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Abstract

In this paper we consider the estimation of a dynamic panel autoregressive

(AR) process of possibly infinite order in the presence of individual effects. We

utilize the sieve AR approximation with its lag order increasing with the sample

size. We establish the consistency and asymptotic normality of the standard

dynamic panel data estimators, including the fixed effects estimator, the gen-

eralized methods of moments estimator and Hayakawa’s instrumental variables

estimator, using double asymptotics under which both the cross-sectional sam-

ple size and the length of time series tend to infinity. We also propose a bias-

corrected fixed effects estimator based on the asymptotic result. Monte Carlo

simulations demonstrate that the estimators perform well and the asymptotic

approximation is useful. As an illustration, proposed methods are applied to

dynamic panel estimation of the law of one price deviations among US cities.

Key Words: Autoregressive Sieve Estimation; Bias Correction; Double Asymp-

totics; Fixed Effects Estimator; GMM; Instrumental Variables Estimator.

JEL Classification: C13; C23; C26.
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1 Introduction

Because economic relationships are often dynamic in nature, dynamic panel mod-

els have been considered very useful in the analysis of microeconomic data. When

the time series dimension (T ) is limited in the data, relative to the cross-sectional

dimension (N), its dynamic properties can be identified only if some parsimonious

specifications are employed in dynamic panel models. For this reason, simple au-

toregressive (AR) models of order one (or of a finite order) are typically employed in

practice. Accordingly, various estimation methods for simple dynamic panel models

have been proposed, and their theoretical properties have been investigated in many

studies under a fixed T and large N asymptotic framework, including Anderson and

Hsiao (1981), Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991),

to name a few. More recently, however, an increasing number of panel data with

longer T have become available in practice. Motivated by the availability of longer

panel data, Hahn and Kuersteiner (2002), Alvarez and Arellano (2003) and Hayakawa

(2009), among others, have investigated asymptotic properties of various estimators

for finite order panel AR models, using an alternative asymptotic approximation when

both T and N tend to infinity. We obtain further insight along this line of analysis

by showing that the panel data with long T is also useful in allowing a more general

time series structure.

In this paper, we consider the estimation of a general dynamic panel structure

in the presence of unobserved individual effects. To this end, we employ a sieve ap-

proach to approximate a panel AR model of infinite order by a panel AR model of

order p that increases with sample size T and N . Our specification of infinite order

3



AR models covers a very general class of stationary linear processes, which nests stan-

dard autoregressive and moving average (ARMA) models of finite order. Therefore,

in comparison with those of previous studies in the dynamic panel literature, the

estimation results from our approach are less subject to problems caused by possible

model misspecifications. Such an idea of the AR sieve approximation in estimating

a general linear model has long been used in the literature of time series analysis.1

In principle, a similar approach should be applicable in the estimation of dynamic

panel models as long as a moderately large T is available. However, to the best of

our knowledge, this approach has yet to be used in the inference of dynamic panel

models. The problem is that a näıve analogy of time series results cannot directly be

used, due to several technical issues specific to dynamic panel data analysis under a

large T and large N asymptotic framework. It is our intention to fill the gap between

the two bodies of literature.2

The AR sieve approximation retains the computational simplicity of the finite or-

der AR models, which can be conveniently estimated by a linear regression estimator.

In our analysis, we take advantage of the fact that dynamic panel estimators com-

monly used in practice are all linear estimators originally designed to estimate finite

order AR models. In particular, we consider sieve variants of (i) the fixed effects

estimator (Hahn and Kuersteiner, 2002), (ii) the generalized methods of moments

(GMM) estimator (Holtz-Eakin, Newey and Rosen, 1988, Arellano and Bond, 1991,

1For example, see Berk (1974), Lewis and Reinsel (1985), Lütkepohl and Poskitt (1991),
Lütkepohl and Saikkonen (1997) and Gonçalves and Kilian (2007).

2There are several studies similar in spirit to ours. Phillips and Moon (1999) consider the issue
of consistent long-run variance estimation in a panel data model but do not consider the inference
of long autoregressions. Lee (2006) examines the asymptotic bias of the fixed effects estimator of
a panel AR model of infinite order, but his results do not include the asymptotic distribution of
the estimator. Okui (2010) considers the asymptotically unbiased estimation of autocovariances and
autocorrelation, which does not require pre-specified dynamic panel models.
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and Alvarez and Arellano, 2003) and (iii) an efficient instrumental variables (IV) es-

timator (Hayakawa, 2009). We show the consistency and asymptotic normality of

each estimator. We further construct consistent standard errors for all the estima-

tors and an asymptotically valid automatic lag selection procedure in an AR sieve

approximation.

Our main theoretical results can be summarized as follows. First, when T is only

moderately large, a fixed effects estimator suffers from asymptotic bias due to the

incidental parameters problem (Neyman and Scott, 1948). We show that a simple

bias correction method, which is analogous to that for finite-order AR models, works

well for the infinite-order AR model.3 Second, since the number of lags increases with

T , the GMM estimator involves many moment conditions even when T is moderately

large.4 We find that N must be much larger relative to T in order for the GMM

estimator to behave well without suffering from the many moments bias. Third,

Hayakawa’s IV estimator is shown to be consistent and asymptotically normal under

a weaker condition on the relative magnitude of N and T than those required for

the other estimators. Overall, our theoretical results suggest that the choice among

estimators should be based on the relative magnitude of N and T and their finite

sample properties.

Our Monte Carlo simulation to evaluate the finite sample properties provides

useful guidance for practitioners in choosing among the estimators. Our proposed

bias-corrected estimator works well in reducing the bias of the fixed effects estimator

3Kiviet (1995), Hahn and Kuersteiner (2002) and Lee (2012a) discuss bias correction in finite
order panel AR models. Han, Phillips and Sul (2011) propose an alternative transformation of the
data that leads to unbiased estimation.

4The problems of the GMM and other IV estimators in the presence of many moment conditions
have been investigated in many studies. See, e.g., Kunitomo (1980), Morimune (1983), Bekker
(1994), Newey and Smith (2004) and Newey and Windmeijer (2009).
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without inflating the dispersion of the estimator. When N becomes larger, however,

the GMM estimator has a smaller bias than the bias-corrected fixed effects estima-

tor. The bias of the fixed effects estimator is not negligible even when T is fairly

large, which illustrates the importance of bias correction. Among all the estimators,

Hayakawa’s IV estimator has the smallest bias at the cost of larger dispersion. An

automatic lag selection procedure also helps to choose the approximation models that

produce precise estimates.

Finally, as an empirical illustration, proposed methods are applied to dynamic

panel estimation of the law of one price (LOP) deviations among US cities. The

speed of individual good price adjustment is evaluated by the estimated sum of AR

coefficients using competing estimators. We find that both the fixed effects estimator

and the GMM estimator often provide values less than those provided by the bias-

corrected fixed effects estimator and Hayakawa’s IV estimator.

The remainder of this paper is organized as follows. Our model is described in

Section 2. Our estimators are introduced and their asymptotic properties are in-

vestigated in Section 3. The finite sample performance of estimators is examined

in Section 4, and our approach is applied to the real data in Section 5. Conclud-

ing remarks are made in Section 6. All mathematical proofs are collected in the

mathematical appendix.

We use the following notation: For a sequence of vector ait, we let at = (a1t, . . . , aNt)
′.

The same convention applies to a sequence of vector denoted by ait(p) so that at(p) =

(a1t(p) . . . , aNt(p))
′. A constant C represents an arbitrary constant.
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2 The Model

Suppose that we observe panel data {{yit}Tt=1}Ni=1. We assume that yit is generated

from an AR process of possibly infinite order with individual specific effects. Namely,

the model is

yit = µi +
∞∑
k=1

αkyi,t−k + ϵit, (1)

where µi is an unobservable individual effect and ϵit is an unobservable innovation

with mean zero and variance σ2. The individual effect, µi, which is assumed to be

independent of ϵit, is included in order to capture the heterogeneity across individu-

als. Controlling for unobserved heterogeneity using individual effects is an important

advantage of panel data analysis. The stationarity of yit is imposed throughout the

paper. In what follows, we consider the situation under which both the cross-sectional

sample size, N , and the length of time series, T , are large.

The specification (1) is quite general and can include various linear stationary

time series such as stationary and invertible panel ARMA models with individual

effects. This representation is useful as some aspects of the interesting dynamic nature

of the model can be examined by using the linear (or nonlinear) transformation of

AR parameters (α1, . . . , αk, . . . )
′. For example, the first AR coefficient, α1, which

represents the one-period-ahead effect of a shock, and the sum of AR coefficients

(SAR),

SAR =
∞∑
k=1

αk, (2)

which captures the long-run cumulative effect of a shock, are often of interest in

practice.

To estimate (1), we follow the time series literature of the AR sieve estimation
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and utilize its approximated model:

yit = µi +

p∑
k=1

αkyi,t−k + uit,p, (3)

where uit,p = bit,p + ϵit with bit,p =
∑∞

k=p+1 αkyi,t−k. The term bit,p here represents

the error caused by approximating the true infinite order AR model given by (1)

using the AR model with a truncated lag, p, given by (3). This approximated model

is convenient in maintaining the computational simplicity of the parametric finite

order AR model while making the effect of the model misspecification disappear

asymptotically.

We make the following assumptions throughout the paper.

Assumption 1. (i) {ϵit} is independently and identically distributed (i.i.d.) over time

and across individuals with mean zero, 0 < E(ϵ2it) = σ2 <∞, and E|ϵit|2r ≤ C, r > 2;

(ii) ϵit is independent of µi for all i and t; (iii)
∑∞

k=0 |αk| <∞ and
∑∞

k=0 αkz
k ̸= 0 for

any |z| ≤ 1; (iv) yi,1−s, s = 0, 1, 2, . . . , are generated from the stationary distribution;

(v) p1/2
∑∞

k=p+1 |αk| → 0 as p→ ∞.

In Assumption 1(i), we focus on the i.i.d. error {ϵit} for the sake of simplicity. If

somewhat stronger moment conditions are employed, the i.i.d. error assumption can

be relaxed to allow for a martingale difference sequence such that E(ϵit|Fit−1) = 0

a.s., where Fi,t−1 = σ(ϵis, s ≤ t − 1) is the σ-field generated by {ϵi,t−1, ϵi,t−2, · · · }.5

Assumption 1(ii) is used for the moving average representation of the model and is also

used for the validity of moment conditions for the GMM estimator. Assumption 1(iii)

indicates that yit is stationary and can be represented by an infinite order moving

average process. Considering cases in which yit is an integrated process is beyond

5See, e.g., Gonçalves and Killian (2007).
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the scope of the paper. Assumption 1(iv) can be relaxed because the influence of

the initial observations is not decisive when T is sufficiently large. However, we keep

this assumption to make the mathematical arguments simple. Assumption 1(v) is a

commonly used assumption in the literature of the AR sieve estimation, which implies

that the approximation error should not be too large.

It is also useful for our purpose to introduce an infinite order moving average

representation of (1):

yit = ηi +
∞∑
k=0

ψkϵi,t−k,

where ψ0 ≡ 1,
∑∞

j=0 |ψj| < ∞ and ηi = µi/(1 −
∑∞

k=1 αk). This representation

is justified by Assumption 1. Let Γp be the variance-covariance matrix of the vector

(wit, . . . , wi,t−p+1)
′ where wit = yit−ηi =

∑∞
k=0 ψkϵi,t−k. Note that Γp does not depend

on i.

We assume that Γp is positive definite and its eigenvalues do not diverge.

Assumption 2. There exists C1 > 0 such that the minimum eigenvalue of Γp is

greater than C1 for any p. There exists C2 <∞ such that the the maximum eigenvalue

of Γp is smaller than C2 for any p.

Assumption 2 imposes a restriction on the persistence of the dynamics. This as-

sumption is satisfied, for example, when the yit follows a stationary panel ARMA(p, q)

model with finite p and q.

3 Estimation

This section introduces several estimation methods. All the methods estimate

parameters in the approximated model (3). We then show the asymptotic properties
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of the estimators.

3.1 The fixed effects estimator

Let us begin our analysis by considering the conventional fixed effects estimator.

To define the estimator, we introduce the vector representation of the approximated

model (3) as

yit = µi + xit(p)
′α(p) + uit,p

where xit(p) = (yi,t−1, . . . , yi,t−p)
′ and α(p) = (α1, . . . , αp)

′. The first step of the

fixed effects estimation is to eliminate the individual effects by subtracting individual

averages. Let

ỹit = yit −
1

T − p
(yi,p+1 + · · ·+ yiT ) ,

x̃it(p) = xit(p)−
1

T − p
(xi,p+1(p) + · · ·+ xiT (p))

and ũit,p be similarly defined. By rewriting the model (3) in terms of the transformed

variables, we have

ỹit = x̃it(p)
′α(p) + ũit,p, (4)

which does not contain the individual effects. Applying OLS to (4) yields the fixed

effects estimator, denoted by α̂F (p):

α̂F (p) =

(
T∑

t=p+1

x̃t(p)
′x̃t(p)

)−1 T∑
t=p+1

x̃t(p)
′ỹt.

We define consistency as the property that the probability limit of the distance

between the estimator and the true value of the parameter converges to zero where
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we use the Euclidean distance ||a|| =
√
a′a for a vector a.6 The following theorem

shows the consistency of α̂F (p).

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. Then, if N → ∞,

T → ∞ and p→ ∞ with p2/(NT ) → 0 and p3/T 2 → 0, we have

||α̂F (p)− α(p)|| →p 0.

Next we show the asymptotic normality of a linear combination of the estimated

AR parameters. Let ℓp be an arbitrary deterministic sequence of p × 1 vectors such

that 0 < C1 ≤ ||ℓp||2 = ℓ′pℓp ≤ C2 < ∞ for p = 1, 2, · · · for some C1 and C2. Our

parameter of interest is limp→∞ ℓ′pα(p). For example, if we are interested in the kth

AR coefficient, αk, for 1 ≤ k ≤ p, our choice of ℓp would be ek = (0, . . . , 0, 1, 0, . . . , 0)′

where ek is a p×1 selection vector with the kth element being one and other elements

being zero. Instead, if we are interested in the SAR, our choice of ℓp would be

ℓ∗p = ιp/
√
p = (1/

√
p, . . . , 1/

√
p)′ where ιp is a p× 1 vector of ones, and we define its

estimator by

ŜARF =
√
pℓ∗′p α̂F (p).

The following theorem presents the asymptotic distribution of the estimator ℓ′pα̂F (p).

Let v2p = σ2ℓ′pΓ
−1
p ℓp, which turns out to be the asymptotic variance of all the estima-

tors considered in this paper.

Theorem 2. Suppose that Assumptions 1 and 2 are satisfied. Then, if N → ∞,

T → ∞ and p → ∞ with
√
NTp

∑∞
k=p+1 |αk| → 0, p3/(NT ) → 0, p2/T → 0 and

6An alternative way of defining the consistency of α̂(p) is supk |α̂k − αk| →p 0, where we set
α̂k = 0 for k > p. Note that our definition of consistency is actually stronger than this alternative
definition. This is because supk |α̂k −αk| ≤ ||α̂(p)−α(p)||+supk>p |αk| →p 0 if ||α̂(p)−α(p)|| →p 0
and p→ ∞.
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p4N/T 3 → 0, we have

√
NT

[
ℓ′pα̂F (p)− ℓ′pα(p) + ℓ′pΓ

−1
p B

]
/vp

d−→ N(0, 1),

where

B = E

(
T − p

T

(
1

T − p

T−1∑
k=p

wik(p)

)
1

T − p

T∑
k=p+1

ϵik

)
=

1

T (T − p)

T∑
t=p+1

t−1∑
m=p+1

σ2ψ−
t−1−m(p),

wik(p) = (wi,k, . . . , wi,k−p+1)
′and ψ−

t−1−m(p) = (ψt−1−m, ψt−m, . . . , ψt−2−m+p).

The theorem shows that ℓ′pα̂F (p) is asymptotically normal, but also asymptotically

biased. We see as well that the convergence rate of ℓ′pα̂F (p) is
√
NT when we ignore

the bias term. Note that since the convergence rate of ℓ∗′p α̂F (p) is also
√
NT , the

convergence rate of ŜARF is
√
NT/p, which is slower than

√
NT .

To better understand the structure of the bias in our analysis, we can utilize a

convenient decomposition formula. Since uit,p = bit,p + ϵit, the transformed error ũit,p

is the sum of b̃it,p = bit,p −
∑T

t′=p+1 bit′,p/(T − p) and ϵ̃it = ϵit −
∑T

t′=p+1 ϵit′/(T − p).

For this reason, the total bias can be decomposed as

E (α̂F (p)− α(p))

= E

(
(Γ̂F

p )
−1 1

NT

T∑
t=p+1

x̃t(p)
′ũt,p

)

= E

(
(Γ̂F

p )
−1 1

NT

T∑
t=p+1

x̃t(p)
′b̃t,p

)
︸ ︷︷ ︸

truncation bias

+E

(
(Γ̂F

p )
−1 1

NT

T∑
t=p+1

x̃t(p)
′ϵ̃t

)
︸ ︷︷ ︸

fundamental bias

where

Γ̂F
p =

1

NT

T∑
t=p+1

x̃t(p)
′x̃t(p).

The first term is the bias that arises because we estimate the AR model with a trun-

cated lag length, not the true infinite order AR model. Throughout the paper, we

12



refer this bias to ‘truncation bias.’ Similarly, we refer the second term to ‘fundamen-

tal bias’ since this part of bias is present even if we estimate the true finite order

AR model with the correct lag length. While the truncation bias may not be negli-

gible in finite samples, it vanishes in our asymptotic analysis due to our assumption

√
NTp

∑∞
k=p+1 |αk| → 0. This assumption implies that supk>p+1 |αk| = o(

√
NTp)

is needed. If p increases very slowly, the approximation error does not vanish fast

enough and a bias of the estimator appears. For example, if wit follows a finite order

stationary and invertible ARMA process, αk decays exponentially and p must grow

at a rate faster than log(NT ) (i.e., log(NT )/p→ 0 is needed).

It is the second term, namely the fundamental bias, that appears in the theorem.

The order of this bias term is
√
p/T . This result corresponds to the well-known

outcome that the fixed effects estimator is asymptotically biased in dynamic panel

data models (see, e.g., Nickell, 1981, Kiviet, 1995 and Hahn and Kuersteiner, 2002).

The formula in the theorem includes only the fundamental bias term partly because

it is estimable and can be corrected.

We now consider a bias correction. Let B̂ be an estimator of B. Let νNTp be the

inverse of the convergence rate of B̂ such that
∥∥∥B̂ −B

∥∥∥ = Op(νNTp). A bias corrected

estimator is given by

α̂BF (p) = α̂F (p) + (Γ̂F
p )

−1B̂.

