadings are not regular parameters,

as shown in the next theorem.

Theorem 5.2. Suppose that Assumption 5 is satisfied.

Fix n ∈ N. Let κNT (h) = λn+ϕ̃(λn)/
√
T for ϕ̃ ∈ Cλ. Suppose that measure Φ in Assumption

5 does not have a point mass on λn. Then, h 7→ κ̇(h) = limN,T→∞
√
T (κNT (h) − κNT (0)) =

ϕ̃(λn) is not continuous on H‡ and, thus, κNT (h) is not regular.

Similarly, if we define κNT (h) = ft + ψ̃(ft)/
√
N fixing t ∈ N for ψ̃ ∈ Cf , then h 7→ κ̇(h) =

limN,T→∞
√
N(κNT (h) − κNT (0)) = ψ̃(ft) is not continuous on H‡, and thus κNT (h) is not

regular.

This theorem implies that we cannot derive the efficiency bound for the estimation of factors

and factor loadings using this alternative approach. The convolution theorem requires that the

parameter be regular. Suppose that λn is the parameter of interest. We then set κNT (h) =
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λn + ϕ̃(λn)/
√
T and rNT =

√
T . That κNT (h) is regular means that κ̇ should exist and be a

continuous linear functional on H‡. It is obvious that κ̇(h) = limN,T→∞ rNT (κNT (h)−κNT (0))

exists and is given by ϕ(λn). Although the functional h 7→ κ̇(h) is linear, it turns out that it

is not continuous on H‡, in general.21 A similar argument holds for ft. Therefore, factors and

factor loadings are not regular parameters, and the convolution theorem cannot be applied. We

note that regularity depends on the choice of the local parameter space. These parameters are

regular under H†, as shown in Section 4.

The regularity of κNT (h) corresponds to a so-called ‘differentiable parameter’ assumption

(see, e.g., van der Vaart (1991)), which is known to play a fundamental role in a semiparametric

version of the convolution theorem. In fact, Theorem 2.1 in van der Vaart (1991) implies that

when the derivative of the functional of parameters exists, the continuity of the derivative on a

tangent set is necessary for the existence of regular estimators for the functional.22 Hirano and

Porter (2012) prove the same nonexistence result under slightly stronger assumptions, but in a

simpler way.23 Furthermore, Theorem 4.1 in van der Vaart (1991) implies that a differentiable

parameter assumption is necessary and sufficient for the efficiency bound in a convolution theo-

rem to be well defined. These results are derived under i.i.d. assumptions. Because we consider

panel data, we cannot apply these results directly. Nonetheless, we conjecture that there is no

regular estimator for λn and ft and that the efficiency bounds for λn and ft are not well defined

under the localization (5.3) with local parameter space H‡.

6 Conclusion

In this paper, we investigate the asymptotic efficiency in general dynamic panel data models

with factor structure when both the cross-sectional sample size and the length of the time series

tend to infinity. By using the infinite-dimensional convolution theorem of van der Vaart and

Wellner (1996), the efficiency bounds for the estimation of factors, factor loadings and common

parameters are derived. It should be emphasized that the derivation is nontrivial and complex

because of the presence of factor structure. In particular, how to define the local parameter

space for the infinite- dimensional parameters is nontrivial.

We show that the efficiency bound of factors or factor loadings is not affected by the presence

21Our proof of Theorem 5.2 closely follows the argument in Example 3.1.1 in Bickel, et al. (1993).
22A ‘tangent set’ for semiparametric models with i.i.d. observations corresponds to a local parameter space

H in the infinite-dimensional convolution theorem. For more details, see Example 3.11.1 of van der Vaart and

Wellner (1996).
23Hirano and Porter (2012) also show no existence results of locally asymptotically unbiased estimators for

nondifferentiable functionals, which is the main result of their paper.
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of other parameters. These efficiency bounds are attainable in the sense that there exists an

estimator whose asymptotic variance is equal to the bound. The efficiency results for the

common parameters obtained here are analogous to those observed in time-series contexts, and

this implies that the presence of interactive effects, which is an infinite-dimensional nuisance

parameter, does not affect the form of the efficiency bound.

The theoretical results of this paper can be extended in various ways. For example, we may

consider the efficiency bound for regression models with factor error structure. The estimation is

considered by, for example, Bai (2009a), Moon and Weidner (2010) and Sarafidis and Yamagata

(2010). It is also interesting to consider the case with heteroscedasticity and/or cross-sectional

dependence. Because there exist estimators for those cases, such as Breitung and Tenhofen

(2011), it would be important to investigate whether those estimators achieve the efficiency

bound in more general settings.

A Appendix

A.1 Preliminaries

In this subsection, we list some properties concerning covariance matrices for stationary pro-

cesses associated with spectral density gθ. The following notation is used to state those proper-

ties. We denote the trace operator by tr[·]. For any matrix A, we define ∥A∥E := (tr(A′A))1/2

(the Euclidean norm) and ∥A∥B := sup∥x∥E=1 ∥Ax∥E (the Banach norm) where x is a vector

conformable with A. Note that for any Euclidean vector a, these two norms coincide, and the

norm is denoted by ∥a∥E . We repeatedly use the fact that for any conformable matrices A and

B, we have the relation ∥AB∥E ≤ ∥A∥B∥B∥E .

Lemma A.1. Suppose that Assumptions 1 and 2 are satisfied. Then, the following results hold.

(i)

∥ΩT (θ)∥B ≤ 2π sup
s
gθ(s) ≤

∞∑
k=−∞

|γk(θ)| <∞,

and:

∥ΩT (θ + ϵ)− ΩT (θ)∥B ≤ 2π sup
s

|gθ+ϵ(s)− gθ(s)| → 0, as ϵ→ 0.

(ii)

∥Ω−1
T (θ)∥B ≤ 1

2π
sup
s
g−1
θ (s) <∞,
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and:

sup
∥ϵ∥E<δ

∥Ω−1
T (θ + ϵ)∥ ≤ 1

2π
sup

∥ϵ∥E<δ
sup
s

|g−1
θ+ϵ(s)| <∞ for some δ > 0.

(iii)

1

T

∥∥∥∥ ∂

∂θm
ΩT (θ)

∥∥∥∥2
E

≤
∞∑

k=−∞

∣∣∣∣ ∂

∂θm
γk(θ)

∣∣∣∣2 = ∫ π

−π

∣∣∣∣ ∂

∂θm
gθ(s)

∣∣∣∣2 ds <∞,

and:

1

T

∥∥∥∥ ∂

∂θm
ΩT (θ + ϵ)− ∂

∂θm
ΩT (θ)

∥∥∥∥2
E

≤
∞∑

k=−∞

∣∣∣∣ ∂

∂θm
γk(θ + ϵ)− ∂

∂θm
γk(θ)

∣∣∣∣2
=

∫ π

−π

∣∣∣∣ ∂

∂θm
gθ+ϵ(s)−

∂

∂θm
gθ(s)

∣∣∣∣2 ds→ 0, as ϵ→ 0.

(iv)

1√
T

∥∥∥∥ ∂

∂θm
ΩT (θ)

∥∥∥∥
B

→ 0 as T → ∞.

Proof. This lemma is a special case of Corollary 3.3 in Davies (1973), which shows this lemma

in the setting of a multivariate Gaussian stationary process.24

A.2 Proofs of the theoretical results in Section 4.3

A.2.1 Proof of Lemma 4.1

Under the perturbation induced by a local parameter in H†, the local log-likelihood ratio process

is given by:

log
dPNT,h

dPNT,0

=
N

2
log detΩ0 −

N

2
log detΩθ̃ +

1

2

N∑
n=1

(yn − FTλn)
′Ω−1

0 (yn − FTλn)

−1

2

N∑
n=1

(
yn −

(
FT +

F̃T√
N

)(
λn +D−1

T λ̃n

))′

Ω−1

θ̃

(
yn −

(
FT +

F̃T√
N

)(
λn +D−1

T λ̃n

))

=
N

2
log detΩ0 −

N

2
log detΩθ̃ +

1

2

N∑
n=1

w′
nΩ

−1
0 wn − 1

2

N∑
n=1

w′
nΩ

−1

θ̃
wn

+

N∑
n=1

Ã′
nΩ

−1

θ̃
wn − 1

2

N∑
n=1

Ã′
nΩ

−1

θ̃
Ãn,

24Note that there is a minor difference between Davies’ result and ours in the expression of the spectral density

gθ: Davies (1973) uses {exp(−2πims)}m∈Z as a complete orthonormal set of L2(0, 1] (the set of all square-

integrable functions defined on (0, 1]), whereas we use
{

1
2π

exp(−ims)
}
m∈Z as a complete orthonormal set of

L2(−π, π]. However, this difference only affects the expressions, but there is no essential difference.
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where:

Ãn =
1√
N
F̃Tλn + FTD

−1
T λ̃n +

1√
N
F̃TD

−1
T λ̃n.

Lemma A.2. Suppose that Assumptions 1 and 2 hold. Under PNT,0, as N → ∞ and T → ∞:

N

2
log detΩ0 −

N

2
log detΩθ̃ +

1

2

N∑
n=1

w′
nΩ

−1
0 wn − 1

2

N∑
n=1

w′
nΩ

−1

θ̃
wn

=
1

2
√
NT

N∑
n=1

{
w′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn − tr

(
Ω−1
0 (θ̃∇Ω0)

)}
− 1

4T
tr
(
Ω−1
0 (θ̃∇Ω0)Ω

−1
0 (θ̃∇Ω0)

)
+ op(1).