We note that B ≈ σ2
∑∞

k=0 ψkιp/T , where ιp is the p × 1 vector of ones. Since∑∞
k=0 ψk = 1/(1 −

∑∞
k=1 αk), a possible choice of B̂ is (σ̂2/(1 −

∑p
k=1 α̃k))ιp/T ,

where α̃k’s are some preliminary estimates for αk’s. If we are interested in SAR,

i.e., when ℓp = ℓ∗p, a simple bias correction method can be employed. In this

case, we have ℓ∗′p Γ
−1
p ιp ≈ p1/2(1 −

∑p
k=1 αk)

2/σ2 so that the bias is approximated

13



by p1/2(1− ι′pα(p))/T . As a result, we can simply replace ℓ∗′p α̂F (p) by

T − p

T
ℓ∗′p α̂F (p) +

p1/2

T
= p−1/2ι′pα̂F (p) +

p1/2

T
(1− ι′pα̂F (p))

and use

ŜARBF =
T − p

T
ŜARF +

p

T

as a bias corrected estimator of SAR.7

The following theorem gives the consistency of the bias corrected fixed effects

estimator.

Theorem 3. Suppose that Assumptions 1 and 2 are satisfied. Suppose that νNTp → 0.

Then, if N → ∞, T → ∞ and p→ ∞ with p2/(NT ) → 0 and p3/T 2 → 0, we have

||α̂BF (p)− α(p)|| →p 0.

The asymptotic normality result is provided below.

Theorem 4. Suppose that Assumptions 1 and 2 are satisfied. Then, if N → ∞,

T → ∞ and p → ∞ with
√
NTp

∑∞
k=p+1 |αk| → 0, p3/(NT ) → 0, p2/T → 0 and

√
NTνNTp → 0, we have

√
NT

[
ℓ′pα̂BF (p)− ℓ′pα(p)

]
/vp

d−→ N(0, 1).

This theorem shows that our bias corrected estimator can effectively eliminate the

asymptotic bias.

Note that Theorems 3 and 4 require the condition on the convergence rate of

νNTp. When the bias is estimated by B̂ = (σ̂2/(1 −
∑p

k=1 α̃k))ιp/T , νNTp would be

7A remarkable observation is that this bias correction for the estimator of SAR reduces not only
the bias but also the variance. Since p1/2/T is nonrandom and (T − p)/T < 1, the variance of the
bias corrected estimator must be smaller than that of the fixed effects estimator.
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(p/(
√
NT 3/2)+p/T 2) because the convergence rate of

∑p
k=1 α̃k is

√
p/(NT )+

√
p/T .

In this case, the condition νNTp → 0 is always satisfied because p2/T → 0 is imposed.

For the asymptotic normality result,
√
NTνNTp → 0 requires an additional condition

that p2N/T 3 → 0.

3.2 The GMM estimator

In this section, we consider the GMM estimator based on Holtz-Eakin, Newey and

Rosen (1988) and Arellano and Bond (1991).

For the GMM estimator, we apply the forward filter to the variables to eliminate

the individual effects.8 Let

y∗it =

√
T − t

T − t+ 1

(
yit −

1

T − t
(yi,t+1 + · · ·+ yiT )

)
,

and x∗it(p) and u
∗
it,p be similarly defined.9 In this paper, a variable with ∗ superscript is

a variable transformed by the forward filter even when it is not explicitly mentioned.

The transformed variables satisfy the following relationship:

y∗it = x∗it(p)
′α(p) + u∗it,p (5)

so that the individual effect µi is eliminated.

The GMM estimator exploits the following moment conditions.

E[yi,t−sϵ
∗
it] = 0 for s ≥ 1.

8We use the forward filtering because it provides a simple representation of the GMM estima-
tor. Note that the GMM estimator considered here is numerically equivalent to the efficient GMM
estimator based on the equations in first differences (Arellano and Bover, 1995).

9Note that y∗i,t−k and the forward filtered lagged dependent variable in x∗it(p) are different. For
example, the kth element of x∗it(p) is√

T − t

T − t+ 1

(
yi,t−k − 1

T − t
(yi,t−k+1 + · · ·+ yi,T−k)

)
.

To obtain the kth element of x∗it(p), we subtract the average of (yi,t−k+1 ,. . . , yi,T−k) instead of the
average of (yi,t−k+1 ,. . . , yi,T ) as for y

∗
i,t−k.
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We note that there are T − p − 1 equations (one equation for each time period) to

be estimated and the equation for y∗it has t − 1 instruments. Therefore, there are∑T−1
t=p+1(t− 1) = (T − 2)(T − 1)/2− (p− 1)p/2 moment conditions in total, and the

number of moment conditions can be very large even when T is moderately large.

We now define the GMM estimator. Let Zit = (yit−1, . . . , yi1)
′ be the set of

instrumental variables for the equation with y∗it as the dependent variable. Let Mt =

Zt(Z
′
tZt)

−1Z ′
t. The GMM estimator, α̂G(p), is

α̂G(p) =

(
T−1∑
t=p+1

x∗t (p)
′Mtx

∗
t (p)

)−1 T−1∑
t=p+1

x∗t (p)
′Mty

∗
t .

We need the following two additional assumptions to investigate the asymptotic

properties of the GMM estimator.

Assumption 3. E(µ4
i ) is finite.

Assumption 3 is not needed for the fixed effects estimator because the fixed effects

estimator is based solely on the transformed variables and is thus free from individual

effects. On the other hand, the GMM estimator depends on individual effects because

the instruments are affected by individual effects.

Assumption 4.
∑∞

k=1 k|ψk| <∞.

Assumption 4 imposes a stronger restriction on the dependence of the variable

than that needed for the fixed effects estimator. However, this assumption is satisfied,

for example, when the true process is a finite order ARMA model. This assumption

is employed in order to evaluate the bias caused by the presence of many moment

conditions.
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The following theorems provide the consistency of α̂G(p) and the asymptotic nor-

mality of ℓ′pα̂G(p).

Theorem 5. Suppose that Assumptions 1, 2, 3 and 4 are satisfied. Then, if N → ∞,

T → ∞ and p→ ∞ with T/N → 0 and p2/T → 0, we have

||α̂G(p)− α(p)|| →p 0.

Theorem 6. Suppose that Assumptions 1, 2, 3 and 4 are satisfied. Then, if N → ∞,

T → ∞ and p → ∞ with
√
NTp

∑∞
k=p+1 |αk| → 0, p2T/N → 0 and p3 log T/T → 0,

we have

√
NT

[
ℓ′pα̂G(p)− ℓ′pα(p)

]
/vp

d−→ N(0, 1).

Note that the convergence rate and asymptotic variance of the GMM estimator

is identical to those of the fixed effects estimator and the bias corrected fixed effects

estimator. Similarly, the GMM estimator of SAR defined by ŜARG =
√
pℓ∗′p α̂G(p)

also has a nonparametric convergence rate of
√
NT/p.

However, it should be noted that our asymptotic normality results of the GMM

estimator are derived under the assumption that N grows at a rate faster than T . In

general, the GMM estimator suffers from the bias caused by the presence of many

moment conditions, but our assumption on N and T allows us to ignore the “many

moments bias.” We may be able to relax the condition on the relative magnitude of

N and T and derive the asymptotic distribution that explicitly evaluates the many

moment bias term as done in Alvarez and Arellano (2003). However, evaluating the

many moments bias in the current setting is very difficult and should be considered

as a separate project. Instead, in the next subsection, we consider an alternative IV

estimator, developed by Hayakawa (2009), that is free from the many moments bias.
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3.3 Hayakawa’s efficient IV estimator

The concept of Hayakawa’s (2009) IV estimator is similar to that of the GMM

estimator except for the choice of instruments. The instruments are constructed

by subtracting the average of past realizations from the regressors. Let zit(p) =

(yi,t−1, . . . , yi,t−p) and

hit(p) =

√
T − t

T − t+ 1

(
zit(p)−

1

t− p− 1
(zi,t−1(p)− · · · − zi,p+1(p))

)
.

The choice of hit(p) as instruments in equation (5) can be motivated by the follow-

ing observation. In finite order AR models, the optimal instruments for x∗it(p) is

wit−1(p) = (xit(p)− ηi). The instrument hit(p) may be regarded as an approximation

to this optimal instrument, using the average of past realizations of yit in place of ηi.

We use only the past realizations so that the moment conditions become valid even

when T is small.

An IV estimator can be constructed as

α̂H(p) =

(
T−1∑
t=p+2

ht(p)
′x∗t (p)

)−1 T−1∑
t=p+2

ht(p)
′y∗t .

Hayakawa (2009) shows that for finite order AR models, this estimator is consistent

regardless of the relative magnitude of N and T and is efficient when T → ∞ under

Gaussianity.

The following theorems demonstrate the asymptotic properties of α̂H(p).

Theorem 7. Suppose that Assumptions 1 and 2 are satisfied. Then, if N → ∞,

T → ∞ and p→ ∞ with p2/T → 0, we have

||α̂H(p)− α(p)|| →p 0.

18



Theorem 8. Suppose that Assumptions 1 and 2 are satisfied. Then, if N → ∞,

T → ∞ and p→ ∞ with
√
NTp

∑∞
k=p+1 |αk| → 0 and p3/T → 0, we have

√
NT

[
ℓ′pα̂H(p)− ℓ′pα(p)

]
/vp

d−→ N(0, 1).

Note that the convergence rate and asymptotic variance of Hayakawa’s IV esti-

mator are identical to those of other estimators. Therefore, the estimator of SAR

defined by ŜARH =
√
pℓ∗′p α̂G(H) also has the same convergence rate and limiting

distribution.

The most notable fact is that, in contrast to other estimators, the asymptotic

normality of Hayakawa’s IV estimator does not require any condition on the relative

rate for N and T . Nonetheless, this IV estimator possesses the same asymptotic

variance as that of the other estimators. This result indicates that Hayakawa’s IV

estimator may behave better than the GMM estimator when T is relatively large. On

the other hand, compared with that of the bias corrected fixed effects estimator, the

condition on p is stronger for Hayakawa’s IV estimator (i.e., p3/T → 0 for Hayakawa’s

IV estimator while p3/(NT ) → 0 and p2/T → 0 for the bias corrected fixed effects

estimator). However, we view this restriction as a relatively minor issue because p

can be chosen appropriately by researchers.

3.4 Comparisons of the four estimators

So far, we have considered four estimators. All the estimators are consistent and

asymptotically normal with a common asymptotic variance. However, the fixed effects

estimator is biased and the GMM estimator requires that N grow faster than T to

avoid the bias. On the other hand, the bias corrected fixed effects estimator may

require p2N/T 3 → 0. Hayakawa’s estimator does not restrict the relative magnitude
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of N and T . These theoretical results lead us to recommend the bias corrected fixed

effects estimator and Hayakawa’s estimator. When N is large, the GMM estimator

may also be considered. We also investigate the finite sample properties of these

estimators through simulations of which the results are presented in the next section.

3.5 Standard errors

Computing the standard errors of the estimators requires the consistent estimation

of v2p = σ2ℓ′pΓ
−1
p ℓp. Natural estimators of v2p may be

v̂2p,F =

(
1

NT

N∑
i=1

T∑
t=p+1

(ỹit − x̃it(p)
′α̂F (p))

2

)
ℓ′p(Γ̂

F
p )

−1ℓp,

v̂2p,BF =

(
1

NT

N∑
i=1

T∑
t=p+1

(ỹit − x̃it(p)
′α̂BF (p))

2

)
ℓ′p(Γ̂

F
p )

−1ℓp,

v̂2p,G =

(
1

NT

N∑
i=1

T−1∑
t=p+1

(y∗it − x∗it(p)
′α̂G(p))

2

)
ℓ′p(Γ̂

G
p )

−1ℓp

and v̂2p,H =

(
1

NT

N∑
i=1

T−1∑
t=p+2

(y∗it − x∗it(p)
′α̂H(p))

2

)
ℓ′p(Γ̂

H
p )

−1ℓp

where

Γ̂G
p =

1

NT

T−1∑
t=p+1

x∗t (p)
′Mtx

∗
t (p) and Γ̂H

p =
1

NT

T−1∑
t=p+2

ht(p)
′x∗t (p).

It would be sensible to use v̂2p,F for α̂F (p), v̂
2
p,BF for α̂BF (p), v̂

2
p,G for α̂G(p) and v̂

2
p,H

for α̂H(p).

The following theorem shows the consistency of these four estimators.

Theorem 9. Suppose that Assumptions 1 and 2 are satisfied.

1. If N, T, p→ ∞ with p2/(NT ) → 0 and p3/T 2 → 0, then v̂2p,F − v2p →p 0.
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2. If N, T, p → ∞ with p2/(NT ) → 0, p3/T 2 → 0 and νNTp → 0, then v̂2p,BF −

v2p →p 0.

3. Suppose, in addition, that Assumptions 3 and 4 are satisfied. If N, T, p → ∞

with T/N → 0 and p2/T → 0, then v̂2p,G − v2p →p 0.

4. If N, T, p→ ∞ with p2/T → 0, then v̂2p,H − v2p →p 0.

Each variance estimator is consistent when the corresponding estimator for α(p)

is consistent.

3.6 Lag selection

The estimation procedures require the lag order of the approximated model, p, to

be chosen by researchers. In choosing p, we consider the following general-to-specific

rule. This automatic rule follows the procedure similar to the one considered in Ng

and Perron (1995) which tests for the significance of coefficients on lags.

Each step of the general-to-specific rules uses the t-statistic for the coefficient on

the highest lag in the model. Let ep be the p× 1 vector whose pth element is 1 and

other elements are zero. Let

tp(α̂(p)) =
√
NTe′pα̂(p)/v̂p,

where α̂(p) and v̂p are estimators of α(p) and vp with ℓp = ep, respectively. The

statistics tp(α̂(p)) is the t-test statistics for the null hypothesis αp = 0 based on

estimator α̂(p).

The general-to-specific procedure is the following. We a priori set the maximum

possible value of p, denoted pmax. Let p̂ be the maximum value of p such that
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|tp(α̂(p))| > z0.5α, where z0.5α is the upper 0.5α quantile of the standard normal

distribution, for p = 1, 2, . . . , pmax. This p̂ is the lag length chosen by this general-to-

specific procedure. An alternative explanation of the rule is the following. We keep

the pth-lag if its coefficient is statistically significant in AR(p) specification. Other-

wise, we drop the pth lag, estimate the AR(p − 1) model and test the significance

of the coefficient of the (p − 1)th lag. We repeat this process until the coefficient

becomes statistically significant or p reaches zero.

The following theorem gives the rate of p̂.

Theorem 10. Suppose that α̂(p) is α̂F (p), α̂BF (p), α̂G(p) or α̂H(p). Suppose also

that Assumptions 1 and 2 are satisfied and that, if α̂(p) = α̂G(p), Assumptions 3 and

4 are also satisfied. If N , T and p = pmax satisfy conditions for that
√
NTℓ′p(α̂(p)−

α(p))/vp → N(0, 1) and v̂p → vp, then p̂ increases at the same rate as pmax.

This theorem implies that we can choose p by the general-to-specific procedure

such that it satisfies the requirement for the asymptotic normality of an estimator

by appropriately setting the rate of pmax. In the simulations presented below, we set

pmax = O(T 1/4) under which all the conditions for the theoretical analysis hold.

4 Monte Carlo Experiments

In this section, we conduct Monte Carlo simulations to evaluate the accuracy of

our asymptotic approximations of distribution of various dynamic panel estimators in

finite samples. We would also like to see the effects of different choices of lag orders

in approximated models.
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We generate samples from the ARMA(1,1) model of the following form:

yit = ηi + ϕyi,t−1 + ϵit + θϵi,t−1

where ϕ = {0, 0.5, 0.97}, θ = 0.4 and ηi ∼ N(0, 1) independent across i, ϵit ∼ N(0, 1)

independent across i and t. The individual effect ηi and idiosyncratic error ϵit are

also independently drawn. With a fixed MA parameter set at θ = 0.4, we control the

persistence of the process by changing the AR parameter. We estimate the first AR

coefficient α1 and sum of the AR coefficients (SAR)
∑∞

k=1 αk using various estimators.

When ϕ = 0 (DGP1), α1 and SAR are 0.4 and 0.286, respectively. When ϕ = 0.5

(DGP2), α1 is 0.9 and the process becomes more persistent with the SAR being

0.643. The most persistent process with ϕ = 0.97 (DGP3) has a hump-shaped impulse

response with α1 being 0.9 and a near unit SAR of 0.979.10 For each process, yi0’s

are generated from the (conditional) stationary distribution:

yi0|ηi ∼ N

(
ηi

1− ϕ
,
1 + θ2 + 2ϕθ

1− ϕ2

)
.

The effective sample sizes we consider areN = {50, 100, 500, 1000} and T = {25, 50, 75}.

We consider two rules of thumb and an automatic selection rule to choose the

AR lag p. For the rules of thumb, we follow a convention from the time series

literature and use p = [c(T/100)1/4] with c = 4 and 12, where [x] is integer part of

x. The fixed rules with c = {4, 12} provide p = {2, 8} for T = 25, p = {3, 10} for

T = 50 and p = {3, 11} for T = 75, respectively. The automatic rule follows the

general-to-specific procedure described in Section 3.6. The maximum lag is selected

as pmax = [12(T/100)1/4], which corresponds to the fixed rule with a choice of c = 12.
10This third choice of parameters is very close to the value of the ARMA(1,1) process estimated

in the literature of purchasing power parity.
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Note that both the rule of thumb and automatic lag selection procedures satisfy the

required conditions in the theoretical analysis.11

We evaluate the following four estimators; the fixed effects estimator, the bias-

corrected fixed effects estimator, the GMM estimator and the Hayakawa’s IV estima-

tor. We compare the finite sample performance of the four estimators in terms of: (i)

median absolute deviation (med abs dev); (ii) median bias; (iii) interquartile range

(iqr); and (iv) coverage probability of an asymptotic 95% confidence interval.12 13

The results based on 1000 Monte Carlo runs are provided in Tables 1 to 4. Tables

1, 2 and 3 show the results from DGP1, DGP2 and DGP3, respectively, when N =

{50, 100, 500, 1000} and T = 25. Table 4 shows the results when N = 100 and

T = {50, 75}.

11We have also tried information criteria in choosing the AR lag. See Lee (2012b) on how infor-
mation criteria should be modified for dynamic panel data analysis. However, the simulation results
are similar to those reported here and we do not report them. Another problem is that in time
series literature, the rate of the lag length chosen by an information criterion is founded to be of
order log(T ). See, e.g., Hannan and Deistler (1988, Section 6.6) and Ng and Perron (1995). This
fact leads us to conjecture that the rate is of order log(NT ) in the case of dynamic panel models.
However, such a rate does not satisfy the condition for the truncation bias to be negligible in the
asymptotic distribution.

12Median absolute deviation is defined as the median of the absolute value of the difference between
the estimator and the true value.

13We use these robust measures because of the concern about the existence of the moments of
the instrumental variables estimators. It is well-known in the literature on instrumental variables
estimation that just-identified instrumental variables estimators do not possess any moment (see,
e.g., Hayashi 2000, chapter 8, page 542). In fact, we obtain unreasonably high values of root mean
squared error or bias for the Hayakawa estimator when ϕ = 0.97 and N is small. The use of robust
measures is thus common in the literature on instrumental variables estimation and panel data. For
example, Alvarez and Arellano (2003) and Okui (2009) report robust measures.

24



T
ab

le
1:

F
in
it
e
sa
m
p
le

p
er
fo
rm

an
ce

of
es
ti
m
at
or
s
w
h
en

T
=

25
(D

G
P
1:
ϕ
=

0)

F
E

b
ia
s
co
rr
ec
te
d
F
E

G
M
M

H
ay
ak
aw

a
IV

N
fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

(i
)
α
1

50
m
ed

ab
s
d
ev

0.
05

3
0.
08

5
0.
07

9
0.
02

2
0.
03

1
0.
02

3
0.
04

2
0.
07

9
0.
06

4
0.
02

9
0.
04
8

0.
03
6

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.0
53

-0
.0
85

-0
.0
79

-0
.0
15

-0
.0
27

-0
.0
12

-0
.0
41

-0
.0
79

-0
.0
64

-0
.0
22

0.
00
0

-0
.0
04

0.
4
00

)
iq
r

0.
04

0
0.
04

9
0.
04

9
0.
04

0
0.
04

9
0.
04

1
0.
04

6
0.
06

7
0.
06

5
0.
05

2
0.
09
6

0.
07
1

cp
0.
59

1
0.
33

1
0.
36

3
0.
92

4
0.
86

1
0.
91

8
0.
74

4
0.
54

0
0.
60

7
0.
91

0
0.
95
7

0.
91
4

10
0

m
ed

ab
s
d
ev

0.
05

2
0.
08

5
0.
08

2
0.
01

8
0.
02

8
0.
01

8
0.
03

3
0.
05

3
0.
04

1
0.
02

4
0.
03
2

0.
02
4

m
ed

ia
n
b
ia
s

-0
.0
52

-0
.0
85

-0
.0
82

-0
.0
15

-0
.0
26

-0
.0
12

-0
.0
32

-0
.0
53

-0
.0
41

-0
.0
22

0.
00
0

-0
.0
02

iq
r

0.
02

9
0.
03

5
0.
03

5
0.
02

9
0.
03

5
0.
03

3
0.
03

4
0.
04

9
0.
04

8
0.
03

6
0.
06
3

0.
04
8

cp
0.
30

8
0.
08

2
0.
09

6
0.
87

3
0.
80

0
0.
88

4
0.
71

3
0.
62

3
0.
68

1
0.
85

2
0.
95
5

0.
91
3

50
0

m
ed

ab
s
d
ev

0.
05

2
0.
08

4
0.
08

4
0.
01

4
0.
02

5
0.
01

3
0.
02

2
0.
01

6
0.
01

2
0.
02

2
0.
01
5

0.
01
1

m
ed

ia
n
b
ia
s

-0
.0
52

-0
.0
84

-0
.0
84

-0
.0
14

-0
.0
25

-0
.0
13

-0
.0
22

-0
.0
14

-0
.0
10

-0
.0
22

0.
00
1

0.
00
1

iq
r

0.
01

3
0.
01

6
0.
01

6
0.
01

3
0.
01

6
0.
01

6
0.
01

4
0.
02

2
0.
02

1
0.
01

6
0.
03
0

0.
02
2

cp
0.
00

0
0.
00

0
0.
00

0
0.
66

3
0.
38

5
0.
75

1
0.
48

0
0.
86

0
0.
86

2
0.
54

4
0.
95
1

0.
91
6

10
00

m
ed

ab
s
d
ev

0.
05

2
0.
08

4
0.
08

4
0.
01

5
0.
02

6
0.
01

3
0.
02

0
0.
00

9
0.
00

8
0.
02

2
0.
01
1

0.
00
8

m
ed

ia
n
b
ia
s

-0
.0
52

-0
.0
84

-0
.0
84

-0
.0
15

-0
.0
26

-0
.0
13

-0
.0
20

-0
.0
07

-0
.0
05

-0
.0
22

0.
00
0

-0
.0
01

iq
r

0.
00

9
0.
01

1
0.
01

1
0.
00

9
0.
01

1
0.
01

3
0.
01

0
0.
01

7
0.
01

4
0.
01

2
0.
02
1

0.
01
6

cp
0.
00

0
0.
00

0
0.
00

0
0.
40

2
0.
11

9
0.
56

8
0.
23

7
0.
89

3
0.
88

8
0.
24

8
0.
95
9

0.
93
2

(i
i)
S
A
R

50
m
ed

ab
s
d
ev

0.
11

4
0.
45

0
0.
40

7
0.
04

8
0.
08

0
0.
04

4
0.
08

8
0.
35

0
0.
25

7
0.
05

7
0.
16
3

0.
09
3

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.1
14

-0
.4
50

-0
.4
07

-0
.0
48

-0
.0
78

-0
.0
33

-0
.0
88

-0
.3
50

-0
.2
57

-0
.0
55

-0
.0
01

-0
.0
21

0.
2
86

)
iq
r

0.
05

1
0.
13

8
0.
18

9
0.
04

7
0.
09

4
0.
07

5
0.
06

0
0.
21

5
0.
26

7
0.
06

8
0.
32
8

0.
18
6

cp
0.
10

2
0.
00

1
0.
00

9
0.
74

3
0.
94

4
0.
89

2
0.
44

5
0.
29

5
0.
25

7
0.
79

0
0.
94
7

0.
82
3

10
0

m
ed

ab
s
d
ev

0.
11

4
0.
44

5
0.
43

4
0.
04

7
0.
07

4
0.
03

8
0.
07

1
0.
24

0
0.
15

8
0.
05

7
0.
11
5

0.
06
8

m
ed

ia
n
b
ia
s

-0
.1
14

-0
.4
45

-0
.4
34

-0
.0
47

-0
.0
74

-0
.0
34

-0
.0
71

-0
.2
40

-0
.1
58

-0
.0
57

-0
.0
03

-0
.0
05

iq
r

0.
03

7
0.
09

3
0.
11

6
0.
03

4
0.
06

3
0.
05

9
0.
04

4
0.
16

0
0.
20

1
0.
05

0
0.
23
1

0.
13
5

cp
0.
00

5
0.
00

0
0.
00

0
0.
52

3
0.
87

1
0.
84

8
0.
36

3
0.
43

4
0.
40

5
0.
60

9
0.
94
7

0.
83
0

50
0

m
ed

ab
s
d
ev

0.
11

3
0.
44

7
0.
44

7
0.
04

7
0.
07

5
0.
03

7
0.
05

4
0.
06

7
0.
04

0
0.
05

5
0.
05
3

0.
03
4

m
ed

ia
n
b
ia
s

-0
.1
13

-0
.4
47

-0
.4
47

-0
.0
47

-0
.0
75

-0
.0
37

-0
.0
54

-0
.0
66

-0
.0
37

-0
.0
55

0.
00
0

0.
00
2

iq
r

0.
01

5
0.
04

3
0.
04

3
0.
01

4
0.
02

9
0.
03

0
0.
01

9
0.
07

6
0.
06

4
0.
02

0
0.
10
7

0.
06
8

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

8
0.
19

0
0.
53

3
0.
03

6
0.
81

9
0.
73

1
0.
05

7
0.
95
4

0.
85
8

10
00

m
ed

ab
s
d
ev

0.
11

3
0.
44

8
0.
44

8
0.
04

7
0.
07

6
0.
03

7
0.
05

1
0.
04

0
0.
02

6
0.
05

5
0.
03
9

0.
02
5

m
ed

ia
n
b
ia
s

-0
.1
13

-0
.4
48

-0
.4
48

-0
.0
47

-0
.0
76

-0
.0
37

-0
.0
51

-0
.0
35

-0
.0
21

-0
.0
55

-0
.0
02

-0
.0
03

iq
r

0.
01

1
0.
03

2
0.
03

2
0.
01

0
0.
02

2
0.
02

4
0.
01

5
0.
06

4
0.
04

4
0.
01

6
0.
07
9

0.
05
1

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
01

3
0.
20

5
0.
00

1
0.
87

3
0.
77

5
0.
00

2
0.
95
4

0.
86
1

N
o
te
s:

L
a
g
le
n
g
th

s
a
re

p
=

2
a
n
d
p
=

8
fo
r
fi
x
ed

ru
le
s
w
it
h
c
=

4
(fi

x
4
)
a
n
d
c
=

1
2
(fi

x
1
2
),

re
sp

ec
ti
v
el
y,

o
r
fr
o
m

a
n
a
u
to
m
a
ti
c
se
q
u
en

ti
a
l
p
ro
ce
d
u
re

(a
u
to
).

M
ed

ia
n

a
b
so
lu
te

d
ev

ia
ti
o
n
(m

ed
a
b
s
d
ev

).
In
te
rq
u
a
rt
il
e
ra
n
g
e
(i
q
r)
.
C
o
v
er
a
g
e
p
ro
b
a
b
il
it
y
(c
p
)
o
f
9
5
p
er
ce
n
t
a
sy
m
p
to
ti
c
co

n
fi
d
en

ce
in
te
rv
a
l.

1
0
0
0
it
er
a
ti
o
n
s.

25



T
ab

le
2:

F
in
it
e
sa
m
p
le

p
er
fo
rm

an
ce

of
es
ti
m
at
or
s
w
h
en

T
=

25
(D

G
P
2:
ϕ
=

0.
5)

F
E

b
ia
s
co
rr
ec
te
d
F
E

G
M
M

H
ay
ak
aw

a
IV

N
fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

(i
)
α
1

50
m
ed

ab
s
d
ev

0.
07

6
0.
09

1
0.
08

6
0.
04

4
0.
03

6
0.
02

7
0.
07

6
0.
09

2
0.
07

8
0.
05

9
0.
05
3

0.
03
9

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.0
76

-0
.0
91

-0
.0
86

-0
.0
44

-0
.0
33

-0
.0
18

-0
.0
76

-0
.0
92

-0
.0
78

-0
.0
59

-0
.0
05

-0
.0
02

0.
9
00

)
iq
r

0.
04

2
0.
05

1
0.
05

2
0.
04

1
0.
05

2
0.
04

8
0.
04

9
0.
06

7
0.
06

6
0.
05

5
0.
10
7

0.
08
0

cp
0.
27

1
0.
26

9
0.
32

4
0.
66

6
0.
81

5
0.
88

7
0.
36

3
0.
43

1
0.
49

5
0.
64

2
0.
94
3

0.
90
1

10
0

m
ed

ab
s
d
ev

0.
07

5
0.
09

2
0.
09

0
0.
04

3
0.
03

4
0.
02

1
0.
06

5
0.
06

5
0.
05

1
0.
05

8
0.
03
4

0.
02
5

m
ed

ia
n
b
ia
s

-0
.0
75

-0
.0
92

-0
.0
90

-0
.0
43

-0
.0
33

-0
.0
17

-0
.0
65

-0
.0
65

-0
.0
51

-0
.0
58

-0
.0
02

-0
.0
01

iq
r

0.
02

9
0.
03

6
0.
03

7
0.
02

9
0.
03

7
0.
03

5
0.
03

2
0.
05

1
0.
05

3
0.
03

5
0.
06
8

0.
05
0

cp
0.
05

1
0.
05

9
0.
07

0
0.
43

9
0.
72

0
0.
85

6
0.
19

6
0.
51

8
0.
59

4
0.
40

7
0.
95
3

0.
93
6

50
0

m
ed

ab
s
d
ev

0.
07

4
0.
09

0
0.
09

0
0.
04

2
0.
03

1
0.
01

9
0.
05

4
0.
01

9
0.
01

6
0.
05

7
0.
01
7

0.
01
2

m
ed

ia
n
b
ia
s

-0
.0
74

-0
.0
90

-0
.0
90

-0
.0
42

-0
.0
31

-0
.0
19

-0
.0
54

-0
.0
18

-0
.0
14

-0
.0
57

0.
00
1

-0
.0
01

iq
r

0.
01

2
0.
01

7
0.
01

7
0.
01

2
0.
01

6
0.
01

7
0.
01

5
0.
02

3
0.
02

1
0.
01

7
0.
03
4

0.
02
5

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

5
0.
19

6
0.
55

7
0.
00

0
0.
82

3
0.
82

8
0.
00

2
0.
93
8

0.
91
1

10
00

m
ed

ab
s
d
ev

0.
07

4
0.
09

1
0.
09

1
0.
04

3
0.
03

2
0.
01

9
0.
05

3
0.
01

1
0.
00

9
0.
05

7
0.
01
2

0.
00
9

m
ed

ia
n
b
ia
s

-0
.0
74

-0
.0
91

-0
.0
91

-0
.0
43

-0
.0
32

-0
.0
19

-0
.0
53

-0
.0
09

-0
.0
07

-0
.0
57

0.
00
0

0.
00
1

iq
r

0.
00

9
0.
01

1
0.
01

1
0.
00

9
0.
01

1
0.
01

4
0.
01

1
0.
01

8
0.
01

5
0.
01

2
0.
02
3

0.
01
7

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
01

6
0.
29

8
0.
00

0
0.
87

3
0.
86

9
0.
00

0
0.
96
1

0.
93
3

(i
i)
S
A
R

50
m
ed

ab
s
d
ev

0.
11

2
0.
29

4
0.
26

7
0.
07

4
0.
08

5
0.
05

3
0.
10

2
0.
24

3
0.
18

3
0.
07

5
0.
11
4

0.
06
9

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.1
12

-0
.2
94

-0
.2
67

-0
.0
74

-0
.0
85

-0
.0
53

-0
.1
02

-0
.2
43

-0
.1
83

-0
.0
75

-0
.0
09

0.
00
3

0.
6
43

)
iq
r

0.
03

7
0.
08

1
0.
10

6
0.
03

4
0.
05

5
0.
05

0
0.
04

9
0.
12

6
0.
15

7
0.
05

7
0.
23
0

0.
14
0

cp
0.
00

5
0.
00

0
0.
00

2
0.
13

0
0.
72

2
0.
66

9
0.
11

5
0.
18

6
0.
20

2
0.
52

9
0.
95
4

0.
86
9

10
0

m
ed

ab
s
d
ev

0.
11

2
0.
29

6
0.
28

8
0.
07

4
0.
08

7
0.
05

5
0.
08

6
0.
17

1
0.
11

9
0.
07

5
0.
07
5

0.
04
9

m
ed

ia
n
b
ia
s

-0
.1
12

-0
.2
96

-0
.2
88

-0
.0
74

-0
.0
87

-0
.0
55

-0
.0
86

-0
.1
71

-0
.1
19

-0
.0
75

-0
.0
12

-0
.0
03

iq
r

0.
02

7
0.
05

7
0.
06

7
0.
02

5
0.
03

9
0.
03

9
0.
03

5
0.
10

7
0.
12

3
0.
04

1
0.
14
7

0.
09
8

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

7
0.
36

2
0.
43

9
0.
06

0
0.
32

2
0.
34

3
0.
25

1
0.
95
7

0.
89
1

50
0

m
ed

ab
s
d
ev

0.
11

1
0.
29

2
0.
29

2
0.
07

3
0.
08

4
0.
05

9
0.
07

0
0.
05

0
0.
03

4
0.
07

5
0.
03
6

0.
02
4

m
ed

ia
n
b
ia
s

-0
.1
11

-0
.2
92

-0
.2
92

-0
.0
73

-0
.0
84

-0
.0
59

-0
.0
70

-0
.0
49

-0
.0
34

-0
.0
75

0.
00
0

-0
.0
04

iq
r

0.
01

2
0.
02

4
0.
02

4
0.
01

1
0.
01

6
0.
01

9
0.
01

8
0.
05

0
0.
04

6
0.
01

9
0.
07
3

0.
04
8

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
75

9
0.
65

9
0.
00

0
0.
94
4

0.
87
0

10
00

m
ed

ab
s
d
ev

0.
11

1
0.
29

2
0.
29

2
0.
07

4
0.
08

4
0.
06

0
0.
06

8
0.
02

8
0.
02

0
0.
07

4
0.
02
5

0.
01
8

m
ed

ia
n
b
ia
s

-0
.1
11

-0
.2
92

-0
.2
92

-0
.0
74

-0
.0
84

-0
.0
60

-0
.0
68

-0
.0
25

-0
.0
16

-0
.0
74

-0
.0
04

0.
00
0

iq
r

0.
00

8
0.
02

0
0.
02

0
0.
00

7
0.
01

3
0.
01

7
0.
01

2
0.
04

1
0.
03

2
0.
01

3
0.
05
0

0.
03
6

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
84

0
0.
78

5
0.
00

0
0.
94
3

0.
88
8

N
ot
es
:
S
ee

n
ot
es

fo
r
T
ab

le
1.