Proof. This proof is very similar to that of Theorem 4.4 in Davies (1973), and the only difference

is that we also need to consider the cross-sectional dimension. The proof is, thus, omitted.

Lemma A.3. Suppose that Assumption 2 holds. As T → ∞:

1

2T
tr
[
Ω−1
0 (θ̃∇Ω0)Ω

−1
0 (θ̃∇Ω0)

]
= θ̃′Γ(θ)θ̃ + o(1).

Proof. This lemma is a special case of Theorem 4.4 in Davies (1973).

Lemma A.4. Suppose that Assumptions 1, 2, 3 and 4 hold. Under PNT,0, as N → ∞ and

T → ∞:

N∑
n=1

Ã′
nΩ

−1

θ̃
wn − 1

2

N∑
n=1

Ã′
nΩ

−1

θ̃
Ãn =

N∑
n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)′
Ω−1
0 wn

−1

2

N∑
n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)′
Ω−1
0

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)
+ op(1).

Proof. First observe that:

Eθ

∣∣∣∣∣
N∑

n=1

Ã′
nΩ

−1

θ̃
wn −

N∑
n=1

Ã′
nΩ

−1
0 wn

∣∣∣∣∣
2

=
N∑

n=1

Ã′
n(Ω

−1

θ̃
− Ω−1

0 )Ωθ(Ω
−1

θ̃
− Ω−1

0 )Ãn

≤

(
N∑

n=1

Ã′
nÃn

)
∥Ω−1

0 ∥2B∥Ω−1

θ̃
∥2B∥Ωθ∥B∥Ω0 − Ωθ̃∥B. (A.1)
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Now, we have:

N∑
n=1

Ã′
nÃn

=
N∑

n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n +

1√
N
F̃TD

−1
T λ̃n

)′( 1√
N
F̃Tλn + FTD

−1
T λ̃n +

1√
N
F̃TD

−1
T λ̃n

)

=
1

N

N∑
n=1

T∑
t=1

(f̃ ′tλn)
2 +

N∑
n=1

T∑
t=1

(f ′tD
−1
T λ̃n)

2 +
2√
N

N∑
n=1

T∑
t=1

f̃ ′tλnf
′
tD

−1
T λ̃n

+
2

N

N∑
n=1

T∑
t=1

f̃ ′tD
−1
T λ̃nf̃

′
tλn +

2√
N

N∑
n=1

T∑
t=1

f̃ ′tD
−1
T λ̃nf

′
tD

−1
T λ̃n

+
1

N

N∑
n=1

T∑
t=1

(f̃ ′tD
−1
T λ̃n)

2.

The first term is:

1

N

N∑
n=1

T∑
t=1

(f̃ ′tλn)
2 ≤ 1

N

N∑
n=1

T∑
t=1

f̃ ′t f̃tλ
′
nλn =

1

N

N∑
n=1

λ′nλn

T∑
t=1

f̃ ′t f̃t = O(1),

by the Cauchy–Schwarz inequality, Assumption 3 and the definition of H†. The second term of

the right-hand side is:

N∑
n=1

T∑
t=1

(f ′tD
−1
T λ̃n)

2 ≤
N∑

n=1

T∑
t=1

f ′tD
−1
T D−1

T ftλ̃
′
nλ̃n =

N∑
n=1

λ̃′nλ̃n

T∑
t=1

f ′tD
−1
T D−1

T ft = O(1),

by the Cauchy–Schwarz inequality and the definitions of H† and DT . For the third term, we

have:∣∣∣∣∣ 2√
N

N∑
n=1

T∑
t=1

f̃ ′tλnf
′
tD

−1
T λ̃n

∣∣∣∣∣ ≤ 2

(
1

N

N∑
n=1

T∑
t=1

(f̃ ′tλn)
2

)1/2(
1

N∑
n=1

T∑
t=1

(f ′tD
−1
T λ̃n)

2

)1/2

= O(1),

by the Cauchy–Schwarz inequality and the arguments that show the orders of the first and the

second terms. Similarly, we can show that the fourth to sixth terms are o(1). Therefore, we

show that
∑N

n=1 Ã
′
nÃn/(NT ) = O(1) so that the extreme right-hand side of (A.1) is o(1) as

N,T → ∞, by Lemma A.1 (i) and (ii). Thus, we have:

N∑
n=1

Ã′
nΩ

−1

θ̃
wn =

N∑
n=1

Ã′
nΩ

−1
0 wn + op(1).

We observe that

N∑
n=1

Ã′
nΩ

−1
0 wn =

N∑
n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)′
Ω−1
0 wn +

1√
N

N∑
n=1

(F̃TD
−1
T λ̃n)

′Ω−1
0 wn.
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The mean of the second term of the right-hand side is zero and the variance is:

Eθ

(
1√
N

N∑
n=1

(F̃TD
−1
T λ̃n)

′Ω−1
0 wn

)2

=
1

N

N∑
n=1

(F̃TD
−1
T λ̃n)

′Ω−1
0 (F̃TD

−1
T λ̃n)

≤ 1

N
||Ω−1

0 ||B
N∑

n=1

(F̃TD
−1
T λ̃n)

′(F̃TD
−1
T λ̃n)

= ||Ω−1
0 ||B

1

N

N∑
n=1

T∑
t=1

(f̃tD
−1
T λ̃n)

2 = o(1),

by the definition of H† and Assumption 4. Thus, we have:

N∑
n=1

Ã′
nΩ

−1

θ̃
wn =

N∑
n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)′
Ω−1
0 wn + op(1). (A.2)

Next, observe that:∣∣∣∣∣
N∑

n=1

Ã′
nΩ

−1

θ̃
Ãn −

N∑
n=1

Ã′
nΩ

−1
0 Ãn

∣∣∣∣∣ ≤
(

N∑
n=1

Ã′
nÃn

)
∥Ω−1

θ̃
∥B∥Ω−1

0 ∥B∥Ωθ̃ − Ω0∥B = o(1),

because we have already shown that
∑N

n=1 Ã
′
nÃn = O(1). Hence, we have:

N∑
n=1

Ã′
nΩ

−1

θ̃
Ãn =

N∑
n=1

Ã′
nΩ

−1
0 Ãn + o(1),

as N,T → ∞. We now have:

N∑
n=1

Ã′
nΩ

−1
0 Ãn

=
N∑

n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)′
Ω−1
0

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)

+2
1√
N

N∑
n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)′
Ω−1
0 F̃TD

−1
T λ̃n +

1

N

N∑
n=1

(F̃TD
−1
T λ̃n)

′Ω−1
0 F̃TD

−1
T λ̃n.

By the Cauchy–Schwarz inequality, we have:∣∣∣∣∣ 1√
N

N∑
n=1

(
1√
N
F̃Tλn + FTD

−1
T λ̃n

)′
Ω−1
0 F̃TD

−1
T λ̃n

∣∣∣∣∣
≤ 1√

N
||Ω−1

0 ||B

( 1

N

N∑
n=1

T∑
t=1

(f̃ ′tλn)
2

)1/2

+

(
N∑

n=1

T∑
t=1

(f ′tD
−1
T λ̃n)

2

)1/2


×

(
N∑

n=1

T∑
t=1

(f̃ ′tD
−1
T λ̃n)

2

)1/2

= o(1),

by Assumption 3 and the definitions of H† and D−1
T . We also have:

1

N

N∑
n=1

(F̃TD
−1
T λ̃n)

′Ω−1
0 F̃TD

−1
T λ̃n ≤ 1

N
||Ω−1

0 ||B
N∑

n=1

T∑
t=1

(f̃tD
−1
T λ̃n)

2 = o(1),
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by Assumptions 2 and the definition of H1. Thus, we have:

1

NT

N∑
n=1

Ã′
nΩ

−1

θ̃
Ãn =

1

NT

N∑
n=1

(F̃Tλn + FT λ̃n)
′Ω−1

0 (F̃Tλn + FT λ̃n) + o(1), (A.3)

as N,T → ∞.

Combining (A.2) and (A.3) yields the desired result.

The next two lemmas provide the expression for the “norm part” in the expansion of the

local log-likelihood ratio.

Lemma A.5. Suppose that Assumptions 1, 2, 3 and 4 hold. For h ∈ H†, as N,T → ∞:

1√
N

N∑
n=1

λ̃′nD
−1
T F ′

TΩ(θ)
−1F̃Tλn = o(1).

Proof. First observe that:∣∣∣∣∣ 1√
N

N∑
n=1

λ̃′nD
−1
T F ′

TΩ(θ)
−1F̃Tλn

∣∣∣∣∣ ≤ 1√
N

N∑
n=1

∥∥∥λnλ̃′n∥∥∥
E

∥∥D−1
T FT

∥∥
E

∥∥Ω(θ)−1
∥∥
B

∥∥∥F̃T

∥∥∥
E

≤ B√
N

N∑
n=1

∥∥∥λ̃n∥∥∥
E

∥∥D−1
T FT

∥∥
E

∥∥Ω(θ)−1
∥∥
B

∥∥∥F̃T

∥∥∥
E
.

Obviously,
∥∥D−1

T FT

∥∥
E
,
∥∥Ω(θ)−1

∥∥
B
, and

∥∥∥F̃T

∥∥∥
E

are O(1) as T → ∞. Below we show that

(1/
√
N)
∑N

n=1 ∥λ̃′n∥E = o(1) as N → ∞. To show this, fix ϵ > 0. Because {λ̃n}n∈Z is square

summable, there exists some N1 ∈ Z such that for any s, t ≥ N1, we have:

t∑
n=s+1

∥λ̃n∥2 <
ϵ

2
.

Now, take N2 ∈ Z large enough to ensure that:

1√
N2

N1∑
n=1

∥λ̃n∥E < ϵ/2. (A.4)

Such a number N2 exists because N1 is finite. Then, for any N > max{N1, N2}, we have:

1√
N

N∑
n=1

∥∥∥λ̃n∥∥∥
E

=
1√
N

M∑
n=1

∥∥∥λ̃n∥∥∥
E
+

1√
N

N∑
n=N1+1

∥∥∥λ̃n∥∥∥
E

<
ϵ

2
+

√
N −N1√
N

 N∑
n=N1+1

∥∥∥λ̃n∥∥∥2
E

1/2

< ϵ,

where the second inequality follows from (A.4) and the Cauchy–Schwarz inequality. This com-

pletes the proof.

34



Lemma A.6. Suppose that Assumptions 1 and 2 hold. For {f̃t}∞t=1 ∈ ℓp2, the matrix sequence

{F̃ ′
TΩT (θ)

−1F̃T }∞T=1 converges as T → ∞.

Proof. If f̃t = 0 for all t ∈ N, then the result trivially holds. Thus, we assume that {f̃t}∞t=1 is

not the zero vector in ℓp2.

Because the matrix F̃ ′
TΩT (θ)

−1F̃T is symmetric, the convergence of F̃ ′
TΩT (θ)

−1F̃T is equiv-

alent to the convergence of x′F̃ ′
TΩT (θ)

−1F̃Tx for any x ∈ Rp. Thus, we may, without loss of

generality, assume that f̃t is one dimensional (i.e., p = 1), so that F̃T is a vector, rather than a

matrix.

Our plan is to show that the sequence in question is a Cauchy sequence. That is, we show

that for any ϵ > 0, we can choose a sufficiently large T0 ∈ N such that:∣∣∣F̃ ′
T2
ΩT2(θ)

−1F̃T2 − F̃ ′
T1
ΩT1(θ)

−1F̃T1

∣∣∣ < ϵ, ∀T1, T2 ≥ T0.

We now fix ϵ > 0 and take a positive number δ such that:

δ < min

 ϵπ

3
(∑∞

t=1 f̃
2
t

) (
sups g

−1
θ (s)

)2 , infs gθ(s)2

 .

The reason for this choice of δ will become clear below.

The main difficulty of the proof is that the sequence involves the inverse matrix ΩT (θ)
−1,

whose form is unclear in general and whose order grows to infinity as T → ∞. We overcome

technical difficulties caused by the matrix ΩT (θ)
−1 by approximating it by the covariance matrix

of some autoregressive process. Let a(z) := 1 − a1z − a2z
2 − · · · − amz

m (z ∈ C and m ∈ N),

and assume that a(z) has no roots inside the unit circle and A(λ) := (K/2π)|a(e−iλ)|−2 where

K > 0. The function A(λ) is the spectral density of an autoregressive process {Xt}∞t=−∞ of

order m whose autoregressive coefficients are a1, a2, · · · , am and whose innovation variance is

K. From Corollary 4.4.2. of Brockwell and Davis (1990), we can choose the polynomial a(z)

and the positive number K such that:

|gθ(λ)−A(λ)| < δ ∀λ ∈ [π, π]. (A.5)

For each T ∈ N, let HT be the covariance matrix of X1, X2, · · · , XT .

To prove (A.5), we observe that for any T1, T2 ∈ N:∣∣∣F̃ ′
T2
ΩT2(θ)

−1F̃T2 − F̃ ′
T1
ΩT1(θ)

−1F̃T1

∣∣∣
≤ |F̃ ′

T2
ΩT2(θ)

−1F̃T2 − F̃ ′
T2
H−1

T2
F̃T2 |+ |F̃ ′

T2
H−1

T2
F̃T2 − F̃ ′

T1
H−1

T1
F̃T1 |

+ |F̃ ′
T1
H−1

T1
F̃T1 − F̃ ′

T1
ΩT1(θ)

−1F̃T1 |.
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We show that each absolute value on the right-hand side of the inequality is bounded by ϵ/3.

We first show the following result:

|F̃ ′
TΩT (θ)

−1F̃T − F̃ ′
TH

−1
T F̃T | <

ϵ

3
, ∀T ∈ N. (A.6)

To show this, notice that the (j, k)-th component of HT can be written as
∫ π
−π e

i(j−k)A(λ)dλ.

Then, for any T ∈ N and any x = (x1, x2, · · · , xT )′ ∈ RT with ∥x∥E = 1, we have:

|x′ΩT (θ)x− x′HTx| =

∣∣∣∣∣
T∑
t=1

T∑
s=1

xtxs

∫ π

−π
ei(t−s)(gθ(λ)−A(λ))dλ

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ π

−π

∣∣∣∣∣
T∑
t=1

xte
itλ

∣∣∣∣∣
2

(gθ(λ)−A(λ)) dλ

∣∣∣∣∣∣
< δ

∫ π

−π

∣∣∣∣∣
T∑
t=1

xte
itλ

∣∣∣∣∣
2

dλ = 2πδ.

Consequently, we have ∥Ω(θ)−HT ∥B ≤ 2πδ for all T . We also note that ∥H−1
T ∥B ≤ (1/2π) supsA

−1(s) ≤

(1/π) sups g
−1
θ (s).25 Therefore, it holds that for any T :

|F̃ ′
TΩ(θ)

−1F̃T − F̃ ′
TH

−1
T F̃T | = |F̃ ′

TH
−1
T (HT − Ω(θ))Ω(θ)−1F̃T |

≤ ∥F̃T ∥2E∥H−1
T ∥B∥Ω(θ)−1∥B∥HT − Ω(θ)∥B

≤
δ
(∑∞

t=1 f̃
2
t

) (
sups g

−1
θ (s)

)2
π

<
ϵ

3
,

where the last inequality follows from our choice of δ. This completes the proof of (A.6).

It remains to prove that for any sufficiently large T1 and T2, we have:

|F̃ ′
T2
H−1

T2
F̃T2 − F̃ ′

T1
H−1

T1
F̃T1 | <

ϵ

3
.

To show this result, we write the matrix H−1
T in a tractable form. As in Brockwell and Davis

(1991, p. 381), we can use the Gram–Schmidt orthogonalization procedure to produce a white-

25Here is the proof of this inequality. We show that infs gθ(s)/2 ≤ infs A(s), which implies the desired result.

Because |gθ(s)−A(s)| < δ, we have gθ(s) < A(s) + δ. Thus, infs gθ(s)− δ ≤ infs A(s). Because δ < infs gθ(s)/2,

it follows that infs gθ(s)/2 ≤ infs A(s).
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noise process {Wt}∞t=1 with variance K, as follows:

W1 := b11X1

W2 := b21X1 + b22X2

...

Wm := bm1X1 + · · ·+ bmmXm

Wm+1 := −amX1 − · · · − a1Xm +Xm+1

....

Now, we define a T × T lower triangular matrix RT by:

RT :=



b11

b21 b22
...

...

bm1 bm2 . . . bmm

−am −am−1 . . . −a1 1

−am . . . −a2 −a1 1

−am . . . −a2 −a1 1



.

Then: 
W1

...

WT

 = RT


X1

...

XT

 .

From this, it can be easily seen that ΩT (θ)
−1 = (1/K)R′

TRT . Now, we define a0 := 1. Because∑∞
t=1 f̃

2
t <∞, we can pick a natural number T0 such that:

T2∑
t=T1+1

f̃2t <
Kϵ

3m2max0≤j≤m a2j
, ∀T1, T2 ≥ T0 −m.
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Thus, for any T1, T2 ∈ N with T2 > T1 ≥ T0:

|F̃ ′
T2
H−1

T2
F̃T2 − F̃ ′

T1
H−1

T1
F̃T1 | =

1

K
|F̃ ′

T2
R′

T2
RT2F̃T2 − F̃ ′

T1
R′

T1
RT1F̃T1 |

=
1

K

T2∑
t=T1+1

 m∑
j=0

aj f̃t−j

2

≤
max0≤j≤m a

2
j

K

T2∑
t=T1+1

 m∑
j=0

|f̃t−j |

2

≤
max0≤j≤m a

2
j

K

∣∣∣∣∣∣
m∑
j=0

√√√√ T2∑
t=T1+1

|f̃t−j |2

∣∣∣∣∣∣
2

<
ϵ

3
.

where the last two inequalities follow from the Minkowski inequality and from our choice of

T0.

The next lemma gives the asymptotic distribution of ∆†
NT,h.

Lemma A.7. Suppose that Assumptions 1, 2, 3 and 4 hold. Let ∆†
NT,h be defined as in (4.4).

Under PNT,0, as N → ∞ and T → ∞:

∆†
NT,h

d→ N
(
0, ∥h∥2†

)
,

where ∥h∥2† is defined in (4.5).

Proof. Note that Lemmas A.5 and A.6 are used to give the expression of ∥h∥2† .

We use Theorem 2 in Phillips and Moon (1999), which is a Lindberg–Levy-type central limit

theorem for double-indexed stochastic processes. We define:

QnT =
1

2
√
T

{
w′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn − tr

[
Ω−1
0 (θ̃∇Ω0)

]}
+ (F̃Tλn +

√
NFTD

−1
T λ̃n)

′Ω−1
0 wn,

and:

σNT :=
N∑

n=1

Eθ[Q
2
nT ] and ξn,NT := σ

− 1
2

NTQnT .