26



T
ab

le
3:

F
in
it
e
sa
m
p
le

p
er
fo
rm

an
ce

of
es
ti
m
at
or
s
w
h
en

T
=

25
(D

G
P
3:
ϕ
=

0.
97
)

F
E

b
ia
s
co
rr
ec
te
d
F
E

G
M
M

H
ay
ak
aw

a
IV

N
fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

(i
)
α
1

50
m
ed

ab
s
d
ev

0.
14

1
0.
13

9
0.
12

0
0.
11

1
0.
07

8
0.
06

5
0.
21

4
0.
18

8
0.
17

2
0.
25

9
0.
21
2

0.
15
2

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.1
41

-0
.1
39

-0
.1
20

-0
.1
11

-0
.0
78

-0
.0
65

-0
.2
14

-0
.1
88

-0
.1
72

-0
.2
46

-0
.0
41

-0
.0
68

1.
3
70

)
iq
r

0.
04

0
0.
05

2
0.
04

8
0.
03

7
0.
05

3
0.
05

0
0.
06

5
0.
07

5
0.
07

0
0.
25

9
0.
41
0

0.
33
1

cp
0.
00

0
0.
02

7
0.
04

6
0.
01

1
0.
40

9
0.
49

9
0.
00

0
0.
03

6
0.
03

4
0.
60

7
0.
98
8

0.
90
7

10
0

m
ed

ab
s
d
ev

0.
13

9
0.
13

5
0.
12

1
0.
11

0
0.
07

5
0.
06

8
0.
22

4
0.
18

3
0.
16

7
0.
26

8
0.
16
5

0.
11
8

m
ed

ia
n
b
ia
s

-0
.1
39

-0
.1
35

-0
.1
21

-0
.1
10

-0
.0
75

-0
.0
68

-0
.2
24

-0
.1
83

-0
.1
67

-0
.2
63

-0
.0
05

-0
.0
39

iq
r

0.
02

8
0.
03

6
0.
03

7
0.
02

7
0.
03

7
0.
03

6
0.
06

6
0.
07

6
0.
07

5
0.
19

5
0.
33
5

0.
24
7

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
17

3
0.
22

5
0.
00

0
0.
02

0
0.
02

4
0.
27

1
0.
98
9

0.
91
2

50
0

m
ed

ab
s
d
ev

0.
13

8
0.
13

4
0.
13

0
0.
10

9
0.
07

3
0.
07

3
0.
26

1
0.
14

6
0.
13

2
0.
27

6
0.
07
1

0.
06
5

m
ed

ia
n
b
ia
s

-0
.1
38

-0
.1
34

-0
.1
30

-0
.1
09

-0
.0
73

-0
.0
73

-0
.2
61

-0
.1
46

-0
.1
32

-0
.2
76

-0
.0
07

-0
.0
08

iq
r

0.
01

3
0.
01

7
0.
01

8
0.
01

2
0.
01

7
0.
01

7
0.
06

4
0.
06

2
0.
06

2
0.
07

8
0.
14
3

0.
12
8

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
01

8
0.
02

6
0.
00

0
0.
96
9

0.
92
8

10
00

m
ed

ab
s
d
ev

0.
13

9
0.
13

4
0.
13

3
0.
10

9
0.
07

3
0.
07

3
0.
27

6
0.
11

8
0.
10

6
0.
27

5
0.
05
1

0.
04
4

m
ed

ia
n
b
ia
s

-0
.1
39

-0
.1
34

-0
.1
33

-0
.1
09

-0
.0
73

-0
.0
73

-0
.2
76

-0
.1
18

-0
.1
06

-0
.2
75

-0
.0
02

0.
00
1

iq
r

0.
00

9
0.
01

1
0.
01

2
0.
00

8
0.
01

1
0.
01

1
0.
06

3
0.
04

6
0.
04

7
0.
05

7
0.
10
2

0.
08
5

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
03

6
0.
05

5
0.
00

0
0.
94
9

0.
92
4

(i
i)
S
A
R

50
m
ed

ab
s
d
ev

0.
10

2
0.
15

0
0.
12

3
0.
09

2
0.
09

5
0.
08

6
0.
15

0
0.
16

3
0.
14

4
0.
18

7
0.
17
6

0.
12
3

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.1
02

-0
.1
50

-0
.1
23

-0
.0
92

-0
.0
95

-0
.0
86

-0
.1
50

-0
.1
63

-0
.1
44

-0
.1
79

-0
.0
35

-0
.0
55

0.
9
79

)
iq
r

0.
02

1
0.
03

6
0.
04

2
0.
01

9
0.
02

5
0.
02

2
0.
05

1
0.
06

6
0.
06

0
0.
19

7
0.
34
4

0.
25
9

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

1
0.
00

3
0.
00

2
0.
67

3
0.
98
2

0.
92
4

10
0

m
ed

ab
s
d
ev

0.
10

1
0.
14

7
0.
12

9
0.
09

1
0.
09

3
0.
08

7
0.
15

7
0.
15

4
0.
13

9
0.
19

0
0.
13
6

0.
09
9

m
ed

ia
n
b
ia
s

-0
.1
01

-0
.1
47

-0
.1
29

-0
.0
91

-0
.0
93

-0
.0
87

-0
.1
57

-0
.1
54

-0
.1
39

-0
.1
88

-0
.0
06

-0
.0
35

iq
r

0.
01

5
0.
02

6
0.
03

5
0.
01

3
0.
01

7
0.
01

5
0.
05

3
0.
06

2
0.
05

8
0.
14

7
0.
27
3

0.
19
2

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

4
0.
00

6
0.
36

0
0.
98
5

0.
91
5

50
0

m
ed

ab
s
d
ev

0.
10

0
0.
14

6
0.
14

2
0.
09

1
0.
09

2
0.
09

2
0.
18

6
0.
12

3
0.
11

1
0.
19

5
0.
05
9

0.
05
3

m
ed

ia
n
b
ia
s

-0
.1
00

-0
.1
46

-0
.1
42

-0
.0
91

-0
.0
92

-0
.0
92

-0
.1
86

-0
.1
23

-0
.1
11

-0
.1
95

-0
.0
07

-0
.0
08

iq
r

0.
00

6
0.
01

1
0.
01

7
0.
00

6
0.
00

7
0.
00

7
0.
05

1
0.
05

1
0.
05

2
0.
06

1
0.
11
7

0.
10
3

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
01

1
0.
01

2
0.
00

0
0.
97
0

0.
92
7

10
00

m
ed

ab
s
d
ev

0.
10

0
0.
14

5
0.
14

5
0.
09

1
0.
09

2
0.
09

2
0.
19

8
0.
09

9
0.
08

9
0.
19

2
0.
04
2

0.
03
5

m
ed

ia
n
b
ia
s

-0
.1
00

-0
.1
45

-0
.1
45

-0
.0
91

-0
.0
92

-0
.0
92

-0
.1
98

-0
.0
99

-0
.0
89

-0
.1
92

-0
.0
02

0.
00
1

iq
r

0.
00

4
0.
00

7
0.
00

9
0.
00

4
0.
00

5
0.
00

5
0.
05

1
0.
04

0
0.
03

9
0.
04

4
0.
08
5

0.
07
0

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
03

0
0.
04

2
0.
00

0
0.
95
6

0.
92
6

N
ot
es
:
S
ee

n
ot
es

fo
r
T
ab

le
1.

27



T
ab

le
4:

F
in
it
e
sa
m
p
le

p
er
fo
rm

an
ce

of
es
ti
m
at
or
s
w
h
en

T
=

50
an

d
75

(N
=

10
0)

F
E

b
ia
s
co
rr
ec
te
d
F
E

G
M
M

H
ay
ak
aw

a
IV

T
fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

D
G
P
1

50
m
ed

ab
s
d
ev

0.
02

3
0.
03

0
0.
02

8
0.
01

0
0.
01

1
0.
01

0
0.
01

5
0.
02

5
0.
02

2
0.
01

1
0.
01
4

0.
01
2

(i
)
α
1

m
ed

ia
n
b
ia
s

-0
.0
23

-0
.0
30

-0
.0
28

-0
.0
01

-0
.0
05

-0
.0
02

-0
.0
13

-0
.0
25

-0
.0
22

0.
00

3
0
.0
01

0.
00
1

(t
ru
e
va
lu
e:

iq
r

0.
01

9
0.
02

1
0.
02

1
0.
01

9
0.
02

1
0.
02

0
0.
02

0
0.
02

4
0.
02

4
0.
02

2
0.
02
7

0.
02
4

0.
4
00

)
cp

0.
65

4
0.
54

5
0.
56

8
0.
94

2
0.
93

0
0.
94

2
0.
85

7
0.
69

8
0.
73

0
0.
93

7
0.
94
7

0.
94
0

75
m
ed

ab
s
d
ev

0.
01

6
0.
01

8
0.
01

7
0.
00

8
0.
00

9
0.
00

8
0.
01

2
0.
01

9
0.
01

7
0.
00

9
0.
01
0

0.
00
9

m
ed

ia
n
b
ia
s

-0
.0
16

-0
.0
18

-0
.0
17

-0
.0
01

-0
.0
02

-0
.0
01

-0
.0
12

-0
.0
19

-0
.0
17

0.
00

1
0
.0
00

0.
00
1

iq
r

0.
01

6
0.
01

7
0.
01

7
0.
01

6
0.
01

7
0.
01

6
0.
01

6
0.
01

9
0.
01

8
0.
01

7
0.
02
0

0.
01
8

cp
0.
73

8
0.
70

0
0.
71

2
0.
95

1
0.
94

4
0.
95

1
0.
82

6
0.
69

4
0.
72

5
0.
95

5
0.
95
2

0.
95
3

(i
i)
S
A
R

50
m
ed

ab
s
d
ev

0.
04

4
0.
21

2
0.
19

5
0.
01

3
0.
03

0
0.
02

1
0.
02

1
0.
15

4
0.
12

1
0.
02

3
0.
05
0

0.
03
6

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.0
44

-0
.2
12

-0
.1
95

0.
00

1
-0
.0
27

-0
.0
11

-0
.0
18

-0
.1
54

-0
.1
21

0.
01

8
0.
00
0

0.
00
4

0.
2
86

)
iq
r

0.
02

7
0.
06

1
0.
07

6
0.
02

5
0.
04

9
0.
04

1
0.
03

3
0.
08

2
0.
10

5
0.
03

5
0.
10
0

0.
07
2

cp
0.
42

5
0.
00

1
0.
00

5
0.
96

5
0.
94

1
0.
92

0
0.
89

5
0.
24

3
0.
27

4
0.
89

4
0.
96
7

0.
88
7

75
m
ed

ab
s
d
ev

0.
02

4
0.
13

9
0.
12

5
0.
01

1
0.
02

2
0.
01

6
0.
01

6
0.
12

7
0.
10

8
0.
01

9
0.
03
7

0.
02
6

m
ed

ia
n
b
ia
s

-0
.0
24

-0
.1
39

-0
.1
25

0.
00

5
-0
.0
14

-0
.0
07

-0
.0
15

-0
.1
27

-0
.1
08

0.
01

7
0.
00
1

0.
00
1

iq
r

0.
02

2
0.
04

7
0.
05

7
0.
02

1
0.
04

0
0.
03

3
0.
02

4
0.
05

8
0.
07

3
0.
02

6
0.
07
3

0.
05
1

cp
0.
68

6
0.
00

5
0.
02

0
0.
96

0
0.
95

4
0.
91

3
0.
87

2
0.
13

7
0.
15

2
0.
87

1
0.
93
4

0.
87
2

D
G
P
2

50
m
ed

ab
s
d
ev

0.
02

8
0.
03

1
0.
03

0
0.
01

0
0.
01

1
0.
01

0
0.
01

8
0.
02

9
0.
02

5
0.
01

1
0.
01
4

0.
01
2

(i
)
α
1

m
ed

ia
n
b
ia
s

-0
.0
28

-0
.0
31

-0
.0
30

-0
.0
05

-0
.0
06

-0
.0
03

-0
.0
18

-0
.0
28

-0
.0
25

0.
00

3
0
.0
01

0.
00
1

(t
ru
e
va
lu
e:

iq
r

0.
01

9
0.
02

1
0.
02

1
0.
01

9
0.
02

2
0.
02

0
0.
02

0
0.
02

4
0.
02

4
0.
02

2
0.
02
8

0.
02
5

0.
9
00

)
cp

0.
51

3
0.
50

7
0.
53

2
0.
92

9
0.
92

5
0.
93

3
0.
79

8
0.
65

1
0.
70

1
0.
94

3
0.
94
9

0.
94
5

75
m
ed

ab
s
d
ev

0.
02

0
0.
01

9
0.
01

8
0.
00

8
0.
00

9
0.
00

8
0.
01

6
0.
02

0
0.
01

8
0.
00

9
0.
01
0

0.
00
9

m
ed

ia
n
b
ia
s

-0
.0
20

-0
.0
19

-0
.0
18

-0
.0
04

-0
.0
03

-0
.0
01

-0
.0
16

-0
.0
20

-0
.0
18

0.
00

0
0
.0
00

0.
00
0

iq
r

0.
01

6
0.
01

7
0.
01

7
0.
01

6
0.
01

7
0.
01

6
0.
01

7
0.
01

8
0.
01

8
0.
01

7
0.
02
1

0.
01
9

cp
0.
60

2
0.
69

0
0.
70

1
0.
93

6
0.
94

3
0.
95

3
0.
71

8
0.
66

6
0.
69

3
0.
95

9
0.
95
1

0.
95
0

(i
i)
S
A
R

50
m
ed

ab
s
d
ev

0.
03

3
0.
12

9
0.
12

1
0.
01

1
0.
03

2
0.
02

3
0.
01

4
0.
09

7
0.
07

8
0.
02

2
0.
03
1

0.
02
3

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.0
33

-0
.1
29

-0
.1
21

-0
.0
10

-0
.0
32

-0
.0
23

-0
.0
12

-0
.0
97

-0
.0
78

0.
02

2
-0
.0
02

-0
.0
02

0.
6
43

)
iq
r

0.
01

7
0.
03

5
0.
04

2
0.
01

6
0.
02

8
0.
02

4
0.
02

1
0.
04

9
0.
05

9
0.
02

4
0.
06
2

0.
04
6

cp
0.
27

3
0.
00

0
0.
00

0
0.
90

8
0.
75

8
0.
70

3
0.
89

5
0.
16

1
0.
19

3
0.
80

2
0.
95
4

0.
91
5

75
m
ed

ab
s
d
ev

0.
01

7
0.
08

3
0.
07

6
0.
00

7
0.
01

8
0.
01

5
0.
01

1
0.
07

8
0.
06

7
0.
01

8
0.
02
2

0.
01
7

m
ed

ia
n
b
ia
s

-0
.0
17

-0
.0
83

-0
.0
76

-0
.0
02

-0
.0
18

-0
.0
15

-0
.0
10

-0
.0
78

-0
.0
67

0.
01

8
0
.0
01

0.
00
0

iq
r

0.
01

4
0.
02

7
0.
03

1
0.
01

4
0.
02

3
0.
02

0
0.
01

6
0.
03

3
0.
03

9
0.
01

7
0.
04
3

0.
03
3

cp
0.
59

9
0.
00

2
0.
00

7
0.
96

5
0.
85

5
0.
78

3
0.
87

2
0.
08

6
0.
11

4
0.
74

0
0.
94
4

0.
89
6

28



T
ab

le
4:

(c
on

ti
n
u
ed
)

F
E

b
ia
s
co
rr
ec
te
d
F
E

G
M
M

H
ay
ak
aw

a
IV

T
fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

fi
x
4

fi
x
12

au
to

D
G
P
3

50
m
ed

ab
s
d
ev

0.
05

1
0.
05

2
0.
04

9
0.
02

7
0.
02

7
0.
02

3
0.
06

9
0.
07

3
0.
07

0
0.
03

2
0.
03
6

0.
03
1

(i
)
α
1

m
ed

ia
n
b
ia
s

0.
05

1
-0
.0
52

-0
.0
49

-0
.0
27

-0
.0
27

-0
.0
23

-0
.0
69

-0
.0
73

-0
.0
70

0.
02

6
-0
.0
01

-0
.0
02

(t
ru
e
va
lu
e:

iq
r

0.
02

0
0.
02

3
0.
02

2
0.
02

0
0.
02

2
0.
02

1
0.
02

8
0.
03

0
0.
03

0
0.
05

2
0.
07
2

0.
06
2

1.
3
70

)
cp

0.
07

4
0.
09

9
0.
12

0
0.
56

0
0.
59

8
0.
66

0
0.
03

4
0.
04

3
0.
04

9
0.
91

1
0.
95
9

0.
94
2

75
m
ed

ab
s
d
ev

0.
03

4
0.
03

0
0.
02

9
0.
01

8
0.
01

4
0.
01

3
0.
04

6
0.
04

4
0.
04

3
0.
01

4
0.
01
8

0.
01
5

m
ed

ia
n
b
ia
s

-0
.0
34

-0
.0
30

-0
.0
29

-0
.0
18

-0
.0
14

-0
.0
12

-0
.0
46

-0
.0
44

-0
.0
43

0.
00

6
-0
.0
01

-0
.0
02

iq
r

0.
01

7
0.
01

7
0.
01

7
0.
01

7
0.
01

7
0.
01

7
0.
01

8
0.
01

9
0.
01

9
0.
02

8
0.
03
6

0.
03
1

cp
0.
20

2
0.
34

1
0.
37

3
0.
66

2
0.
79

2
0.
83

1
0.
05

5
0.
09

8
0.
10

5
0.
94

8
0.
95
3

0.
94
4

(i
i)
S
A
R

50
m
ed

ab
s
d
ev

0.
04

1
0.
06

1
0.
05

7
0.
03

7
0.
04

4
0.
04

1
0.
05

0
0.
07

0
0.
06

5
0.
03

2
0.
03
1

0.
02
5

(t
ru
e
va
lu
e:

m
ed

ia
n
b
ia
s

-0
.0
41

-0
.0
61

-0
.0
57

-0
.0
37

-0
.0
44

-0
.0
41

-0
.0
50

-0
.0
70

-0
.0
65

0.
03

0
-0
.0
01

-0
.0
01

0.
9
79

)
iq
r

0.
00

7
0.
01

0
0.
01

3
0.
00

7
0.
00

8
0.
00

8
0.
01

7
0.
01

9
0.
02

0
0.
03

8
0.
06
0

0.
05
1

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

1
0.
00

0
0.
00

0
0.
83

9
0.
96
2

0.
93
8

75
m
ed

ab
s
d
ev

0.
02

5
0.
03

6
0.
03

4
0.
02

3
0.
02

8
0.
02

6
0.
03

2
0.
04

4
0.
04

2
0.
01

5
0.
01
4

0.
01
2

m
ed

ia
n
b
ia
s

-0
.0
25

-0
.0
36

-0
.0
34

-0
.0
23

-0
.0
28

-0
.0
26

-0
.0
32

-0
.0
44

-0
.0
42

0.
01

5
0
.0
00

-0
.0
01

iq
r

0.
00

5
0.
00

6
0.
00

7
0.
00

5
0.
00

5
0.
00

5
0.
00

9
0.
01

1
0.
01

2
0.
01

9
0.
02
9

0.
02
5

cp
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
81

3
0.
94
8

0.
93
3

N
ot
es
:
F
ix
ed

ru
le
s
w
it
h
c
=

4(
fi
x
4)

an
d
12

(fi
x
12

)
im

p
ly

th
e
la
g
le
n
gt
h
s
p
=

3
an

d
10

fo
r
T

=
50

an
d
p
=

3
an

d
11

fo
r
T

=
75

,
re
sp
ec
ti
v
el
y.

S
ee

al
so

n
ot
es

fo
r
T
ab

le
1.

29



We first discuss the results reported in Tables 1-3. The results clearly illustrate the

bias properties of the estimators and are consistent with the theoretical predictions.

When N is small, both the fixed effects estimator and the GMM estimator suffer

from the bias problem. Our bias-correction procedure seems to work well for the

fixed effects estimator. For a larger N , however, the GMM estimator dominates the

bias-corrected fixed effects estimator. Irrespective of the sample size, Hayakawa’s IV

estimator performs best among all the estimators in terms of bias.

In terms of the median absolute deviation, the bias corrected fixed effects estimator

dominates others when N is small. However, as N increases, the performance of

the GMM estimator and Hayakawa’s IV estimator improves. However, interquartile

ranges of Hayakawa’s IV estimator are the largest, with those of the GMM estimator

being the second.

In terms of the coverage probability, Hayakawa’s IV estimator performs very well.

In contrast, the fixed effects estimator has almost zero coverage for a large sample size

because of the relatively large bias compared to its small interquartile ranges. It is

interesting to note that when the automatic lag selection method is used, the median

absolute deviation of the IV estimator becomes smaller than in the case based on the

rule of thumb, with some cost of coverage probability.