38



First, observe that:

1

N
σN

=
1

N

N∑
n=1

Eθ

∣∣∣∣ 1

2
√
T

{
w′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn − tr

[
Ω−1
0 (θ̃∇Ω0)

]}
+ (F̃Tλn +

√
NFTD

−1
T λ̃n)

′Ω−1
0 wn

∣∣∣∣2
=

1

2T
tr
[
Ω−1
0 (θ̃∇Ω0)Ω

−1
0 (θ̃∇Ω0)

]
+

1

N

N∑
n=1

(F̃Tλn +
√
NFTD

−1
T λ̃n)

′Ω−1
0 (F̃Tλn +

√
NFTD

−1
T λ̃n)

+
1

N
√
T

N∑
n=1

Eθ[w
′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn(F̃Tλn +

√
NFTD

−1
T λ̃n)

′Ω−1
0 wn]

=
1

2T
tr
[
Ω−1
0 (θ̃∇Ω0)Ω

−1
0 (θ̃∇Ω0)

]
+

1

N

N∑
n=1

(F̃Tλn +
√
NFTD

−1
T λ̃n)

′Ω−1
0 (F̃Tλn +

√
NFTD

−1
T λ̃n),

where the last equality follows from the fact that wn is Gaussian so that its third moment is

zero. By Lemmas A.3, A.5 and A.6, it follows that as N,T → ∞:

1

N
σNT → θ̃′Γ(θ)θ̃ + lim

N,T→∞

1

N

N∑
n=1

(F̃Tλn +
√
NFTD

−1
T λ̃n)

′Ω−1
0 (F̃Tλn +

√
NFTD

−1
T λ̃n) = ∥h∥†.

Hence, if:

N∑
n=1

ξn,NT
d→ N(0, 1), (A.7)

as N,T → ∞, then the desired convergence (A.10) is proved.

To establish the convergence (A.7), it is sufficient to show the Lindberg condition in Theorem

2 in Phillips and Moon; i.e., we show that, for each ϵ > 0, the term:

N∑
n=1

Eθ

[
ξ2n,NT 1{ξ2n,NT > ϵ}

]
= σ−1

NT

N∑
n=1

Eθ

[
Q2

nT 1{|σ−1
NTQ

2
nT | > ϵ}

]
, (A.8)

converges to 0 as N,T → ∞, where 1{·} denotes an indicator function. Let:

Q1nT =
1

2
√
T

{
w′
nΩ

−1
0 (θ̃∇Ω0)Ω

−1
0 wn − tr

[
Ω−1
0 (θ̃∇Ω0)

]}
,

and:

Q2nT = (F̃Tλn +
√
NFTD

−1
T λ̃n)

′Ω−1
0 wn.

Then, we have QnT = Q1nT +Q2nT and Q2
nT ≤ 2Q2

1nT +2Q2
2nT . It can be seen by the Cauchy–

Schwarz inequality that:

Eθ

[
Q2

nT 1{|σ−1
NTQ

2
nT | > ϵ}

]
≤ Eθ

[
(2Q2

1nT + 2Q2
2nT )1{|σ−1

NTQ
2
nT | > ϵ}

]
≤ 2

(
Eθ[Q

4
1nT ] + Eθ[Q

4
2nT ]

)1/2 (Eθ[1{|σ−1
NTQ

2
nT | > ϵ}]

)1/2
.
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We have:

Eθ[1{|σ−1
NTQ

2
nT | > ϵ}] = Pr(σ−1

NTQ
2
nT > ϵ)

≤ Pr(2Q2
1nT + 2Q2

2nT > ϵσNT )

≤ Pr(2Q2
1nT > ϵσNT /2) + Pr(2Q2

2nT > ϵσNT /2).

By the Chebyshev inequality, it holds that:

Pr(2Q2
1nT > ϵσNT /2) ≤

16Eθ[Q
4
1nT ]

ϵ2σ2NT

.

Let α(a) := Pr(|Z| > a), where Z is the standard Gaussian random variable. Because Q2nT is

Gaussian with mean zero, we have:

Pr(2Q2
2nT > ϵσNT /2) = α

(√
ϵσNT

4E(Q2
2nT )

)
.

Thus, it holds that:

σ−1
NT

N∑
n=1

Eθ

[
Q2

nT 1{|σ−1
NTQ

2
nT | > ϵ}

]
≤ σ−1

NT

N∑
n=1

2
(
Eθ[Q

4
1nT ] + Eθ[Q

4
2nT ]

)1/2(16Eθ[Q
4
1nT ]

ϵ2σ2NT

+ α

(√
ϵσNT

4E(Q2
2nT )

))1/2

≤

(
sup

1≤n≤N

16Eθ[Q
4
1nT ]

ϵ2σ2NT

+ sup
1≤n≤N

α

(√
ϵσNT

4E(Q2
2nT )

))1/2
1

σNT

N∑
n=1

2
(
Eθ[Q

4
1nT ] + Eθ[Q

4
2nT ]

)1/2
≤

(
16N2

ϵ2σ2NT

1

N2
sup

1≤n≤N
Eθ[Q

4
1nT ] + sup

1≤n≤N
α

(√
ϵσNT

4E(Q2
2nT )

))1/2

× 2N

σNT

(
1

N

N∑
n=1

(Eθ[Q
4
1nT ] + Eθ[Q

4
2nT ])

)1/2

.

We note that Q1nT is i.i.d. across n so that:

sup
1≤n≤N

Eθ[Q
4
1nT ] =

1

N

N∑
n=1

Eθ[Q
4
1nT ] = Eθ[Q

4
1nT ].

Now, we have:

Eθ[Q
4
1nT ] =

1

T 2
Eθ

∣∣∣w′
nΩ

−1
0

(
θ̃∇Ω0

)
Ω−1
0 wn − tr

[
Ω−1
0

(
θ̃∇Ω0

)]∣∣∣4 .
Let BT := Ω−1

0

(
θ̃∇Ω0

)
Ω−1
0 and observe that:

1

T 2
Eθ

∣∣w′
nBTwn − tr [BTΩ0]

∣∣4
=

1

T 2

{
Eθ

∣∣w′
nBTwn

∣∣4 − 4tr [BTΩ0]Eθ

∣∣w′
nBTwn

∣∣3 + 6 (tr [BTΩ0])
2 Eθ

∣∣w′
nBTwn

∣∣2
−4 (tr (BTΩ0))

3 Eθ

∣∣w′
nBTwn

∣∣+ (tr (BTΩ0))
4
}
.
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Applying the formulas for the third and fourth moments of quadratic forms in Gaussian random

vectors (see, e.g., Theorem 10.21 in Schott (2006)), we see that:

1

T 2
Eθ

∣∣w′
nBTΩ0Ω

−1
0 wn − tr (BTΩ0)

∣∣4 =
12

T 2

(
tr
{
(BTΩ0)

2
})2

+
48

T 2
tr
{
(BTΩ0)

4
}

≤ 60

T 2

∥∥∥θ̃∇Ω0

∥∥∥4
E
∥Ω−1

0 ∥4B.

The extreme right-hand side is O(1) as N,T → ∞ by Lemma 1 (ii) and (iii). Therefore,

Eθ[Q
4
1nT ] = O(1). Next, we consider:

1

N

N∑
n=1

Eθ[Q
4
2nT ] =

1

N

N∑
n=1

Eθ

∣∣∣(F̃Tλn +
√
NFTD

−1
T λ̃n)

′Ω−1
0 wn

∣∣∣4 .
Because wn is Gaussian, it holds that:

Eθ

∣∣∣(F̃Tλn +
√
NFTD

−1
T λ̃n)

′Ω−1
0 wn

∣∣∣4 = 3
(
(F̃Tλn +

√
NFTD

−1
T λ̃n)

′Ω−1
0 (F̃Tλn +

√
NFTD

−1
T λ̃n)

)2
.

We also observe that:

(F̃Tλn +
√
NFTD

−1
T λ̃n)

′Ω−1
0 (F̃Tλn +

√
NFTD

−1
T λ̃n)

≤ 2||Ω−1
0 ||B(λ′nF̃ ′

T F̃Tλn +Nλ̃′nD
−1
T F ′

TFTD
−1
T λ̃n)

= 2||Ω−1
0 ||B

(
T∑
t=1

(f̃ ′tλn)
2 +N

T∑
t=1

(f ′tD
−1
T λ̃n)

2

)
.

Thus, we have:

1

N

N∑
n=1

Eθ[Q
4
2nT ] ≤ 12

N

N∑
n=1

(||Ω−1
0 ||B)2

(
T∑
t=1

(f̃ ′tλn)
2 +N

T∑
t=1

(f ′tD
−1
T λ̃n)

2

)2

≤ 24

N

N∑
n=1

(||Ω−1
0 ||B)2

( T∑
t=1

(f̃ ′tλn)
2

)2

+

(
N

T∑
t=1

(f ′tD
−1
T λ̃n)

2

)2


≤ 24(||Ω−1
0 ||B)2

 1

N

N∑
n=1

(λ′nλn)
2

(
T∑
t=1

f̃ ′t f̃t

)2

+N

N∑
n=1

(λ̃′nλ̃n)
2

(
T∑
t=1

f ′tD
−2
T ft

)2


= O(N),

by Assumption 5 and the definitions of D−1
T and H†. Furthermore, we note that:

sup
1≤n≤N

α

(√
ϵσNT

4E(Q2
2nT )

)
= α

(√
ϵσNT

4 sup1≤n≤N E(Q2
2nT )

)
= o(N−2),

by Assumption 5 and the fact that the tail of the Gaussian distribution decreases at an expo-

nential rate. Because σNT /N converges, it holds that:

σ−1
NT

N∑
n=1

Eθ

[
Q2

nT 1{|σ−1
NTQ

2
nT | > ϵ}

]
= o(1).

Therefore, the Lindberg condition is satisfied, and the proof is complete.

Lemma 4.1 follows from Lemmas A.2, A.3, A.4 and A.7.
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A.2.2 Proof of Lemma 4.2

To prove Lemma 4.2, we first show several technical lemmas.

Lemma A.8. Suppose that Assumptions 1, 2 and 3 are satisfied. For any two elements, F̃a =

{f̃at}∞t=1 and F̃b = {f̃bt}∞t=1 in ℓp2, the following results hold.

(i) The sequence F̃ ′
aTΩT (θ)

−1F̃bT converges as T → ∞.

(ii) The limit limN,T→∞
∑N

n=1 λ
′
nF̃

′
aTΩT (θ)

−1F̃bTλn/N exists. Furthermore, it is given by:

lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
aTΩT (θ)

−1F̃bTλn = tr

(
lim

N→∞

1

N

N∑
n=1

λnλ
′
n lim
T→∞

F̃ ′
aTΩT (θ)

−1F̃bT

)
.

Proof. To show the first result, it suffices to prove that for any x, y ∈ Rp, the sequence

x′F̃ ′
aTΩT (θ)

−1F̃bT y converges as T → ∞. Note that we can write:

x′F̃ ′
aTΩT (θ)

−1F̃bT y =
1

4

(
x′F̃ ′

aT + y′F̃ ′
bT

)
ΩT (θ)

−1
(
F̃aTx+ F̃bT y

)
− 1

4

(
x′F̃ ′

aT − y′F̃ ′
bT

)
ΩT (θ)

−1
(
F̃aTx− F̃bT y

)
. (A.9)

Because {x′f̃at}∞t=1 and {y′f̃bt}∞t=1 are both in ℓ12, so are the sum {x′f̃at + y′f̃bt}∞t=1 and the

difference {x′f̃at−y′f̃bt}∞t=1. Thus, we can apply Lemma A.6 to show that each of the two terms

in the right-hand side of (A.9) converges. Hence, the left-hand side also converges. This proves

the first result.

To show the second result, we write:

1

N

N∑
n=1

λ′nF̃
′
aTΩT (θ)

−1F̃bTλn = tr

(
1

N

N∑
n=1

λnλ
′
nF̃

′
TaΩT (θ)

−1F̃bT

)
.

Because Assumption 3 ensures the existence of limN→∞
∑N

n=1 λnλ
′
n/N , the desired result im-

mediately follows from the first result.

Lemma A.9. Suppose that Assumptions 1, 2 and 3 are satisfied. There exist two positive

numbers c and C such that:

c

∞∑
t=1

∥f̃t∥2E ≤ lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
TΩT (θ)

−1F̃Tλn ≤ C

∞∑
t=1

∥f̃t∥2E ,

for all F̃ = {f̃t}∞t=1 ∈ ℓp2 (note that the two numbers c and C do not depend on F̃ ).

Proof. For any square matrix A, we denote the maximum and minimum eigenvalues of A by
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λmax(A) and λmin(A), respectively. Observe that for each fixed T and N :

1

N

N∑
n=1

λ′nF̃
′
TΩT (θ)

−1F̃Tλn ≤ λmax(ΩT (θ)
−1)

N

N∑
n=1

λ′nF̃
′
T F̃Tλn

=
1

λmin(ΩT (θ))N

N∑
n=1

λ′nF̃
′
T F̃Tλn

≤ 1

(infs gθ(s))N

N∑
n=1

λ′nF̃
′
T F̃Tλn,

where the last inequality follows from the fact that the infs gθ(s) ≤ λmin (ΩT (θ)) for any T (see,

for example, Proposition 4.5.3 in Brockwell and Davis (1991)). Letting N,T → ∞ yields:

lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
TΩT (θ)

−1F̃Tλn

≤ 1

infs gθ(s)
tr

(
lim
T→∞

F̃ ′
T F̃T

(
lim

N→∞

1

N

N∑
n=1

λnλ
′
n

))

≤ λmax (Σλλ)

infs gθ(s)
tr

(
lim
T→∞

F̃ ′
T F̃T

)
=

λmax (Σλλ)

infs gθ(s)

∞∑
t=1

∥f̃t∥2E .

Similar arguments show that:

lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
TΩT (θ)

−1F̃Tλn ≥ λmin (Σλλ)

sups gθ(s)

∞∑
t=1

∥f̃t∥2E .

By positive definiteness of Σλλ, the eigenvalues λmin (Σλλ) and λmax (Σλλ) are strictly positive.

Hence, setting:

c :=
λmin (Σλλ)

sups gθ(s)
> 0

and:

C :=
λmax (Σλλ)

infs gθ(s)
> 0,

we obtain the desired result.

Corollary A.1. Suppose that Assumptions 1, 2 and 3 are satisfied. Let F̃ = {f̃t}∞t=1 be an

element in ℓp2. Then, limN,T→∞
1
N

∑N
n=1 λ

′
nF̃

′
TΩT (θ)

−1F̃Tλn = 0 if and only if F̃ = 0.

Proof. The sufficiency part is obvious. To prove the necessity part, assume that:

lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
TΩT (θ)

−1F̃Tλn = 0.
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By the preceding lemma, there exists a positive number c > 0 such that:

c

∞∑
t=1

∥f̃t∥2E ≤ lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
TΩT (θ)

−1F̃Tλn = 0.

This implies that
∑∞

t=1 ∥f̃t∥2E = 0. Hence, F̃ must be zero.

Using the above results, we can prove that ⟨ha, hb⟩† is well defined and forms an inner

product on H†. We can also show that H† itself is a Hilbert space.

It is easy to see that H† is a linear space. Furthermore, for any ha, hb ∈ H†, the quantity

⟨ha, hb⟩† is well defined because the second and third terms in (4.6) converge by Assumption

4 and Lemma A.8, respectively. We show that ⟨·, ·⟩† satisfies the requirements of an inner

product. Note that there are five requirements: for any ha, hb, hc ∈ H (i) ⟨ha, hb⟩† = ⟨ha, hb⟩†;

(ii) ⟨ha + hb, hc⟩† = ⟨ha, hc⟩† + ⟨hb, hc⟩†; (iii) ⟨αha, hb⟩† = α⟨ha, hb⟩†, where α is a scalar; (iv)

⟨ha, ha⟩† ≥ 0; (v) ⟨ha, ha⟩† = 0 if and only if ha = 0. It is again easy to see that the requirements

(i) to (iv) are satisfied. We verify that the requirement (v) is also satisfied. If ha = 0, then it is

trivial that ⟨ha, ha⟩† = 0. To show the converse implication, assume that ⟨ha, ha⟩† = 0. Then,

because all the three terms in ⟨ha, ha⟩† are nonnegative, it follows that:

θ̃′aΓ(θ)θ̃a = 0
∞∑
n=1

λ̃′aj

(
lim
T→∞

D−1
T F ′

TΩ(θ)
−1FTD

−1
T

)
λ̃aj = 0

lim
N,T→∞

1

N

N∑
n=1

λ′nF̃
′
aTΩT (θ)

−1F̃aTλj = 0.

Because the matrices Γ(θ) and limT→∞D−1
T F ′

TΩ(θ)
−1FTD

−1
T are positive definite, θ̃a and F̃a

must be zero vectors in RL and ℓp2, respectively. Furthermore, Corollary A.1 implies that F̃a = 0.

Thus, the requirement (v) is also satisfied.

Next, we turn to the proof of completeness of (H†, ∥ · ∥†). The proof of this part consists of

two parts. We first find another norm on H† under which H† is complete. Second, we show that

that norm is equivalent to ∥ · ∥†, which, by the usual arguments in functional analysis, implies

the completeness of H† under ∥ · ∥†.

Define a norm ∥ · ∥†̃ on H† by:

∥h∥2†̃ := ∥θ̃∥2E +

∞∑
n=1

∥λ̃j∥2E +

∞∑
t=1

∥f̃t∥2E ∀h = (θ̃, Λ̃, F̃ ) ∈ H†.

It is a well-known fact from functional analysis that the product space of complete normed

spaces is again complete. Because RL and ℓp2 are complete, it can be easily seen that H† is also

complete under the norm ∥ · ∥†̃.
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Our next goal is to prove that ∥ · ∥† and ∥ · ∥†̃ are equivalent norms. First notice that:

λmin(Γ(θ))∥θ̃∥2E ≤ θ̃′Γ(θ)θ̃ ≤ λmax(Γ(θ))∥θ̃∥2E ,

and that:

λmin

(
lim
T→∞

D−1
T F ′

TΩ(θ)
−1FTD

−1
T

) ∞∑
n=1

∥λ̃j∥2E

≤
∞∑
n=1

λ̃′j

(
lim
T→∞

D−1
T F ′

TΩ(θ)
−1FTD

−1
T

)
λ̃j

≤ λmax( lim
T→∞

D−1
T F ′

TΩ(θ)
−1FTD

−1
T )

∞∑
n=1

∥λ̃j∥2E .

Let c and C be as in Lemma A.9. Set:

m := min

{
c, λmin (Γ(θ)) , λmin

(
lim
T→∞

D−1
T F ′

TΩ(θ)
−1FTD

−1
T

)}
and:

M := max

{
C, λmax (Γ(θ)) , λmax

(
lim
T→∞

D−1
T F ′

TΩ(θ)
−1FTD

−1
T

)}
.