Table 4 illustrates the effect of increasing the length of time series. The per-

formances of the bias corrected fixed effects estimator improves as T increases. In

particular, the improvement of its coverage probability is remarkable. The fixed ef-

fects estimator suffers from sizable bias even when T = 75, which demonstrates the

importance of bias correction. The GMM estimator does not show remarkable im-

provements in terms of bias and coverage probability when T increases, although its
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interquartile range shrinks. Hayakawa’s estimator still produces the most reliable

confidence interval in most of the cases in Table 4. For DGP1 and DGP2, the bias

corrected fixed effects estimator also produces a reliable confidence interval, while its

coverage probability is not satisfactory for DGP3.

Lastly, we conduct an additional analysis regarding the source of the finite-sample

bias. Recall that, in the discussion of Theorem 2, the bias of the fixed effects estima-

tors is decomposed into ‘truncation bias’ and ‘fundamental bias.’ In simulation, we

can directly evaluate the relative contribution of each component since the informa-

tion of the true process can be utilized. To be specific, the bias in the simulation can

be decomposed as

1

R

R∑
r=1

(
α̂
(r)
F (p)− α(p)

)
=

1

R

R∑
r=1

(
(Γ̂F (r)

p ))−1 1

NT

T∑
t=p+1

x̃
(r)
t (p)′b̃

(r)
t,p

)
︸ ︷︷ ︸

truncation bias

+
1

R

R∑
r=1

(
(Γ̂F (r)

p ))−1 1

NT

T∑
t=p+1

x̃
(r)
t (p)′ϵ̃

(r)
t

)
︸ ︷︷ ︸

fundamental bias

where the superscript r signifies the r-th simulated observation in R replications.

Analogously, the bias components of the GMM estimator and Hayakawa’s efficient

IV estimator can be evaluated using the fact that their estimation error, α̂G(p)−α(p)

and α̂H(p)− α(p), can be decomposed as

(Γ̂G
p )

−1 1

NT

T−1∑
t=p+1

x∗t (p)
′Mtb

∗
t,p + (Γ̂G

p )
−1 1

NT

T−1∑
t=p+1

x∗t (p)
′Mtϵ

∗
t

and

(Γ̂H
p )

−1 1

NT

T−1∑
t=p+2

ht(p)
′b∗t,p + (Γ̂H

p )
−1 1

NT

T−1∑
t=p+2

ht(p)
′ϵ∗t ,
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Table 5: Decomposition of the finite sample bias of estimators when T = 25

FE GMM Hayakawa IV
N p=2 p=4 p=6 p=2 p=4 p=6 p=2 p=4 p=6

DGP1 50 total -0.053 -0.056 -0.068 -0.042 -0.042 -0.058 -0.022 -0.004 -0.001
(i) α1 trun -0.010 -0.001 0.000 -0.016 -0.002 0.000 -0.022 -0.003 -0.001
(0.400) fund -0.042 -0.055 -0.068 -0.025 -0.040 -0.057 0.000 0.000 0.000

100 total -0.053 -0.056 -0.069 -0.033 -0.027 -0.037 -0.023 -0.005 -0.002
trun -0.010 -0.001 0.000 -0.018 -0.002 0.000 -0.022 -0.003 -0.001
fund -0.042 -0.056 -0.069 -0.015 -0.025 -0.037 -0.001 -0.002 -0.001

500 total -0.052 -0.055 -0.068 -0.022 -0.007 -0.009 -0.022 -0.003 0.000
trun -0.010 -0.001 0.000 -0.019 -0.002 0.000 -0.022 -0.003 -0.001
fund -0.042 -0.055 -0.068 -0.003 -0.005 -0.009 0.000 0.000 0.000

1000 total -0.052 -0.055 -0.068 -0.021 -0.005 -0.005 -0.022 -0.003 0.000
trun -0.010 -0.001 0.000 -0.019 -0.002 0.000 -0.022 -0.003 -0.001
fund -0.042 -0.055 -0.068 -0.002 -0.003 -0.004 0.000 0.000 0.000

(ii) SAR 50 total -0.114 -0.177 -0.289 -0.089 -0.121 -0.212 -0.056 -0.016 -0.004
(0.286) trun -0.033 -0.006 -0.001 -0.044 -0.009 -0.002 -0.055 -0.013 -0.003

fund -0.081 -0.171 -0.288 -0.046 -0.113 -0.211 -0.001 -0.003 -0.001
100 total -0.114 -0.175 -0.287 -0.072 -0.076 -0.132 -0.057 -0.019 -0.004

trun -0.033 -0.006 -0.001 -0.046 -0.009 -0.002 -0.055 -0.013 -0.003
fund -0.081 -0.170 -0.286 -0.026 -0.066 -0.130 -0.002 -0.005 -0.001

500 total -0.113 -0.175 -0.287 -0.054 -0.026 -0.034 -0.055 -0.014 -0.003
trun -0.033 -0.006 -0.001 -0.049 -0.010 -0.002 -0.055 -0.013 -0.003
fund -0.080 -0.170 -0.286 -0.005 -0.015 -0.032 0.000 -0.001 0.000

1000 total -0.114 -0.175 -0.287 -0.052 -0.018 -0.019 -0.055 -0.014 -0.003
trun -0.033 -0.006 -0.001 -0.049 -0.010 -0.002 -0.055 -0.013 -0.003
fund -0.081 -0.169 -0.286 -0.003 -0.008 -0.016 -0.001 -0.001 0.000

DGP2 50 total -0.075 -0.061 -0.074 -0.075 -0.052 -0.068 -0.057 -0.008 -0.002
(i) α1 trun -0.033 -0.001 0.000 -0.045 -0.003 0.000 -0.057 -0.008 -0.002
(0.900) fund -0.042 -0.060 -0.074 -0.030 -0.049 -0.067 0.000 -0.001 0.000

100 total -0.075 -0.061 -0.074 -0.066 -0.035 -0.045 -0.059 -0.010 -0.002
trun -0.033 -0.001 0.000 -0.048 -0.004 -0.001 -0.057 -0.008 -0.002
fund -0.042 -0.060 -0.074 -0.018 -0.031 -0.045 -0.002 -0.002 -0.001

500 total -0.074 -0.060 -0.073 -0.055 -0.012 -0.012 -0.057 -0.008 -0.001
trun -0.033 -0.001 0.000 -0.051 -0.005 -0.001 -0.057 -0.008 -0.002
fund -0.041 -0.059 -0.073 -0.004 -0.007 -0.011 0.000 0.000 0.001

1000 total -0.074 -0.060 -0.073 -0.053 -0.008 -0.006 -0.057 -0.007 -0.001
trun -0.033 -0.001 0.000 -0.051 -0.005 -0.001 -0.057 -0.008 -0.002
fund -0.041 -0.059 -0.073 -0.002 -0.004 -0.005 0.000 0.000 0.000
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Table 5: (continued)

FE GMM Hayakawa IV
N p=2 p=4 p=6 p=2 p=4 p=6 p=2 p=4 p=6

(ii) SAR 50 total -0.112 -0.136 -0.200 -0.102 -0.102 -0.156 -0.075 -0.019 -0.005
(0.643) trun -0.036 -0.006 -0.001 -0.055 -0.010 -0.002 -0.074 -0.017 -0.004

fund -0.076 -0.131 -0.199 -0.047 -0.092 -0.154 -0.001 -0.002 -0.001
100 total -0.111 -0.134 -0.198 -0.087 -0.067 -0.100 -0.076 -0.020 -0.004

trun -0.036 -0.006 -0.001 -0.060 -0.011 -0.002 -0.074 -0.017 -0.004
fund -0.075 -0.128 -0.197 -0.027 -0.056 -0.098 -0.002 -0.003 0.000

500 total -0.111 -0.134 -0.198 -0.070 -0.026 -0.028 -0.075 -0.018 -0.003
trun -0.036 -0.006 -0.001 -0.064 -0.013 -0.003 -0.074 -0.017 -0.004
fund -0.075 -0.128 -0.197 -0.006 -0.013 -0.025 0.000 -0.001 0.001

1000 total -0.111 -0.134 -0.198 -0.068 -0.019 -0.015 -0.075 -0.017 -0.004
trun -0.036 -0.006 -0.001 -0.065 -0.013 -0.003 -0.074 -0.017 -0.004
fund -0.075 -0.128 -0.197 -0.003 -0.007 -0.012 -0.001 0.000 0.000

DGP3 50 total -0.141 -0.108 -0.121 -0.217 -0.165 -0.175 -0.324 0.110 -0.282
(i) α1 trun -0.056 -0.002 0.000 -0.077 -0.003 0.000 -0.429 -0.084 -0.011
(1.370) fund -0.085 -0.106 -0.121 -0.139 -0.161 -0.174 0.106 0.193 -0.272

100 total -0.139 -0.107 -0.120 -0.227 -0.158 -0.169 -0.316 -0.106 -0.052
trun -0.056 -0.002 0.000 -0.100 -0.005 -0.001 -0.317 -0.067 -0.031
fund -0.084 -0.105 -0.120 -0.127 -0.153 -0.168 0.001 -0.039 -0.021

500 total -0.138 -0.105 -0.118 -0.264 -0.120 -0.128 -0.283 -0.057 -0.007
trun -0.056 -0.002 0.000 -0.191 -0.014 -0.002 -0.282 -0.058 -0.012
fund -0.082 -0.103 -0.118 -0.073 -0.105 -0.126 -0.001 0.001 0.005

1000 total -0.138 -0.105 -0.118 -0.280 -0.095 -0.098 -0.278 -0.054 -0.008
trun -0.056 -0.002 0.000 -0.232 -0.020 -0.003 -0.277 -0.055 -0.011
fund -0.083 -0.103 -0.118 -0.048 -0.075 -0.096 -0.001 0.001 0.003

(ii) SAR 50 total -0.103 -0.110 -0.127 -0.152 -0.138 -0.150 -0.240 0.071 -0.232
(0.979) trun -0.013 -0.002 0.000 -0.033 -0.004 -0.001 -0.305 -0.064 -0.009

fund -0.090 -0.108 -0.127 -0.119 -0.135 -0.149 0.065 0.136 -0.223
100 total -0.101 -0.107 -0.125 -0.158 -0.130 -0.140 -0.226 -0.086 -0.043

trun -0.013 -0.002 0.000 -0.052 -0.005 -0.001 -0.225 -0.055 -0.025
fund -0.089 -0.105 -0.124 -0.107 -0.125 -0.140 0.000 -0.031 -0.019

500 total -0.100 -0.106 -0.124 -0.188 -0.098 -0.106 -0.199 -0.046 -0.007
trun -0.013 -0.002 0.000 -0.127 -0.012 -0.002 -0.198 -0.046 -0.010
fund -0.088 -0.104 -0.123 -0.061 -0.085 -0.104 -0.001 0.000 0.004

1000 total -0.100 -0.106 -0.124 -0.201 -0.078 -0.081 -0.196 -0.044 -0.008
trun -0.013 -0.002 0.000 -0.161 -0.017 -0.002 -0.195 -0.044 -0.009
fund -0.088 -0.104 -0.123 -0.040 -0.061 -0.079 -0.001 0.000 0.002

Notes: Mean of the components of finite sample bias. The total finite sample bias (total) is decom-

posed into the truncation bias (trun) and the fundamental bias (fund). 1000 iterations.
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respectively, where

b∗t,p =
√

(T − t)/(T − t+ 1)

(
bt,p −

T∑
τ=t+1

bτ,p/(T − t)

)
and

ϵ∗t =
√

(T − t)/(T − t+ 1)

(
ϵt −

T∑
τ=t+1

ϵτ/(T − t)

)
.

Table 5 provides such a decomposition of the finite sample bias of the fixed effects

estimator, GMM estimator and Hayakawa’s IV estimator when the data is generated

from DGP1, DGP2 and DGP3 with N = {50, 100, 500, 1000} and T = 25. Since

we expect the decreasing contribution of trunction bias in response to increasing

lag length, we report the bias decomposition when the model is estimated using

p = {2, 4, 6}. It should be noted that the total bias presented in Table 5 differs

from those reported in Tables 1 to 4 because the latter are median bias rather than

mean bias.14 From the table, we observe that these two types of bias appear very

different across three estimators. For given N and p, the relative contribution of

truncation bias in total bias is the smallest for the fixed effects estimator and is the

largest for Hayakawa’s IV estimator. This result is not surprising given that the fixed

effects estimator is essentially an OLS estimator and OLS produces the best linear

projection. The fixed effects estimator, however, suffers from substantial bias due

to fundamental bias. The GMM estimator also exhibits a large fundamental bias

when N is small. In contrast, the bias of Hayakawa’s estimator is solely from the

truncation bias. An important observation is that, for the fixed effects estimator and

the GMM estimator, there is a trade-off in the value of p such that, as p increases,

14In general, moments may not exist for Hayakawa’s estimator but the bias decomposition can still
be evaluated in simulation. For this reason, we note that the mean biases of Hayakawa’s estimator
for DGP3 with N = 50 and 100 presented in Table 5 may not be reliable while sensible numbers are
obtained for other cases.
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the truncation bias quickly vanishes but the fundamental bias increases. Unlike other

two estimators, the fundamental bias of Hayakawa’s estimator remains negligible even

when p = 6.

On the whole, the simulation results can be summarized as follows. If our concern

is coverage probability or bias, then Hayakawa’s estimator is recommended. On

the other hand, if we care primarily about precision, then we recommend the bias

corrected fixed effects estimator if T is not small compared to N and the GMM

estimator when N is large and T is small.

5 Empirical Applications

In this section, we apply our procedure to investigate the relative price adjust-

ment of individual goods across cities. To measure the speed of price adjustment

towards the long-run law of one price (LOP) across intranational and international

cities, autoregressive models have been often estimated using panel data. For exam-

ple, Parsley and Wei (1996) use panel price data from 48 cities in the United States

and estimate the rate of convergence in terms of the sum of AR coefficients. Appli-

cations using a dynamic panel GMM procedure to LOP deviations include Crucini

and Shintani (2008), who estimate AR(1) models using both intranational and inter-

national city pair data, and Crucini, Shintani and Tsuruga (2008), who use the sum

of AR coefficients of the higher order AR models as a measure of persistence.

Our price data is from the American Chamber of Commerce Researchers Associ-

ation (ACCRA) Cost of Living Index produced by the Council of Community and

Economic Research. This is the extended version of the data used by Parsley and Wei

(1996) for their studies on intranational LOP deviations. The original ACCRA data
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Table 6: List of goods

CPI categorization ACCRA categorization
1 Food at home T-bone steak, Ground beef, Frying chicken, Chunk light tuna,

Whole milk, Eggs, Margarine, Parmesan cheese, Potatoes, Bananas,
Lettuce, Bread, Coffee, Sugar, Corn flakes, Sweat peas, Peaches,
Shortening, Frozen corn, Soft drink

2 Food away from home Hamburger sandwich, Pizza, Fried chicken

3 Alcoholic beverages Beer, Wine

4 Shelter Apartment, Home purchase price, Mortgage rate, Monthly payment

5 Fuel and other utilities Total home energy cost, Telephone

6 Household furnishings Facial tissues, Dishwashing powder, Dry cleaning,
and operations Major appliance repair

7 Men’s and boy’s apparel Men’s dress shirt

8 Private transportation Auto maintenance, Gasoline

9 Medical care Doctor office visit, Dentist office visit

10 Personal care Haircut, Beauty salon, Toothpaste, Shampoo

11 Entertainment Newspaper subscription, Movie, Bowling, Tennis balls

includes 75 goods and services and 632 cities, but we focus on 11 CPI categorized

good price series from 52 US cities. Our data is a monthly series over 18 years from

January 1990 to December 2007 (T = 72). In measuring the LOP deviations for each

categorized good, we follow Parsley and Wei (1996) and use one benchmark city to

compute intercity price differentials over time (our benchmark city is Albuquerque).

Let Pit and P0t be the price of a good for a city i and that for the benchmark city,

respectively. Then, the LOP deviations are computed as yit = logPit − logP0t for

i = 1, ..., 51. Since we pool all the goods in the same category, the total number of
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Table 7: Sum of AR coefficients estimates

Goods category N FE bias corrected FE GMM Hayakawa IV
1 1020 0.687 0.728 0.717 0.777

(0.005) (0.006) (0.007) (0.021)
2 153 0.636 0.697 0.614 0.823

(0.014) (0.014) (0.017) (0.029)
3 102 0.731 0.776 0.714 0.930

(0.015) (0.015) (0.019) (0.038)
4 204 0.811 0.843 0.791 0.891

(0.009) (0.009) (0.010) (0.019)
5 102 0.743 0.786 0.674 0.754

(0.016) (0.016) (0.019) (0.090)
6 204 0.670 0.725 0.561 0.238

(0.013) (0.013) (0.018) (0.076)
7 51 0.657 0.714 1.048 0.831

(0.030) (0.030) (0.040) (0.076)
8 102 0.504 0.584 0.358 0.583

(0.026) (0.027) (0.030) (0.075)
9 102 0.695 0.741 0.619 0.666

(0.016) (0.016) (0.020) (0.065)
10 204 0.753 0.796 0.726 0.784

(0.011) (0.012) (0.015) (0.030)
11 204 0.759 0.799 0.652 0.676

(0.012) (0.012) (0.016) (0.059)

Notes: Numbers in parentheses are standard errors. Sample periods are from January 1990 to

December 2007 (T = 72).

cross-sectional observations (N) will be multiples of 51. All the names of individual

goods in our categorization are presented in Table 6.

Table 7 reports the estimated sum of AR coefficients (SAR) for each categorized

good using the fixed effects estimator, the bias-corrected fixed effects estimator, the

GMM estimator and the Hayakawa’s IV estimator. For each estimator, we use lags

selected by sequential rule with the maximum lag set at p = 11 based on the formula

pmax = [12(T/100)1/4]. The results show some variation across the goods categories.

At the same time, the SAR also varies among the different estimators. On the whole,

the bias-corrected fixed effects estimator and Hayakawa’s IV estimator provide some-
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what close estimates. In contrast, the fixed effects estimator provides a much smaller

number than the bias-corrected estimator, implying a non-negligible downward bias.

GMM estimates are also smaller than Hayakawa’s IV estimates for most of the goods

categories.

6 Conclusion

In this paper, we consider the estimation of a dynamic panel autoregressive (AR)

process of possibly infinite order in the presence of individual effects. We approx-

imate and estimate the model by letting the order of the AR process of the fitted

model increase with the sample size. We study the asymptotic properties of various

estimators and also investigate their finite sample properties in simulations. The re-

sults indicate that the fixed effects estimator suffers severely from bias, and is not

recommended. The bias-corrected estimator is preferred in terms of mean squared

errors when T is not small. On the other hand, the GMM estimator is better when N

is large and T is small. Hayakawa’s IV estimator shows an excellent performance in

terms of bias and coverage probability, but its finite sample distribution is dispersed

compared with other estimators. The choice of estimator to be used should depend

on the relative magnitude of N and T and on whether we care more about the bias

or the overall precision.