Notice that m is strictly positive and that M is finite. It is easy to see that for every h ∈ H†,

we have:

m∥h∥2†̃ ≤ ∥h∥2† ≤M∥h∥2†̃ .

This shows the equivalence of ∥ · ∥† and ∥ · ∥†̃ as norms, and hence, the proof is complete.

Proof of Theorem 4.2

We first show the iso-Gaussianity of ∆†
NT,h.

Lemma A.10. Suppose that Assumptions 1, 2, 3 and 4 hold. For h1, h2, . . . , hd ∈ H† where d

is finite, (∆†
NT,h1

,∆†
NT,h2

, . . . ,∆†
NT,hd

) satisfies:

(∆†
NT,h1

,∆†
NT,h2

, . . . ,∆†
NT,hd

)′
d→ N(0, (⟨hl, hm⟩†)),

under PNT,0, as N → ∞ and T → ∞.

Proof. To prove this lemma, we apply the argument in McNeney and Wellner (2000, p. 3).

It can be easily seen that ∆†
NT,h is linear in h; i.e., for any positive integer d and any a =

(a1, a2, · · · , ad)′ ∈ Rd, we have:

∆†
NT,

∑d
m=1 amhm

=
d∑

m=1

al∆
†
NT,hm

.
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Lemma A.12 implies that under PNT,0, as N,T → ∞:

d∑
m=1

am∆†
NT,hm

d→ N

0,

∥∥∥∥∥
d∑

m=1

amhm

∥∥∥∥∥
2

†

 .

Noting that ⟨·, ·⟩† defines an inner product, we see that:∥∥∥∥∥
d∑

i=1

amhm

∥∥∥∥∥
2

†

=

⟨
d∑

m=1

amhm,
d∑

l=1

alhl

⟩
†

= a′(⟨hl, hm⟩)†a.

Because a ∈ Rd is arbitrary, the desired result follows from an application of the Cramér–Wold

device.

The theorem is an application of Theorem 4.1 and follows from Lemmas 4.1, 4.2 and A.10.

A.3 Proofs of the theoretical results in Section 4.4

A.3.1 Proof of Theorem 4.3

For simplicity of notation, we consider the case where s = 1. That is, we derive the efficiency

bound for the factor f1. The proof for fs (s ̸= 1) is similar.

This theorem is an application of Theorem 4.2. In the situation of this theorem, κNT (h) =

J ′
NT f1 + J ′

NT f̃1/
√
N , rNT =

√
N and κ̇(h) = J ′f̃1. The space of the parameter of interest is

B = Rp, so the adjoint space is B∗ = Rp. We now derive the adjoint map κ̇∗. Note that κ̇∗ is a

map from B∗ = Rp to H† and satisfies:

⟨κ̇∗b∗, h⟩† = b∗′J ′f̃1,

for any b∗ ∈ Rp and h ∈ H†. Let κ̇
∗b∗ = (κ̇∗1b

∗, κ̇∗2b
∗, κ̇∗3b

∗) ∈ H†, where κ̇
∗
1b

∗ ∈ RL and κ̇∗2b
∗ ∈ l2p

and κ̇∗3b
∗ ∈ l2p. Set κ̇

∗
1b

∗ = 0, κ̇∗2b
∗ = 0 and:

κ̇∗3b
∗ =

(
γ(0)Σ−1

λλJb
∗, γ(1)Σ−1

λλJb
∗, γ(2)Σ−1

λλJb
∗, · · ·

)
.

Notice that the first T components of κ̇∗3b
∗ can be written as:(

γ(0)Σ−1
λλJb

∗, · · · , γ(T − 1)Σ−1
λλJb

∗) = Σ−1
λλJ (b∗, 0, · · · , 0)ΩT (θ).

By Lemma A.8, we have:

⟨κ̇∗b∗, h⟩ = tr

[
Σλλ lim

T→∞
Σ−1
λλJ (γ(0)b∗, · · · , γ(T − 1)b∗)ΩT (θ)

−1F̃T

]
= tr

[
J lim

T→∞
(b∗, 0, · · · , 0)ΩT (θ)ΩT (θ)

−1F̃T

]
= tr[Jb∗f̃ ′1] = b∗′J ′f̃1.

This shows that κ̇∗ is the appropriate adjoint map. Computing ∥κ̇∗b∗∥2† gives the efficiency

bound, and the proof is complete.
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A.3.2 Proof of Theorem 4.4

This theorem is an application of Theorem 4.2. In the situation of this theorem, κNT (h) =

J∗
NTλn + D−1

T J∗
NT λ̃n, rNT = DT and κ̇(h) = J∗λ̃n. The space of the parameter of interest is

B = Rp, so the adjoint space is B∗ = Rp. We now derive the adjoint map κ̇∗. Note that κ̇∗ is a

map from B∗ = Rp to H̄, where H̄ is a completion of H† and satisfies:

⟨κ̇∗b∗, h⟩† = b∗′J∗λ̃n,

for any b∗ ∈ Rp and h ∈ H†. Let κ̇∗b∗ = (κ̇∗1b
∗, κ̇∗2b

∗, κ̇∗3b
∗), where κ̇∗1b

∗ ∈ RL and κ̇∗2b
∗ ∈ l2p and

κ̇∗3b
∗ ∈ l2p. It is easy to see that setting κ̇∗1b

∗ = 0, κ̇∗2b
∗ = (0, . . . , 0, κ̇∗2nb

∗, 0 . . . ), where:

κ̇∗2nb
∗ =

(
lim
T→∞

D−1
T F ′

TΩT (θ)
−1FTD

−1
T

)−1

(J∗)′b∗,

and κ̇∗3b
∗ = 0 gives the appropriate adjoint map. Computing ∥κ̇∗b∗∥2† gives the bound, and the

proof is complete.

A.3.3 Proof of Theorem 4.5

The proof merely combines the arguments in the proofs of Theorems 4.3 and 4.4, and thus is

omitted.

A.3.4 Proof of Theorem 4.6

This theorem is an application of Theorem 4.2. In the situation of this theorem, κNT (h) =

β(θ + θ̃/
√
NT ), rNT =

√
NT and κ̇(h) = β̇(θ)θ̃. The space of the parameter of interest is

B = RM , so the adjoint space is B∗ = RM . We now derive the adjoint map κ̇∗. Note that κ̇∗

is a map from B∗ = RM to H̄, where H̄ is a completion of H† and satisfies:

⟨κ̇∗b∗, h⟩† = b∗′β̇(θ)θ̃,

for any b∗ ∈ RM and h ∈ H†. Let κ̇
∗b∗ = (κ̇∗1b

∗, κ̇∗2b
∗), where κ̇∗1b

∗ ∈ RL and κ̇∗2b
∗ is in the space

for (λ̃, f̃). It is easy to see that setting κ̇∗1b
∗ = Γ(θ)−1β̇(θ)′b∗ and κ̇∗2b

∗ = 0 gives the appropriate

adjoint map because:

⟨κ̇∗b∗, h⟩† = (κ̇∗b∗)′Γ(θ)θ̃ = b∗′β̇(θ)Γ(θ)−1Γ(θ)θ̃ = b∗′β̇(θ)θ̃.

Therefore, it holds that G in the current setting satisfies:

b∗′G ∼ N(0, ∥κ̇∗b∗∥2†) = N(0, b∗′β̇(θ)Γ(θ)−1β̇(θ)′b∗).

Thus, the proof is complete.
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A.4 Proofs of the theoretical results in Section 5.2

A.4.1 Proof of Lemma 5.1

We first show the second equality in (5.5). We observe that:

lim
N,T→∞

1

NT

N∑
n=1

(F̃lTλn + FT λ̃ln)
′Ω−1

0 (F̃mTλn + FT λ̃mn)

= lim
N,T→∞

1

NT

N∑
n=1

λ′nF̃
′
lTΩ

−1
0 F̃mTλn + lim

N,T→∞

1

NT

N∑
n=1

λ′nF̃
′
lTΩ

−1
0 FT λ̃mn

lim
N,T→∞

1

NT

N∑
n=1

λ̃′lnF
′
TΩ

−1
0 FT λ̃mn + lim

N,T→∞

1

NT

N∑
n=1

λ̃′lnF
′
TΩ

−1
0 FT λ̃mn.

We have:

lim
N,T→∞

1

NT

N∑
n=1

λ′nF̃
′
lTΩ

−1
0 F̃mTλn = lim

N,T→∞

1

NT

N∑
n=1

tr
(
λ′nF̃

′
lTΩ

−1
0 F̃mTλn

)
= lim

N,T→∞

1

NT

N∑
n=1

tr
(
λnλ

′
nF̃

′
lTΩ

−1
0 F̃mT

)
= tr

(
lim

N→∞

1

N

N∑
n=1

λnλ
′
n lim
T→∞

1

T
F̃ ′
lTΩ

−1
0 F̃mT

)
.

Similarly, we have:

lim
N,T→∞

1

NT

N∑
n=1

λ′nF̃
′
lTΩ

−1
0 FT λ̃mn = tr

(
lim

N→∞

1

N

N∑
n=1

λ̃mnλ
′
n lim
T→∞

1

T
F̃ ′
lTΩ

−1
0 FT

)
,

lim
N,T→∞

1

NT

N∑
n=1

λ̃′lnF
′
TΩ

−1
0 F̃mTλn = tr

(
lim

N→∞

1

N

N∑
n=1

λnλ̃
′
ln lim

T→∞

1

T
F ′
TΩ

−1
0 F̃mT

)
,

and:

lim
N,T→∞

1

NT

N∑
n=1

λ̃′lnF
′
TΩ

−1
0 FT λ̃mn = tr

(
lim

N→∞

1

N

N∑
n=1

λ̃mnλ̃
′
ln lim

T→∞

1

T
F ′
TΩ

−1
0 FT

)
.

Assumption 5 gives limN→∞
∑N

n=1 λnλ
′
n/N =

∫
λλ′dΦ(λ), limN→∞

∑N
n=1 λ̃mnλ

′
n/N =

∫
ϕ̃m(λ)λ′dΦ(λ),

limN→∞
∑N

n=1 λnλ̃
′
ln/N =

∫
λϕ̃l(λ)

′dΦ(λ) and limN→∞
∑N

n=1 λ̃mnλ̃
′
ln/N =

∫
ϕ̃m(λ)ϕ̃l(λ)

′dΦ(λ).

Let F̌T = (FT , F̃lT , F̃mT ) and ψ̌
(m) be such that ψ̌(m)(t/T ) is the (t,m)-th element of F̌T . We now

show that F̌ ′
TΩ

−1
0 F̌T /T converges using Theorem 10.2.7 of Anderson (1971). For the moment,

we assume that ψ̌(m) ̸= 0 for allm. Note that ψ̌i(t/T ) corresponds to zit in Anderson (1971). As-

sumption 10.2.1 of Anderson (1971) is satisfied because
∑T

t=1 ψ̌
(i)(t/T )2/T →

∫ 1
0 ψ̌

(i)(a)2da > 0,

which implies that
∑T

t=1 ψ̌
(i)(t/T )2 → ∞. Assumption 10.2.2 of Anderson (1971) is satisfied
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because ψ̌(i)(1)2 is bounded. Assumption 10.2.3 of Anderson (1971) is also satisfied because:∑T
t=1 ψ̌

(i)(t/T )ψ̌(n)((t+ h)/T )√∑T
t=1 ψ̌

(i)(t/T )2
∑T

t=1 ψ̌
(n)(t/T )2

=

∑T
t=1 ψ̌

(i)(t/T )ψ̌(n)((t+ h)/T )/T√
(
∑T

t=1 ψ̌
(i)(t/T )2/T )(

∑T
t=1 ψ̌

(n)(t/T )2/T )

→
∫ 1
0 ψ̌

(i)(a)ψ̌(n)(a)da√
(
∫ 1
0 ψ̌

(i)(a)2ds)(
∫ 1
0 ψ̌

(n)(a)2ds)
,

by Assumption 5 and g̃ ∈ Cf . Lastly, Assumption 2 guarantees that Assumptions 10.2.5 and

10.2.6 of Anderson (1971) are satisfied. Thus, Theorem 10.2.7 of Anderson (1971) implies that:

lim
T→∞

1

T
F̃ ′
lTΩ

−1
0 F̃mT =

1

2πgθ(0)

∫ 1

0
ψ̃l(a)ψ̃m(a)′da,

lim
T→∞

1

T
F̃ ′
lTΩ

−1
0 FT =

1

2πgθ(0)

∫ 1

0
ψ̃l(a)ψ(a)

′da,

lim
T→∞

1

T
F ′
TΩ

−1
0 F̃mT =

1

2πgθ(0)

∫ 1

0
ψ(a)ψ̃m(a)′da,

and:

lim
T→∞

1

T
F ′
TΩ

−1
0 FT /T =

1

2πgθ(0)

∫ 1

0
ψ(a)ψ(a)′da.

We note that it is easy to see that even if ψ̌(m) = 0 for some m, the above convergences hold.

Thus, we obtain:

lim
N,T→∞

1

NT

N∑
n=1

λ′nF̃
′
lTΩ

−1
0 F̃mTλn = tr

(∫
λλ′dΦ(λ)

1

2πgθ(0)

∫ 1

0
ψ̃l(a)ψ̃m(a)′da

)
=

1

2πgθ(0)
tr

(∫ ∫ 1

0
λλ′ψ̃l(a)ψ̃m(a)′dadΦ(λ)

)
=

1

2πgθ(0)

∫ ∫ 1

0
λ′ψ̃l(a)ψ̃m(a)′λdadΦ(λ).

Similarly, it follows that:

lim
N,T→∞

1

NT

N∑
n=1

λ′nF̃
′
lTΩ

−1
0 FT λ̃mn =

1

2πgθ(0)

∫ ∫ 1

0
λ′ψ̃l(a)ψ(a)

′ϕ̃m(λ)dadΦ(λ),

lim
N,T→∞

1

NT

N∑
n=1

λ̃′lnF
′
TΩ

−1
0 F̃mTλn =

1

2πgθ(0)

∫ ∫ 1

0
ϕ̃l(λ)

′ψ(a)ψ̃m(a)′λdadΦ(λ),

and:

lim
N,T→∞

1

NT

N∑
n=1

λ̃′lnF
′
TΩ

−1
0 FT λ̃mn =

1

2πgθ(0)

∫ ∫ 1

0
ϕ̃l(λ)

′ψ(a)ψ(a)′ϕ̃m(λ)dadΦ(λ).

Summing up, we have:

lim
N,T→∞

1

NT

N∑
n=1

(F̃lTλn + FT λ̃ln)
′Ω−1

0 (F̃mTλn + FT λ̃mn)

=
1

2πgθ(0)

∫ ∫ 1

0

(
λ′ψ̃l(a) + ϕ̃m(λ)′ψ(a)

)(
λ′ψ̃m(a) + ϕ̃m(λ)′ψ(a)

)
dadΦ(λ).
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Thus, the second equality in (5.5) holds.

Now, we show that H‡ is a linear subspace of a Hilbert space. It is easy to see that H‡

is a linear space. Therefore, we only show that ⟨·, ·⟩‡ satisfies the requirements of an inner

product. Note that there are five requirements: for any hl, hm, hn ∈ H (i) ⟨hl, hm⟩ = ⟨hm, hl⟩;

(ii) ⟨hl + hm, hn⟩ = ⟨hl, hn⟩ + ⟨hm, hn⟩; (iii) ⟨αhl, hm⟩ = α⟨hl, hm⟩, where α is a scalar; (iv)

⟨hl, hl⟩ ≥ 0; (v) ⟨hl, hl⟩ = 0 if and only if hl = 0. It is, again, easy to see that requirements (i)

to (iv) are satisfied. We verify that requirement (v) is also satisfied.

Because Γ(θ) is positive definite, θ̃′Γ(θ)θ̃ = 0 if and only if θ̃ = 0. It is easy to see that

if ψ̃ = 0 and ϕ̃ = 0, then
∫ ∫ 1

0

(
λ′ψ̃(a) + ϕ̃(λ)′ψ(a)

)2
dadΦ(λ) = 0. On the other hand, if∫ ∫ 1

0

(
λ′ψ̃(a) + ϕ̃(λ)′ψ(a)

)2
dadΓ(λ) = 0, then we must have:

λ′ψ̃(a) + ϕ̃(λ)′ψ(a) = 0,

almost surely. Because
∫
λλ′dΦ(λ) > 0 and

∫ 1
0 ψ(a)ψ(a)

′da > 0, we have:

ψ̃(a) = −
(∫

λλ′dΦ(λ)

)−1(∫
λϕ̃(λ)′dΦ(λ)

)
ψ(a),

and:

ϕ̃(λ) = −
(∫ 1

0
ψ(a)ψ(a)′da

)−1(∫ 1

0
ψ(a)ψ̃(a)′da

)
λ.

Let A =
(∫ 1

0 ψ(s)ψ(s)
′ds
)−1 (∫ 1

0 ψ(a)ψ̃(a)
′da
)

so that ϕ̃(λ) = −Aλ. Then, we also have

ψ̃(a) = A′ψ(a). Because ϕ̃ ∈ Cλ, A must be diagonal. On the other hand, the diagonal

elements of A must be zero because ψ̃ ∈ Cf . Therefore, A = 0, which implies that ϕ̃ = 0 and

ψ̃ = 0.

Thus, ⟨·, ·⟩‡ satisfies the requirements of an inner product, and the proof is complete.
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A.4.2 Proof of Lemma 5.2

The local log-likelihood ratio process of our panel data model with interactive effects is given

by:

log
dPNT,h

dPNT,0

=
N

2
log detΩ0 −

N

2
log detΩθ̃ +

1

2

N∑
n=1

(yn − FTλn)
′Ω−1

0 (yn − FTλn)

−1

2

N∑
n=1

(
yn −

(
FT +

F̃T√
NT

)(
λn +

λ̃n√
NT

))′

Ω−1

θ̃

(
yn −

(
FT +

F̃T√
NT

)(
λn +

λ̃n√
NT

))

=
N

2
log detΩ0 −

N

2
log detΩθ̃

+
1

2

N∑
n=1

(yn − FTλn)
′Ω−1

0 (yn − FTλn)−
1

2

N∑
n=1

(yn − FTλn)
′Ω−1

θ̃
(yn − FTλn)

+
1√
NT

N∑
n=1

B̃′
nΩ

−1

θ̃
(yn − FTλn)−

1

2NT

N∑
n=1

B̃′
nΩ

−1

θ̃
B̃n,

where:

B̃n = F̃Tλn + FT λ̃n +
F̃T λ̃n√
NT

.