Our results are useful for making statistical inferences regarding quantities that

are important in understanding the dynamic nature of an economic variable, such as

the long-run effect, without relying on a strong assumption. Although not discussed

in this paper, further applications of our results are possible. For example, our esti-

mators would be useful in constructing a model-free impulse response function. See,
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e.g., Jordà (2005) and Chang and Sakata (2007) for the model-free impulse response

function in time series analysis. It would also be interesting to extend the tests of

Granger causality by Lütkepohl and Poskitt (1996) that are based on infinite order

AR models to panel data setting. Other applications of an AR model of infinite order

would be long-run variance estimation, spectral density estimation as well as unit

root tests. These applications seem to be a promising future research agenda.
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Appendix

Throughout the appendix, C ∈ (1,∞) denotes a generic bounded constant, which
does not depend on any index and whose actual value varies across occasions. Given
a matrix A, we let ||A|| denote the Euclidean matrix norm defined by ||A||2 = tr(A′A).
Also let ||A||1 denote the Banach norm so that ||A||1 = supx ̸=0{||Ax||/||x||}, using
the Euclidean norm for the vector l, ||l|| = (l′l)1/2. For any symmetric matrix A,
we let λmin(A) and λmax(A) be the minimum and the maximum eigenvalues of A,
respectively. We note that ||A||1 =

√
λmax(A′A). When A is symmetric and positive

definite, ||A||1 = λmax(A). Define γk = E(witwi,t−k). We let

w̄i,t,τ =
1

τ − t+ 1
(wi,t + · · ·+ wi,τ ).

We also define w̄i,t,τ (p) = (w̄i,t,τ , . . . , w̄i,t−p+1,τ−p+1)
′, w̄t,τ = (w̄1,t,τ , . . . , w̄N,t,τ )

′ and
w̄t,τ (p) = (w̄t,τ , . . . , w̄t−p+1,τ−p+1). Similarly, define ϵ̄i,t,τ = (ϵi,t + · · ·+ ϵi,τ )/(τ − t+1)
and ϵ̄t,τ = (ϵ̄1,t,τ , . . . , ϵ̄N,t,τ )

′.
The following inequalities will be used below: ||A||1 =

√
λmax(A′A) ≤ (tr(A′A))1/2 =

||A||. ||AB||2 ≤ ||A||21||B||2 and ||AB||2 ≤ ||A||2||B||21 (See Lewis and Reinsel (1985)
and Wiener and Masani (1958)). For any conformable matrices A and D and any
square matrix B, ||A′BD|| ≤ ∥B∥1||A|| · ||D||.

A Lemmas useful for all the estimators

This section presents several lemmas that are commonly employed in the derivation
of the asymptotic properties of all the estimators.

Lemma 1. Suppose that Assumption 1 is satisfied. Then,

||w̄t,τ (p)||2 = Op

(
Np

τ − t+ 1

)
and E||w̄t,τ (p)||2 = O

(
Np

τ − t+ 1

)
.

Proof. The first statement follows from the second statement and the Markov in-
equality. We thus show the second statement. We observe that

E ∥w̄t,τ (p)∥2 = Ntr(E(w̄i,t,τ (p)w̄i,t,τ (p)
′)) = NpE(w̄2

i,t,τ ) = O

(
Np

τ − t+ 1

)
,

where the second last equality follows from the stationarity of wit and the last equality
comes from the fact that wit is a short memory process.
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Lemma 2. Suppose that Assumption 1 is satisfied. If N → ∞, T → ∞ and p→ ∞
with p2/(NT ) → 0 and p3/T 2 → 0, then∥∥∥∥∥ 1

NT

T∑
t=p+1

wt−1(p)
′wt−1(p)− Γp

∥∥∥∥∥ = Op

(
p√
NT

+
p3/2

T

)
and ∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′wt−1(p)− Γp

∥∥∥∥∥ = Op

(
p√
NT

+
p3/2

T

)
.

Proof. Noting that E(wt−1(p)
′wt−1(p))) = NΓp, we have∥∥∥∥∥ 1

NT

T∑
t=p+1

wt−1(p)
′wt−1(p)− Γp

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

T∑
t=p+1

(wt−1(p)
′wt−1(p)− E(wt−1(p)

′wt−1(p)))

∥∥∥∥∥+ ∥∥∥ pT Γp

∥∥∥ . (6)

We see that ∥Γp∥2 =
∑p−1

k=1−p(p− k)γ2|k| = O(p) so that ∥(p/T )Γp∥ = O(p3/2/T ). The
first term of (6) is

E

∥∥∥∥∥ 1

NT

T∑
t=p+1

(wt−1(p)
′wt−1(p)− E(wt−1(p)

′wt−1(p)))

∥∥∥∥∥
2

=

p−1∑
k=0

(p− k)var

(
1

NT

N∑
i=1

T∑
t=p+1

wi,twi,t−k

)
=

1

N

p−1∑
k=0

(p− k)var

(
1

T

T∑
t=p+1

wi,twi,t−k

)

by the stationarity assumption. The variance is

var

(
1

T

T∑
t=p+1

wi,twi,t−k

)
= E

( 1

T

T∑
t=p+1

(wi,twi,t−k − γk)

)2


=
1

T 2

T∑
t1=p+1

T∑
t2=p+1

(γ2|t1−t2| + γ|t1−t2−k|γ|t1−t2+k| + κw(t1, t1 − k, t2, t2 − k))

= O

(
1

T

)
uniformly in k, by Assumption 1, where κw(t1, t1 − k, t2, t2 − k) is the fourth order

45



cumulant of (wit1 , wi,t1−k, wit2 , wi,t2−k).
15 It therefore follows that

E

∥∥∥∥∥ 1

NT

T∑
t=p+1

(wt−1(p)
′wt−1(p)− E(wt−1(p)

′wt−1(p)))

∥∥∥∥∥
2

=
1

N

p−1∑
k=0

(p− k)O

(
1

T

)
= O

(
p2

NT

)
.

The first statement holds by the Chebyshev inequality.
For the second statement, we observe that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′wt−1(p)− Γp

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

wt−1(p)
′wt−1(p)− Γp

∥∥∥∥∥+
∥∥∥∥∥ 1

NT

T−1∑
t=p+1

1

T − t+ 1
wt−1(p)

′wt−1(p)

∥∥∥∥∥ .(7)
Now, we have∥∥∥∥∥ 1

NT

T−1∑
t=p+1

1

T − t+ 1
wt−1(p)

′wt−1(p)

∥∥∥∥∥ ≤ 1

NT

N∑
i=1

T−1∑
t=p+1

1

T − t+ 1
∥wi,t−1(p)wi,t−1(p)

′∥ .

Since

E ∥wi,t−1(p)wi,t−1(p)
′∥ = E(tr(wi,t−1(p)wi,t−1(p)

′wi,t−1(p)wi,t−1(p)
′))1/2

= E

(
p∑

k=1

w2
i,t−k

)
= pγ0,

15 We use the fact that
∑∞

j1=−∞
∑∞

j2=−∞
∑∞

j3=−∞ |κw(0, j1, j2, j3)| <∞. Its proof is the follow-
ing. By the formula in Anderson (1971, p 467), we have

κw(0, j1, . . . , jk−1) = κϵ

∞∑
t=−∞

ψtψt+j1ψt+j2ψt+j3 .

It therefore holds that

∞∑
j1=−∞

∞∑
j2=−∞

∞∑
j3=−∞

|κw(0, j1, j2, j3)| = |κϵ|
∞∑

j1=−∞

∞∑
j2=−∞

∞∑
j3=−∞

∞∑
t=−∞

|ψtψt+j1ψt+j2ψt+j3 |

= |κϵ|
∞∑

t=−∞
|ψt|

∞∑
j1=−∞

|ψt+j1 |
∞∑

j2=−∞
|ψt+j2 |

∞∑
j3=−∞

|ψt+j3 |

= |κϵ|

( ∞∑
t=−∞

|ψt|

)4

<∞

by the fourth moment condition E(ϵ4it) <∞ and the absolute summability condition
∑∞

t=−∞ |ψt| <
∞.
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the Markov inequality implies that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

1

T − t+ 1
wt−1(p)

′wt−1(p)

∥∥∥∥∥ ≤ 1

NT

N∑
i=1

T−1∑
t=p+1

1

T − t+ 1
Op (p) = Op

(
p log T

T

)
.

Because p log T/T = (p3/2/T )2/3(log T/T 1/3) = o(1) when p3/2/T = o(1), (7) and the
first statement of the lemma imply the second statement.

Lemma 3. Suppose that Assumption 2 is satisfied. Let Γ̂p be an estimator of Γp such

that
∥∥∥Γ̂p − Γp

∥∥∥ = Op(ρN,T,p) where ρN,T,p = o(1) as N → ∞, T → ∞ and p → ∞.

Then, as N → ∞, T → ∞ and p→ ∞, we have

||Γ̂p − Γp||1 = Op (ρN,T,p) , (8)

||(Γ̂p)
−1 − Γ−1

p ||1 = Op (ρN,T,p) , (9)

and ||(Γ̂p)
−1||1 = Op (1) . (10)

Proof. Since ||A||1 ≤ ||A|| for any matrix A, (8) holds by the condition of the lemma.
For (9), Assumption 2 states that ||Γ−1

p ||1 ≤ F < ∞ for some constant F . Sim-
ilarly to Lewis and Reinsel (1985, Theorem 1) or Berk (1974, Lemma 3), we can
write

Γ−1
p − Γ̂−1

p = Γ̂−1
p (Γ̂p − Γp)Γ

−1
p =

[
Γ−1
p +

(
Γ̂−1
p − Γ−1

p

)]
(Γ̂p − Γp)Γ

−1
p ,

and thus,

||Γ̂−1
p − Γ−1

p ||1 ≤
(
||Γ−1

p ||1 + ||Γ̂−1
p − Γ−1

p ||1
)
||Γ̂p − Γp||1||Γ−1

p ||1

≤
(
F + ||Γ̂−1

p − Γ−1
p ||1

)
||Γ̂p − Γp||1F.

We note that F ||Γ̂p−Γp||1 →p 0 by the condition of the lemma. Thus, with probability
approaching one, we have F ||Γ̂p − Γp||1 < 1 and

||Γ̂−1
p − Γ−1

p ||1 ≤
F 2||Γ̂p − Γp||1

1− F ||Γ̂p − Γp||1
.

The above inequality implies (9).
Lastly, (10) follows because

||Γ̂−1
p ||1 ≤ ||Γ−1

p ||1 + ||Γ̂−1
p − Γ−1

p ||1 ≤ F + op(1).
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Lemma 4. Suppose that Assumptions 1 and 2 are satisfied. If N → ∞, T → ∞ and
p→ ∞ with p2/T → 0, then

1√
NT

ℓ′pΓ
−1
p

T∑
t=p+1

wt−1(p)
′ϵt/vp →d N(0, 1),

and

1√
NT

ℓ′pΓ
−1
p

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′ϵt/vp →d N(0, 1).

Proof. Let

SNt =
1√
NT

ℓ′pΓ
−1
p wt−1(p)

′ϵt/vp.

Then, it is easy to see that

1√
NT

ℓ′pΓ
−1
p

T∑
t=p+1

wt−1(p)
′ϵt/vp =

T∑
t=1

SNt −
p∑

t=1

SNt.

We use a central limit theorem for martingale difference sequences (e.g, Davidson’s
(1994) Theorem 24.3). It is easy to see that SNt is a martingale difference sequence.
The theorem shows that

∑T
t=1 SNt →d N(0, 1) under the three conditions that i)∑T

t=1 var(SNt) = 1, which can be verified easily in our case, ii)
∑T

t=1 S
2
Nt →p 1 and

iii) max1≤i≤T |SNt| →p 0.
We first verify the condition ii). Note that Assumption 2 and the conditions on

ℓp imply that vp < C and v−1
p < C. By the definition of vp, we write

T∑
t=1

S2
Nt − 1 =

1

T

1

v2p
ℓ′pΓ

−1
p

T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2Γp

)
Γ−1
p ℓp.

It holds by Assumption 2 that∥∥∥∥∥
T∑
t=1

S2
Nt − 1

∥∥∥∥∥ ≤ 1

T
|v−2

p | · ||ℓp||1||Γ−1
p ||1

∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2Γp

)∥∥∥∥∥ · ||Γ−1
p ||1||ℓp||1

≤ C
1

T

∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2Γp

)∥∥∥∥∥ .
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We now see that ∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2Γp

)∥∥∥∥∥
≤

∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2 1

N
wt−1(p)

′wt−1(p)

)∥∥∥∥∥ (11)

+

∥∥∥∥∥
T∑
t=1

(
σ2 1

N
wt−1(p)

′wt−1(p)− σ2Γp

)∥∥∥∥∥ . (12)

For (11), noting that wt−1(p)
′ϵtϵ

′
twt−1(p)−σ2wt−1(p)

′wt−1(p) is a martingale difference
sequence, we have that

E

∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2 1

N
wt−1(p)

′wt−1(p)

)∥∥∥∥∥
2

=
1

N2

T∑
t=1

tr
(
E
(
wt−1(p)

′ϵtϵ
′
twt−1(p)wt−1(p)

′ϵtϵ
′
twt−1(p)− σ4wt−1(p)

′wt−1(p)wt−1(p)
′wt−1(p)

))
.

Since the observations are i.i.d. across i, we have

E (wt−1(p)
′ϵtϵ

′
twt−1(p)wt1−1(p)

′ϵtϵ
′
twt−1(p))

= E

((
N∑
i=1

wi,t−1(p)ϵit

)(
N∑
i=1

wi,t−1(p)ϵit

)′( N∑
i=1

wi,t−1(p)ϵit

)(
N∑
i=1

wi,t−1(p)ϵit

)′)
= NE(wi,t−1(p)wi,t−1(p)

′wi,t−1(p)wi,t−1(p)
′ϵ4it)

+3N(N − 1)E(wi,t−1(p)wi,t−1(p)ϵ
2
it)E(wi,t−1(p)wi,t−1(p)ϵ

2
it)

= NE(wi,t−1(p)wi,t−1(p)
′wi,t−1(p)wi,t−1(p)

′)E(ϵ4it) + 3N(N − 1)σ4ΓpΓp

and

E (wt−1(p)
′wt−1(p)wt−1(p)

′wt−1(p))

= E

((
N∑
i=1

wi,t−1(p)wi,t−1(p)
′

)(
N∑
i=1

wi,t−1(p)wi,t−1(p)
′

))
= NE(wi,t−1(p)wi,t−1(p)

′wi,t−1(p)wi,t−1(p)
′) +N(N − 1)ΓpΓp.
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It therefore holds that

E

∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2 1

N
wt−1(p)

′wt−1(p)

)∥∥∥∥∥
2

=
T

N
tr(E(wi,t−1(p)wi,t−1(p)

′wi,t−1(p)wi,t−1(p)
′))E(ϵ4it) +

3T (N − 1)

N
σ4tr(ΓpΓp)

− T

N
σ4tr(E(wi,t−1(p)wi,t−1(p)

′wi,t−1(p)wi,t−1(p)
′))− T (N − 1)

N
σ4tr(ΓpΓp)

=
T

N
tr(E(wi,t−1(p)wi,t−1(p)

′wi,t−1(p)wi,t−1(p)
′))
(
E(ϵ4it)− σ4

)
+

2T (N − 1)

N
σ4tr(ΓpΓp).

Since

tr(E(wi,t−1(p)wi,t−1(p)
′wi,t−1(p)wi,t−1(p)

′)) = E

( p∑
k=1

w2
i,t−k

)2
 = O(p2)

and tr(ΓpΓp) = ∥Γp∥2 = O(p2), we have

E

∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2 1

N
wt−1(p)

′wt−1(p)

)∥∥∥∥∥
2

= O(p2T ).

Therefore, the Chebyshev inequality implies that (11) is O(p
√
T ). Next, the proof of

Lemma 2 implies that (12) is Op(p
√
T/

√
N). We thus have that

1

T

∥∥∥∥∥
T∑
t=1

(
1

N
wt−1(p)

′ϵtϵ
′
twt−1(p)− σ2Γp

)∥∥∥∥∥ = Op

(
p√
T

)
, (13)

which is op(1) if p
2/T → 0 so that condition ii) is satisfied.

Next, we verify condition iii). Note that for any δ > 0, the Chebyshev inequality
gives

P

(
max
1≤t≤T

|SNt| > δ

)
≤

T∑
t=1

P (|SNt| > δ) ≤
T∑
t=1

E |SNt|4

δ4
. (14)

We have

E|SNt|4 =
1

N2T 2v4p
E

(
N∑
i=1

ℓ′pΓ
−1
p wi,t−1(p)ϵit

)4

=
1

N2T 2v4p

N∑
i=1

E(ℓ′pΓ
−1
p wi,t−1(p)ϵit)

4

+
6

N2T 2v4p

∑
i1 ̸=i2

E((ℓ′pΓ
−1
p wi1,t−1(p)ϵi1,t)

2(ℓ′pΓ
−1
p wi2,t−1(p)ϵi2,t)

2),
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where the other terms are zeros because of the i.i.d. assumption. Since v2p =
E((ℓ′pΓ

−1
p wi,t−1(p)ϵi,t)

2), the i.i.d. assumption further implies that

6

N2T 2v4p

∑
i1 ̸=i2

E((ℓ′pΓ
−1
p wi1,t−1(p)ϵi1,t)

2(ℓ′pΓ
−1
p wi2,t−1(p)ϵi2,t)

2) =
6(N − 1)

T 2N
= O

(
1

T 2

)
.

For the term involving the fourth moments, it follows that

1

N2T 2v4p

N∑
i=1

E(ℓ′pΓ
−1
p wi,t−1(p)ϵit)

4 =
E(ϵ4it)

N2T 2v4p

N∑
i=1

E(ℓ′pΓ
−1
p wi,t−1(p))

4.

We now see that

E(ℓ′pΓ
−1
p wi,t−1(p))

4 ≤ ||ℓp||41||Γ−1
p ||41E||wi,t−1(p)||4.

It holds that ||ℓp||41 = O(1) and ||Γ−1
p ||41 = O(1) by Assumption 2. Moreover,

E||wi,t−1(p)||4 = E

( t−1∑
τ=t−p

w2
i,τ

)2
 = E

(
t−1∑

τ1=t−p

t−1∑
τ2=t−p

w2
i,τ1
w2

i,τ2

)
= O(p2).

Thus, we have

1

N2T 2v4p

N∑
i=1

E(ℓ′pΓ
−1
p wi,t−1(p)ϵit)

4 = O

(
1

N2T 2

N∑
i=1

p2

)
= O

(
p2

NT 2

)
.

Thus, if p2/(NT 2) → 0,

E|SNt|4 = O

(
p2

NT 2

)
+O

(
1

T 2

)
= o

(
1

T

)
so that condition iii) holds by (14). Lastly, note that

∑p
t=1 SNt →p 0 because

var(
∑p

t=1 SNt) =
∑p

t=1 var(SNt) = p/T and p/T → 0. We thus have shown the
first statement of the lemma.

Next, we consider the second statement of the lemma. We observe that

1√
NT

ℓ′pΓ
−1
p

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′ϵt/vp

=
1√
NT

ℓ′pΓ
−1
p

T−1∑
t=p+1

wt−1(p)
′ϵt/vp + ℓ′pΓ

−1
p

1√
NT

T−1∑
t=p+1

1

T − t+ 1
wt−1(p)

′ϵt/vp.
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The first term of the right hand side converges to N(0, 1) by the first statement of
the lemma. The expectation of the second term is zero and the variance is

E

(
ℓ′pΓ

−1
p

1√
NT

T−1∑
t=p+1

1

T − t+ 1
wt−1(p)

′ϵt/vp

)2

=
1

NT

1

v2p

T−1∑
t=p+1

1

(T − t+ 1)2
E
(
ℓ′pΓ

−1
p wt−1(p)

′ϵtϵ
′
twt−1(p)

′Γ−1
p ℓp

)
=

1

NT

1

v2p
Nσ2ℓ′pΓ

−1
p ΓpΓ

−1
p ℓp

T−1∑
t=p+1

1

(T − t+ 1)2
= O

(
1

T

)
= o(1).

Therefore, the second term is op(1) and the second statement of the lemma is proven.

B The fixed effects estimator

This section presents several lemmas and the proofs of Theorems 1, 2, 3 and 4. Let
b̃t,p = bt,p −

∑T
t′=p+1 bt′,p/(T − p) and ϵ̃t = ϵt − ϵ̄p+1,T .

The estimation error of the fixed effects estimator can be decomposed as

α̂F (p)− α(p) = (Γ̂F
p )

−1F1 + (Γ̂F
p )

−1F2

where

Γ̂F
p =

1

NT

T∑
t=p+1

x̃t(p)
′x̃t(p), F1 =

1

NT

T∑
t=p+1

x̃t(p)
′b̃t,p and F2 =

1

NT

T∑
t=p+1

x̃t(p)
′ϵ̃t.

Note that we can write

x̃t(p) = wt−1(p)− w̄p,T−1(p).

Lemma 5. Suppose that Assumptions 1 and 2 are satisfied. If N → ∞, T → ∞ and
p→ ∞ with p2/(NT ) → 0 and p3/T 2 → 0, then

||Γ̂F
p − Γp|| = Op

(
p√
NT

+
p3/2

T

)
.

Proof. We observe that

Γ̂F
p − Γp =

1

NT

T∑
t=p+1

x̃t(p)
′x̃t(p)− Γp

=

(
1

NT

T∑
t=p+1

wt−1(p)
′wt−1(p)− Γp

)
− T − p

NT
w̄p,T−1(p)

′w̄p,T−1(p).
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Lemma 2 states that the first term is of order Op(p/
√
NT + p3/2/T ). For the second

term, we observe that∥∥∥∥T − p

NT
w̄p,T−1(p)

′w̄p,T−1(p)

∥∥∥∥ ≤ T − p

NT
∥w̄p,T−1(p)∥2 = Op

(
T − p

NT

Np

T − p

)
= Op

( p
T

)
,

where the second equality follows from Lemma 1. To sum up, it holds that∥∥∥Γ̂F
p − Γp

∥∥∥ = Op

(
p√
NT

+
p3/2

T
+
p

T

)
= Op

(
p√
NT

+
p3/2

T

)
.

Lemma 6. Suppose that Assumption 1 is satisfied. If N → ∞, T → ∞ and p→ ∞,
then

||F1|| = Op

(
√
p

∞∑
k=p+1

|αk|

)
= op(1).

Proof. We have that

||F1|| =

∥∥∥∥∥ 1

NT

T∑
t=p+1

x̃t(p)
′b̃t,p

∥∥∥∥∥ ≤ 1

NT

T∑
t=p+1

∥∥∥x̃t(p)′b̃t,p∥∥∥
≤ 1

NT

T∑
t=p+1

∥x̃t(p)∥ ·
∥∥∥b̃t,p∥∥∥ .

We observe that

E ∥x̃t(p)∥2 = NE(tr(x̃it(p)x̃it(p)
′)) = N

p∑
k=1

E
(
(x̃it,k)

2) ,
where x̃it,k is the kth element of x̃it(p). Since E((x̃it,k)

2) < C for any k, it holds that

∥x̃t(p)∥ = Op(
√
Np)

uniformly in t. Let w†
i,t−k = wi,t−k − w̄i,p+1−k,T−k. Then,

E
∥∥∥b̃t,p∥∥∥2 = NE((b̃it,p)

2) = NE

( ∞∑
k=p+1

αkw
†
i,t−k

)2


≤ N

∞∑
k=p+1

∞∑
k′=p+1

|αk| · |αk′| · |E(w†
i,t−kw

†
i,t−k′)|

≤ CN

(
∞∑

k=p+1

|αk|

)2

,
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by observing that |E(w†
i,t−kw

†
i,t−k′)| is uniformly bounded. Therefore, we have∥∥∥b̃t,p∥∥∥ = Op

(
√
N

∞∑
k=p+1

|αk|

)
.

To sum up, we have that

||F1|| =
1

NT

T∑
t=p+1

Op

(√
Np
)
Op

(
√
N

∞∑
k=p+1

|αk|

)
= Op

(
√
p

∞∑
k=p+1

|αk|

)
.

Lemma 7. Suppose that Assumption 1 is satisfied. If N → ∞, T → ∞ and p→ ∞
with p/T → 0, we have

∥B∥ = O

(√
p

T

)
,

∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T

∥∥∥∥ = Op

(√
p

T

)
and ∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T −B

∥∥∥∥ = Op

( √
p

√
NT

)
.

Proof. We note that

T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T =
1

NT (T − p)

T∑
t=p+1

T∑
m=p+1

wt−1(p)
′ϵm.

We observe that E(wt−1(p)
′ϵm) = 0 if t − 1 < m. Let ψk(p−) = (ψk, . . . , ψk+p−1)

′.
Since wt−1 =

∑∞
k=0 ψkϵt−1−k, we have E(wt−1(p)

′ϵm) = Nσ2ψ−
t−1−m(p) if t − 1 ≥ m.

Thus, we have that

B = E

(
1

NT

T∑
t=p+1

wt−1(p)
′ϵ̄p+1,T

)
=

1

T (T − p)

T∑
t=p+1

t−1∑
m=p+1

σ2ψ−
t−1−m(p).

We observe that

∥B∥2 = tr(BB′) = σ4 1

T 2(T − p)2

p−1∑
k=0

(
T∑

t=p+1

t−1∑
m=p+1

σ2ψt−1−m+k

)2

≤ σ4 1

T 2(T − p)2

p−1∑
k=0

(
T∑

t=p+1

∞∑
m=0

σ2|ψm|

)2

= O
( p

T 2

)
. (15)
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Therefore, we have ∥B∥ = O(
√
p/T ).

Next, we examine

E

∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T −B

∥∥∥∥2 = tr

(
var

(
T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T

))
=

1

N

(
T − p

T

)2

tr (var(w̄i,p,T−1(p)ϵ̄i,p+1,T ))

=
1

N

(
T − p

T

)2 p−1∑
k=0

var(w̄i,p−k,T−1−k ϵ̄i,p+1,T ).

We see that ((T − p)/T )2 = O(1). We also see that

var(w̄i,p−k,T−1−k ϵ̄i,p+1,T ) ≤ E(w̄2
i,p−k,T−1−k ϵ̄

2
i,p+1,T )

≤
√
E(w̄4

i,p−k,T−1−k)
√
E(ϵ̄4i,p+1,T ).

It holds that

E(w̄4
i,p−k,T−1−k) =

1

(T − p)4

T−1−k∑
t1=p−k

T−1−k∑
t2=p−k

T−1−k∑
t3=p−k

T−1−k∑
t4=p−k

E(wi,t1wi,t2wi,t3wi,t4)

=
3

(T − p)4

(
T−1−k∑
t1=p−k

T−1−k∑
t2=p−k

E(wi,t1wi,t2)

)2

+
1

(T − p)4

T−1−k∑
t1=p−k

T−1−k∑
t2=p−k

T−1−k∑
t3=p−k

T−1−k∑
t4=p−k

κw(t1, t2, t3, t4)

= O

(
1

T 2

)
by Assumption 1 and the argument given in footnote 15. Moreover,

E(ϵ̄4i,p+1,T ) =
1

(T − p)4
((T − p)E(ϵ4it) + 3(T − p)(T − p− 1)σ4) = O

(
1

T 2

)
.

It therefore follows that

E

∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T −B

∥∥∥∥2 = O

(
1

N

p−1∑
k=0

√
1

T 2

1

T 2

)
= O

( p

NT 2

)
. (16)

Therefore, the Chebyshev inequality shows that∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T −B

∥∥∥∥ = Op

( √
p

√
NT

)
.
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Lastly, by (16) and (15), we have

E

∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T

∥∥∥∥2 = tr

(
var

(
T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T

))
+ tr (BB′)

= O
( p

NT 2

)
+O

( p

T 2

)
= O

( p

T 2

)
.

The Chebyshev inequality gives∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T

∥∥∥∥ = Op

(√
p

T

)
.

Lemma 8. Suppose that Assumptions 1 and 2 are satisfied. If N → ∞, T → ∞ and
p→ ∞ with p/T → 0, then

||F2|| = Op

(√
p

NT
+

√
p

T

)
= op(1)

and

||F2 +B|| = Op

(√
p

NT

)
= op(1).

Proof. We observe that

F2 =
1

NT

T∑
t=p+1

x̃t(p)
′ϵ̃t =

1

NT

T∑
t=p+1

wt−1(p)
′ϵt −

1

NT

T∑
t=p+1

wt−1(p)
′ϵ̄p+1,T

− 1

NT

T∑
t=p+1

w̄p,T−1(p)
′ϵt +

1

NT

T∑
t=p+1

w̄p,T−1(p)
′ϵ̄p+1,T

=
1

NT

T∑
t=p+1

wt−1(p)
′ϵt −

T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T .

Noting that wt−1(p)
′ϵt is a martingale difference sequence, we have

E

∥∥∥∥∥ 1

NT

T∑
t=p+1

wt−1(p)
′ϵt

∥∥∥∥∥
2

=
1

N2T 2

T∑
t=p+1

T∑
t′=p+1

tr(E(wt−1(p)
′ϵtϵ

′
t′wt′−1(p)))

=
1

N2T 2

T∑
t=p+1

σ2tr(E(wt−1(p)
′wt−1(p))).
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Since tr(E(wt−1(p)
′wt−1(p))) = E||wt−1(p)||2 = O(Np) by Lemma 1, we have

E

∥∥∥∥∥ 1

NT

T∑
t=p+1

wt−1(p)
′ϵt

∥∥∥∥∥
2

= O

(
1

N2T 2

T∑
t=p+1

Np

)
= O

( p

NT

)
.

Therefore, the Markov inequality gives∥∥∥∥∥ 1

NT

T∑
t=p+1

wt−1(p)
′ϵt

∥∥∥∥∥ = Op

(√
p

NT

)
.

Hence, Lemma 7 implies that

||F2|| = Op

(√
p

NT
+

√
p

T

)
and

||F2 +B|| = Op

(√
p

NT

)
+Op

( √
p

√
NT

)
= Op

(√
p

NT

)
.

Lemma 9. Suppose that Assumptions 1 and 2 are satisfied. If N → ∞, T → ∞ and
p→ ∞ with p2/T → 0, then

√
NTℓ′pΓ

−1
p (F2 +B)/vp →d N(0, 1).

Proof. As in the proof of Lemma 8, we observe that

√
NTℓ′pΓ

−1
p (F2 +B) =

1√
NT

ℓ′pΓ
−1
p

T∑
t=p+1

wt−1(p)
′ϵt

−
√
NTℓ′pΓ

−1
p

(
T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T −B

)
.

Lemma 4 gives

1√
NT

ℓ′pΓ
−1
p

T∑
t=p+1

wt−1(p)
′ϵt/vp →d N(0, 1).

Lemma 7 and Assumption 2 imply that∥∥∥∥√NTℓ′pΓ−1
p

(
T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T −B

)∥∥∥∥
≤

√
NT ∥ℓp∥1

∥∥Γ−1
p

∥∥ ∥∥∥∥T − p

NT
w̄p,T−1(p)

′ϵ̄p+1,T −B

∥∥∥∥
= Op

(√
NT

√
p

√
NT

)
= Op

(√
p

T

)
= op(1).

Since v−1
p = O(1) by Assumption 2, the result follows.
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B.1 Proof of Theorem 1

Proof. We have

||α̂F (p)− α(p)|| = ||(Γ̂F
p )

−1(F1 + F2)|| ≤ ||(Γ̂F
p )

−1||1||F1||+ ||(Γ̂F
p )

−1||1||F2||.

Lemmas 3 and 5 give that ||(Γ̂F
p )

−1||1 = Op(1). Lemma 6 gives that ||F1|| = op(1).
Lastly, ||F2|| = op(1) follows by Lemma 8.

B.2 Proof of Theorem 2

Proof. We note that

√
NT (ℓ′pα̂F (p)− ℓ′pα(p) + ℓ′pΓ

−1
p B)

=
√
NTℓ′p(Γ̂

F
p )

−1F1 +
√
NTℓ′p(Γ̂

F
p )

−1F2 +
√
NTℓ′pΓ

−1
p B

=
√
NTℓ′p(Γ̂

F
p )

−1F1 +
√
NTℓ′p((Γ̂

F
p )

−1 − Γ−1
p )F2 +

√
NTℓ′pΓ

−1
p (F2 +B).

Lemma 9 gives

√
NTℓ′pΓ

−1
p (F2 +B)/vp →d N(0, 1).

Next, we consider

||
√
NTℓ′p(Γ̂

F
p )

−1F1|| ≤ ||ℓp||1||
√
NT (Γ̂F

p )
−1F1|| ≤ ||ℓp||1||(Γ̂F

p )
−1||1||

√
NTF1||.

We have ||ℓp||1 = O(1) by the assumption. ||(Γ̂F
p )

−1||1 = Op(1) by Lemmas 3 and

5. ||
√
NTF1|| = op(1) by Lemma 6 because

√
NTp

∑∞
k=p+1 |αk| → 0. Therefore, we

have ||
√
NTℓ′p(Γ̂

F
p )

−1F1|| = op(1).
Lastly, we see that

||
√
NTℓ′p((Γ̂

F
p )

−1 − Γ−1
p )F2|| ≤ ||ℓp||1||(Γ̂F

p )
−1 − Γ−1

p ||1||
√
NTF2||.

We have ||ℓp||1 = O(1), ||(Γ̂F
p )

−1 − Γ̂−1
p ||1 = Op(p/

√
NT + p3/2/T ) by Lemmas 3

and 5 and ||
√
NTF2|| = Op(

√
p +

√
p/(NT )) by Lemma 8. Therefore, we have

||
√
NTℓ′p((Γ̂

F
p )

−1 − Γ−1
p )F2|| = Op(p

3/2/
√
NT + p3/2/T + p2/T + p2

√
N/T 3/2) =

Op(p
3/2/

√
NT + p2/T + p2

√
N/T 3/2), which is op(1) under the assumption of the

theorem.
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B.3 Proof of Theorem 3

Proof. We have

||α̂BF (p)− α(p)|| = ||(Γ̂F
p )

−1(F1 + F2 + B̂)||
≤ ||(Γ̂F

p )
−1||1(||F1||+ ||F2 +B||+ ||B̂ −B||).

Lemmas 3 and 5 give that ||(Γ̂F
p )

−1||1 = Op(1). Lemma 6 gives that ||F1|| = op(1).

By Lemma 8, we have ||F2 + B|| = Op(
√
p/(NT ))) = op(1). The assumption of the

theorem gives ||B̂ −B|| = op(1).

B.4 Proof of Theorem 4

Proof. We note that
√
NT (ℓ′pα̂BF (p)− ℓ′pα(p)) =

√
NTℓ′p(Γ̂

F
p )

−1(F1 + F2 + B̂)

=
√
NTℓ′p(Γ̂

F
p )

−1F1 +
√
NTℓ′p((Γ̂

F
p )

−1 − Γ−1
p )(F2 +B)

+
√
NTℓ′pΓ

−1
p (F2 +B) +

√
NTℓ′p(Γ̂

F
p )

−1(B̂ −B).

Similarly to the proof of Theorem 2, we have
√
NTℓ′pΓ

−1
p (F2 + B)/vp →d N(0, 1) by

Lemma 9 and ||
√
NTℓ′p(Γ̂

F
p )

−1F1|| = op(1) by Lemmas 3, 5 and 6. We also have

||
√
NTℓ′p((Γ̂

F
p )

−1 − Γ−1
p )(F2 +B)|| ≤ ||ℓp||1||(Γ̂F

p )
−1 − Γ−1

p ||1||
√
NT (F2 +B)||.

We have ||ℓp||1 = O(1), ||(Γ̂F
p )

−1− Γ̂−1
p ||1 = Op(p/

√
NT +p3/2/T ) by Lemmas 3 and 5

and ||
√
NT (F2+B)|| = Op(

√
p) by Lemma 8. Therefore, we have ||

√
NTℓ′p((Γ̂

F
p )

−1−
Γ−1
p )(F2 +B)|| = Op(p

3/2/
√
NT + p2/T ), which is op(1) under the assumption of the

theorem. Lastly, we have

||
√
NTℓ′p(Γ̂

F
p )

−1(B̂ −B)|| ≤ ||ℓp||1||(Γ̂F
p )

−1||1||
√
NT (B̂ −B)|| = Op(

√
NTνNTp) = op(1).

C The GMM estimator

This section presents several lemmas and the proofs of Theorems 5 and 6. Note that
variables with superscript “*” are transformed by the forward filter so that b∗t,p =√

(T − t)/(T − t+ 1)(bt,p−
∑T

τ=t+1 bτ,p/(T − t)) and ϵ∗t =
√
(T − t)/(T − t+ 1)(ϵt−∑T

τ=t+1 ϵt/(T − t)). The estimation error of the GMM estimator can be decomposed
as

α̂(p)− α(p) = (Γ̂G
p )

−1G1 + (Γ̂G
p )

−1G2
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where

Γ̂G
p =

1

NT

T−1∑
t=p+1

x∗t (p)
′Mtx

∗
t (p), G1 =

1

NT

T−1∑
t=p+1

x∗t (p)
′Mtb

∗
t,p and G2 =

1

NT

T−1∑
t=p+1

x∗t (p)
′Mtϵ

∗
t .

Note that we can write

x∗t (p) =

√
T − t

T − t+ 1
(wt−1(p)− w̄t,T−1(p)) .

Lemma 10. Suppose that Assumptions 1, 2 and 3 are satisfied. If N → ∞, T → ∞
and p→ ∞ with p2/T → 0, then

||Γ̂G
p − Γp|| = Op

(
p√
T

)
Proof. We observe that

Γ̂p =
1

NT

T−1∑
t=p+1

x∗t (p)
′Mtx

∗
t (p)

=
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtwt−1(p)−
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtw̄t,T−1(p)

− 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtwt−1(p) +
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtw̄t,T−1(p).