Noting that yn−λ′nf = wn under PNT,0, we write the log-likelihood ratio under PNT,0 as follows:

log
dPNT,h

dPNT,0
=

N

2
log detΩ0 −

N

2
log detΩθ̃ +

1

2

N∑
n=1

w′
nΩ

−1
0 wn − 1

2

N∑
n=1

w′
nΩ

−1

θ̃
wn

+
1√
NT

N∑
n=1

B̃′
nΩ

−1

θ̃
wn − 1

2NT

N∑
n=1

B̃′
nΩ

−1

θ̃
B̃n.

Note that Lemmas A.2 and A.3 provide the expansion for the first four terms in the log-

likelihood ratio.

Lemma A.11. Suppose that Assumptions 1, 2 and 5 hold. Under PNT,0, as N → ∞ and

T → ∞:

1√
NT

N∑
n=1

B̃′
nΩ

−1

θ̃
wn − 1

2NT

N∑
n=1

B̃′
nΩ

−1

θ̃
B̃n

=
1√
NT

N∑
n=1

(F̃Tλn + FT λ̃n)
′Ω−1

0 wn − 1

2NT

N∑
n=1

(F̃Tλn + FT λ̃n)
′Ω−1

0 (F̃Tλn + FT λ̃n) + op(1).

Proof. The proof is very similar to that of Lemma A.4 and thus is omitted.

Lemma A.12. Suppose that Assumptions 1, 2 and 5 hold. Let ∆‡
NT,h be defined as in (5.4).

Under PNT,0, as N → ∞ and T → ∞:

∆‡
NT,h

d→ N

(
0, θ̃′Γ(θ)θ̃ + lim

N,T→∞

1

NT

N∑
n=1

(F̃Tλn + FT λ̃n)
′Ω−1

0 (F̃Tλn + FT λ̃n)

)
. (A.10)
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Proof. The proof is very similar to that of Lemma A.7 and thus is omitted.

Lemma 5.2 follows from Lemmas A.2, A.3, A.11 and A.12.

A.4.3 Proof of Theorem 5.1

This theorem is an application of Theorem 4.1 and follows from Lemmas 5.1 and 5.2. Note that

iso-Gaussianity of ∆‡
NT,h can be shown by exactly the same argument of the proof of Lemma

A.10.

A.4.4 Proof of Theorem 5.2

In this proof, we only consider a simpler model in which ynt = λn + wnt. The proof for the

general case is similar but requires much more complicated notation.

It is a well-known fact from basic functional analysis that a linear functional on a normed

linear space is continuous if and only if it is bounded on the closed unit ball of the space. Thus,

to prove the discontinuity of κ̇, it is sufficient to show that κ̇ is unbounded on the closed unit

ball of H‡.

It is an easy task to construct a sequence of functions ϕM ∈ Cb(R) such that (i) ϕM (λn) = 1

for every M ∈ N; and (ii)
∫
R ϕM (x)2dΦ(x) → 0 as M → ∞ with every integral being positive.26

Using ϕM , we now define a sequence {hM}M∈N in H‡ = RL × Cb(R) by setting hM := (0, ϕM ).

Noting that the LAN norm for the model ynt = λn + wnt is:

∥h∥2 = ∥(θ, ϕ)∥2 = θ̃′Γ(θ)θ̃ +

( ∞∑
k=−∞

γk(θ)

)−1 ∫
R
ϕ2(x)dΦ(x), (A.11)

it follows that:

|κ̇(hM )|
∥hM∥

=
|ϕM (λn)|
∥hM∥

=

∑∞
k=−∞ γk(θ)∫

R ϕ
2
M (x)dΦ(x)

−→ ∞, (A.12)

as N → ∞. This implies that the functional κ̇ cannot be bounded on the closed unit ball of

H‡, so we conclude that κ̇ is not continuous.

26Assume, for simplicity, that
∑∞

k=−∞ γk(θ) = 1. For example, set:

ϕM (x) := {M(x− λn) + 1}1[−(1/M)+(1/M2), 0)(x− λn) + {−M(x− λn) + 1}1[0, (1/M)−(1/M2))(x− λn)

+
1

M
1(−∞, −(1/M)+(1/M2))∪[(1/M)−(1/M2), ∞)(x− λn).

Then it can be easily checked that the sequence {ϕN}N∈N, thus constructed, satisfies the conditions (i) and (ii).
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B The asymptotic distribution of the PCA estimator

Bai (2003) derived the asymptotic distribution of
√
N(f̂t − Ĵ ′

PCA,NT ft), where f̂t is the PCA

estimator of ft and ĴPCA,NT is some invertible p× p matrix. However, ĴPCA,NT in the formula

of Bai (2003) is data dependent, and we cannot apply the convolution theorem to examine

whether f̂t is efficient.

In this Appendix, we show that there exists a nonrandom matrix JPCA,NT (that depends on

N and T ) such that
√
N(f̂t− Ĵ ′

PCA,NT ft) =
√
N(f̂t−J ′

PCA,NT ft)+op(1). Because JPCA,NT ft is

deterministic, we can apply the convolution theorem to see whether f̂t is an efficient estimator

of J ′
PCA,NT ft.

We use the following notation. Let ΛN be the N × p matrix whose n-th row is λ′n. Let

VNT be the p× p diagonal matrix whose r-th diagonal element is the r-th largest eigenvalue of

(Λ′
NΛN/N)1/2(F ′

TFT /T )(Λ
′
NΛN/N)1/2. We assume that all the eigenvalues in VNT are different.

Let ΥNT be the eigenvalue matrix that corresponds to VNT . By the definitions of VNT and ΥNT ,

we have:

ΥNTVNTΥ
′
NT = (Λ′

NΛN/N)1/2(F ′
TFT /T )(Λ

′
NΛN/N)1/2.

We show that by setting:

JPCA,NT =

(
Λ′
NΛN

N

)1/2

ΥNTV
−1/2
NT ,

we have:

√
N(ĴPCA,NT − JPCA,NT ) = op(1).

Our argument is similar to that of Bai and Ng (2013, proof of (2)). Let δNT = min(
√
N,

√
T ).

We first observe that:

F̂ ′
TFT

T
=

(F̂T − FT ĴPCA,NT + FT ĴPCA,NT )
′FT

T
=
Ĵ ′
PCA,NTF

′
TFT

T
+Op(δ

−2
NT ),

because Lemma B.3 of Bai (2003) shows that (F̂T − FT ĴPCA,NT )
′FT /T = Op(δ

−2
NT ), where

δNT = min{
√
N,

√
T}. We also have:

F̂ ′
TFT ĴPCA,NT

T
=
F̂ ′
T (F ĴPCA,NT − F̂T + F̂T )

T
= I +Op(δ

−2
NT ),

by using Lemma B.3 of Bai (2003) to show that F̂ ′
T (F ĴPCA,NT − F̂T )/T = Op(δ

−2
NT ). Thus, we

have:

Ĵ ′
PCA,NTF

′
TFT ĴPCA,NT

T
= I +Op(δ

−2
NT ).
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By the definitions of ΥNT and VNT , we have:

F ′
TFT

T
=

(
Λ′
NΛN

N

)−1/2

ΥNTVNTΥ
′
NT

(
Λ′
NΛN

N

)−1/2

. (B.1)

Letting:

B = V
1/2
NT Υ′

NT

(
Λ′
NΛN

N

)−1/2

,

we write:

F ′
TFT

T
= B′B.

Let H∗ = BĴPCA,NT . Then, we have:

(H∗)′H∗ = I +Op(δ
−2
NT ).

We now show that H∗ = I +Op(δ
−2
NT ). Because (H∗)′H∗ = I +Op(δ

−2
NT ), the eigenvalues of H∗

are either 1 or −1. Next, we show that the nondiagonal elements of H∗ are Op(δ
−2
NT ). By Bai

(2003), we have:

(H∗)′ = Ĵ ′
PCA,NTB

′ = V̂ −1
NT

F̂ ′
TFT

T

Λ′
NΛN

N
B′,

where V̂NT is the p×p diagonal matrix whose r-th diagonal element is the r-th largest eigenvalue

of Y Y ′/(NT ). By Bai (2003, Lemma B.3), F̂ ′
TFT /T = Ĵ ′

PCA,NTF
′
TFT /T + Op(δ

−2
NT ). Using

(B.1), we have:

(H∗)′

=V̂ −1
NT Ĵ

′
PCA,NT

(
Λ′
NΛN

N

)−1/2

ΥNTVNTΥ
′
NT

(
Λ′
NΛN

N

)−1/2(Λ′
NΛN

N

)
×
(
Λ′
NΛN

N

)−1/2

ΥNTV
1/2
NT +Op(δ

−2
NT )

=V̂ −1
NT (H

∗)′VNT +Op(δ
−2
NT ).

Thus, we have:

VNTH
∗ = H∗V̂NT +Op(δ

−2
NT ).

It follows that H∗ is the eigenvalue matrix of VNT up to a negligible term. Because VNT is

diagonal and all the eigenvalues are assumed to be different, H∗ is also a diagonal matrix (up

to the order of δ−2
NT ). We assume, without loss of generality, that the eigenvalues of H∗ are all

1. Therefore, it holds that H∗ = I +Op(δ
−2
NT ).
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Therefore, we have:

ĴPCA,NT = B−1H∗ = B−1 +Op(δ
−2
NT ) =

(
Λ′
NΛN

N

)1/2

ΥNTV
−1/2
NT +Op(δ

−2
NT ).

Setting JPCA,NT = B−1 = (Λ′
NΛN/N)1/2ΥNTV

−1/2
NT and assuming that

√
N/T → 0, we have:

√
N(ĴPCA,NT − JPCA,NT ) = op(1).
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