The first term in the decomposition is that

1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtwt−1(p)

=
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′wt−1(p) +
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)wt−1(p).

Lemma 2 gives∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′wt−1(p)− Γp

∥∥∥∥∥ = Op

(
p√
NT

+
p3/2

T

)
.

We consider the term

1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)wt−1(p).
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Let η∗t is the N × 1 vector of the errors of the population linear projection of η on Zt

so that η∗t = η − Z ′
tδt, where

δt = E((zitz
′
it))

−1E(zitηi) = (σ2
ηιtιt + Γt)

2σ2
ηιt =

σ2
η

1 + σ2
ηι

′
tΓ

−1
t ιt

Γ−1
t ι.

We have that

E(η∗′t ηt) = N(σ2
η − δ′tE(zitηi)) = N

(
σ2
η

1 + σ2
ηι

′
tΓ

−1
t ιt

)
=

(
N

t

)
,

where 1/(1 + ι′tΓ
−1
t ιt) = O(1/t) by Assumption 2. Since wt−1(p) = xt−1(p)− ηι′p and

xt−1(p)(I −Mt) = 0, we have that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)wt−1(p)

∥∥∥∥∥
=

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
ιpη

∗′
t (I −Mt)η

∗
t ιp

∥∥∥∥∥
≤ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
∥ιpη∗′t (I −Mt)η

∗
t ιp∥

≤ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
λmax(I −Mt)

∥∥η∗t ι′p∥∥2 .
We observe that λmax(I −Mt) = 1 because I −Mt is an idempotent matrix and that∥∥η∗t ι′p∥∥2 ≤ ∥η∗t ∥

2 · ∥ιp∥2 = Op(Np/t). Thus, it holds that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)wt−1(p)

∥∥∥∥∥ = Op

(
1

NT

T−1∑
t=p+1

T − t

T − t+ 1

Np

t

)

= Op

(
p log T

T

)
.

Next, we have ∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtw̄t,T−1(p)

∥∥∥∥∥
≤ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
∥wt−1(p)

′Mtw̄t,T−1(p)∥

≤ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
λmax(Mt) ∥wt−1(p)∥ · ∥w̄t,T−1(p)∥ .
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Since Mt is an idempotent matrix, we have λmax(Mt) = 1. Lemma 1 gives that
∥wt−1(p)∥ = Op((Np)

1/2) and ∥w̄t,T−1(p)∥ = Op(
√
Np/(T − t)). Thus, we have∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtw̄t,T−1(p)

∥∥∥∥∥
= Op

(
1

NT

T−1∑
t=p+1

T − t

T − t+ 1

√
Np

√
Np

1

T − t

)
= Op

(
p√
T

)
.

Similarly, we have∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtwt−1(p)

∥∥∥∥∥ = Op

(
p√
T

)
.

Lastly, we have∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtw̄t,T−1(p)

∥∥∥∥∥ ≤ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
∥w̄t,T−1(p)

′Mtw̄t,T−1(p)∥

≤ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
λmax(Mt) ∥w̄t,T−1(p)∥2 .

Since Mt is an idempotent matrix, we have λmax(Mt) = 1. Lemma 1 implies that
∥w̄t,T−1(p)∥2 = Op(Np/(T − t)). Thus, we have∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t−1,T−1(p)

′Mtw̄t−1,T−1(p)

∥∥∥∥∥
= Op

(
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
Np

1

T − t

)
= Op

(
p log T

T

)
.

To sum up, noting that p log /T = o(p/
√
T ), it holds that∥∥∥Γ̂G

p − Γp

∥∥∥ = Op

(
p√
NT

+
p3/2

T
+
p log T

T
+

p√
T

+
p log T

T

)
= Op

(
p√
T

)
.

Lemma 11. Suppose that Assumption 1 is satisfied. If N → ∞, T → ∞ and p→ ∞,
then

||G1|| = Op

(
√
p

∞∑
k=p+1

|αk|

)
= op(1).
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Proof. We have that

||G1|| =

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

x∗t (p)
′Mtb

∗
t,p

∥∥∥∥∥ ≤ 1

NT

T−1∑
t=p+1

∥∥x∗t (p)′Mtb
∗
t,p

∥∥
≤ 1

NT

T−1∑
t=p+1

λmax(Mt) ∥x∗t (p)∥ ·
∥∥b∗t,p∥∥ .

Since Mt is an idempotent matrix, λmax(Mt) = 1. We also let

w†
i,t−k,t =

√
T − t

T − t+ 1
(wi,t−k − w̄i,t−k+1,T−k) .

Then, we write x∗it(p) = (w†
i,t−1,1, . . . , w

†
i,t−p,1)

′ and b∗i,t,p =
∑∞

k=p+1 αkw
†
i,t−k,t. We have

that

E ∥x∗t (p)∥
2 = NE(tr(x∗it(p)x

∗
it(p)

′)) = N

p∑
k=1

E

((
w†

i,t−k,t

)2)
= NpE((w†

i,t−k,t)
2)

by the stationarity of y†i,t−k,t. Since E((y
†
i,t−k,t)

2) is uniformly bounded, we have that

∥x∗t (p)∥ = Op(
√
Np)

uniformly in t. We also have

E
∥∥b∗t,p∥∥2 = NE((b∗it,p)

2) = NE

( ∞∑
k=p+1

αkw
†
i,t−k,t

)2


≤ N
∞∑

k=p+1

∞∑
k′=p+1

|αk| · |αk′| · |E(w†
i,t−k,tw

†
i,t−k′,t)|

≤ CN

(
∞∑

k=p+1

|αk|

)2

,

by observing that |E(w†
i,t−k,tw

†
i,t−k′,t)| is uniformly bounded. Therefore, we have

∥∥b∗t,p∥∥ = Op

(
√
N

∞∑
k=p+1

|αk|

)
. (17)

To sum up, we have that

||G1|| =
1

NT

T−1∑
t=p+1

Op

(√
Np
)
Op

(
√
N

∞∑
k=p+1

|αk|

)
= Op

(
√
p

∞∑
k=p+1

|αk|

)
.
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Lemma 12. Suppose that Assumption 1 is satisfied. Let dt be the N × 1 vector
containing the diagonal elements of Mt. Define κ3 and κ4 be the third and fourth
cumulants of ϵit, respectively. Suppose that r ≥ t, q ≥ s and t ≥ s. Then,
cov(ϵ′lMtϵr, ϵ

′
pMsϵq) is equal to

2σ4s+ κ4E(d
′
tds) ≤ (2σ4 + κ4)s if l = r = p = q,

κ3E(d
′
tMsϵq) if l = r = p ̸= q < t,

κ3E(d
′
sMtϵl) if r = p = q ̸= l < t,

κ3E(d
′
tMsϵp) if l = r = q ̸= p < t,

σ4s if s ≤ l = p ̸= r = q or l = q ̸= r = p,

σ2E(ϵ′lMsϵp) if r = q, l < s and p < s,

where |E(d′tMsϵq)| <
√
stσ if q < t, |E(d′sMtϵl)| ≤ (sN)1/2σ, |E(d′tMsϵp)| <

√
stσ if

s ≤ p < t and |E(d′tMsϵp)| <
√
sNσ if p < s and |E(ϵ′lMsϵp)| ≤ Nσ if l < s and

p < s.

Proof. Alvarez and Arellano (2003, Lemma C1) show that for l ≥ r and p ≥ q,

cov(ϵ′lMtϵr, ϵ
′
pMsϵq) =


2σ4s+ κ4E(d

′
tds) ≤ (2σ4 + κ4)s if l = r = p = q,

κ3E(d
′
tMsϵq) if l = r = p ̸= q < t,

σ4s if l = p ̸= r = q,

0 otherwise,

where |E(d′tMsϵq)| ≤
√
stσ.

Therefore, we consider cases with l < r or p < q. We note that in these
cases cov(ϵ′lMtϵr, ϵ

′
pMsϵq) = E(ϵ′lMtϵrϵ

′
pMsϵq) because E(ϵ′lMtϵr) = 0if l < r, and

E(ϵ′pMtϵq) = 0 if p < q.
Let Et be the conditional expectation operator given (ϵt−1, . . . , ϵ0, . . . ).
First, we consider the case in which l < r = p = q. Noting that r ≥ t, it follows

that

E(ϵ′lMtϵrϵ
′
pMsϵq) = E(ϵ′lMtϵrϵ

′
rMsϵr) = E (tr (ϵlMtEt(ϵrϵ

′
rMsϵr))) = κ3E(ϵ

′
lMtds).

We have that E(ϵ′lMtds) = 0 if l ≥ t. If l < t, then, we have that

(E(ϵ′lMtds))
2 ≤ E((ϵ′lMtds)

2) ≤ E(d′sdsϵ
′
lMtϵl) = sE(ϵ′lMtϵl) ≤ σ2sN.

Next, we suppose that p < l = r = q. Noting that r ≥ t, it follows that

E(ϵ′lMtϵrϵ
′
pMsϵq) = E(ϵ′rMtϵrϵ

′
pMsϵr) = E (tr (Et(ϵrMtϵrϵ

′
r)Msϵp)) = κ3E(dtMsϵp).

We have that E(d′tMsϵp) = 0 if p ≥ t. If p < t, then, we have that

(E(d′tMsϵp))
2 ≤ E((d′tMsϵp)

2) ≤ E(d′tdtϵ
′
pMsϵp) = tE(ϵ′pMsϵp) ≤

{
σ2st if p ≥ s,

σ2sN if p < s.
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For the case with l = p = q < r and the case with l = r = p < q, it is obvious
that

E(ϵ′lMtϵrϵ
′
pMsϵq) = 0.

We now suppose that l = p < r = q. We observe that

E(ϵ′lMtϵrϵ
′
pMsϵq) = E(ϵ′lMtϵrϵ

′
lMsϵr) = E (tr (MtEr(ϵrϵ

′
r)Msϵlϵ

′
l)) = σ2E (tr(Msϵlϵ

′
l))

If l ≥ s, then σ2E (tr(Msϵlϵ
′
l)) = σ4s. If l < s, then σ2E (tr(Msϵlϵ

′
l)) = σ2E(ϵ′lMsϵl) ≤

σ2E(ϵ′lϵl) ≤ σ4N .
We examine the case in which l = q < r = p. Noting that l = q ≥ s, we have

E(ϵ′lMtϵrϵ
′
rMsϵl) = E (tr (MtEr(ϵrϵ

′
r)Msϵlϵ

′
l)) = σ2E (tr(Msϵlϵ

′
l)) = σ4s.

The case in which l = q > r = p can be considered similarly. Noting that l > t,
we have

E(ϵ′lMtϵrϵ
′
rMsϵl) = E (tr (Mtϵrϵ

′
rMsEl(ϵlϵ

′
l))) = σ2E (tr(Msϵrϵ

′
r)) = σ4s.

Consider the case in which l = r, l ̸= p, l ̸= q and p < q. If q > l, it is easy to see
that

E(ϵ′lMtϵrϵ
′
pMsϵq) = 0.

On the other hand, if l > q, then

E(ϵ′lMtϵrϵ
′
pMsϵq) = trE(Et(ϵ

′
lMtϵl)ϵ

′
pMsϵq) = σ2tE(ϵ′pMsϵq) = 0,

where the third equality follows because l = r ≥ t.
Similarly, if p = q, l < r, l ̸= p and r ̸= p, then E(ϵ′lMtϵrϵ

′
pMsϵq) = 0.

For the case with l = p, l ̸= r, l ̸= q and r ̸= q, we have

E(ϵ′lMtϵrϵ
′
pMsϵq) = E(ϵ′lMtϵrϵ

′
lMsϵq) =

{
0 if r > l or q > l,

tr(E(Mtϵrϵ
′
qMsϵlϵ

′
l)) if l > r and l > q,

=

{
0 if r > l or q > l,

σ2tr(E(Msϵrϵ
′
q)) if l > r and l > q,

= 0,

where the third equality follows by noting l > t if l > r.
Similarly, we have E(ϵ′lMtϵrϵ

′
pMsϵq) = 0 for the case with l = q, l ̸= r, l ̸= p and

r ̸= p, and for the case r = p, l ̸= p, l ̸= q and r ̸= q, E(ϵ′lMtϵrϵ
′
pMsϵq) = 0.
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For the case that r = q, l ̸= r, l ̸= p and r ̸= p, we have that

E(ϵ′lMtϵrϵ
′
pMsϵq) = E(ϵ′lMtϵrϵ

′
pMsϵr) =

{
0 if l > r or p > r,

tr(E(Mtϵlϵ
′
pMsϵrϵ

′
r)) if r > l and r > p,

=

{
0 if l > r or p > r,

σ2tr(E(Msϵlϵ
′
p)) if r > l and r > p.

If l ≥ s or p ≥ s, then tr(E(Msϵlϵ
′
p)) = E(ϵ′lMsϵp) = 0. However, if l < s and p < s,

then tr(E(Msϵlϵ
′
p)) = E(ϵ′lMsϵp) may not be zero but |E(ϵ′lMsϵp)| ≤ σ2N .

Lastly, when l, q, r, p are all different, it holds that

E(ϵ′lMtϵrϵ
′
pMsϵq) = 0.

Lemma 13. Suppose that Assumption 1 is satisfied. Suppose that r ≥ t, q ≥ s and
t ≥ s. Then, it holds that, if r = q,

cov(w′
lMtϵr, w

′
pMsϵq)

= O
(√

st+
√
sN
)
+ σ2

∞∑
k=l−s+1

∞∑
m=p−s+1

ψkψmE(ϵ
′
l−kMsϵp−m),

where E(ϵ′l−kMsϵp−m) < σN , if r ̸= q and q ≥ t,

cov(w′
lMtϵr, w

′
pMsϵq) = ψl−qψp−r(2σ

4s+ κ4E(d
′
tds)) = O (s) ,

and, if q < t,

cov(w′
lMtϵr, w

′
pMsϵq) = ψl−rψp−rκ3E(d

′
tMsϵq) + sσ4ψl−qψp−r = O(

√
st).

Proof. We first consider cases with r = q. Lemma 12 implies that

cov(w′
lMtϵr, w

′
pMsϵr)

= ψl−rψp−rcov(ϵ
′
rMtϵr, ϵ

′
rMsϵr) +

∞∑
k=0

ψkψp−rcov(ϵ
′
l−kMtϵr, ϵ

′
rMsϵr)

+ψl−r

∞∑
m=0

ψmcov(ϵ
′
rMtϵr, ϵ

′
p−mMsϵr) +

∞∑
k=0,k ̸=l−r

ψkψp−l+kcov(ϵ
′
l−kMtϵr, ϵ

′
l−kMsϵr)

+
∞∑

k=l−s+1

∞∑
m=p−s+1

ψkψmcov(ϵ
′
l−kMtϵr, ϵ

′
p−mMsϵr).
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We have that

ψl−rψp−rcov(ϵ
′
rMtϵr, ϵ

′
rMsϵr) +

∞∑
k=0

ψkψp−rcov(ϵ
′
l−kMtϵr, ϵ

′
rMsϵr)

+ψl−r

∞∑
m=0

ψmcov(ϵ
′
rMtϵr, ϵ

′
p−mMsϵr) +

∞∑
k=0,k ̸=l−r

ψkψp−l+kcov(ϵ
′
l−kMtϵr, ϵ

′
l−kMsϵr)

= ψl−rψp−r(2σ
4 + κ4E(d

′
tds)) +

∞∑
k=0

ψkψp−rκ3E(d
′
sMtϵl−k)

+ψl−r

∞∑
m=0

ψmkE(d
′
tMsϵp−m) + sσ4

∞∑
k=0,k ̸=l−r

ψkψp−l+k

= O
(
s+ (sN)1/2 +

√
st+ (sN)1/2 + s

)
= O

(√
st+ (sN)1/2

)
,

noting that t ≥ s. We also have
∞∑

k=l−s+1

∞∑
m=p−s+1

ψkψmcov(ϵ
′
l−kMtϵr, ϵ

′
p−mMsϵr) = σ2

∞∑
k=l−s+1

∞∑
m=p−s+1

ψkψmE(ϵ
′
l−kMsϵp−m).

Next, we suppose that r ̸= q and q ≥ t. Lemma 12 gives that

cov(w′
lMtϵr, w

′
pMsϵr) = ψl−rψp−rcov(ϵ

′
rMtϵr, ϵ

′
rMsϵr)

= ψl−qψp−r(2σ
4s+ κ4E(d

′
tds)) = O(s).

For cases with q < t (note that in this case r ̸= q), Lemma 12 provides that

cov(w′
lMtϵr, w

′
pMsϵr) = ψl−rψp−rκ3E(d

′
tMsϵq) + sσ4ψl−qψp−r

= O
(√

st+ s
)
= O(

√
st).

Lemma 14. Suppose that Assumptions 1, 2, 3 and 4 are satisfied. If N → ∞,
T → ∞ and p→ ∞ with p log T/T → 0 and T/N → 0, then

||G2|| = Op

(√
p

NT
+

√
p log T

N
+

√
p log T

N3/4
√
T

+
p3/2

√
log T√
NT

)
= op(1).

Proof. We observe that

G2 =
1

NT

T−1∑
t=p+1

x∗t (p)
′Mtϵ

∗
t

=
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵt −
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵ̄t,T

− 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t−1,T−1(p)

′Mtϵt +
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t−1,T−1(p)

′Mtϵ̄t,T .
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Noting that wt−1(p)
′Mtϵt is a martingale difference sequence, we have

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵt

∥∥∥∥∥
2

=
1

N2T 2

T−1∑
t=p+1

(
T − t

T − t+ 1

)2

tr(E(wt−1(p)
′Mtϵtϵ

′
tMtwt−1(p)))

=
1

N2T 2

T−1∑
t=p+1

(
T − t

T − t+ 1

)2

σ2tr(E(wt−1(p)
′Mtwt−1(p))).

Since

tr(E(wt−1(p)
′Mtwt−1(p))) ≤ tr(E(wt−1(p)

′wt−1(p))) = E||wt−1(p)||2 = O(Np),

where the last equality follows from Lemma 1, and (T − t)2/(T − t+1)2 < 1, we have

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵt

∥∥∥∥∥
2

= O

(
1

N2T 2

T−1∑
t=p+1

Np

)
= O

( p

NT

)
.

Therefore, the Markov inequality gives∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵt

∥∥∥∥∥ = Op

(√
p

NT

)
.

We consider the term

1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵ̄t+1,T =
1

NT

T−1∑
t=p+1

T∑
m=t+1

1

T − t+ 1
wt−1(p)

′Mtϵm.

Now, we have that

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T∑
m=t+1

1

T − t+ 1
wt−1(p)

′Mtϵm

∥∥∥∥∥
2

=
1

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

1

T − t+ 1

1

T − t′ + 1

T∑
m=t+1

T∑
m′=t′+1

tr (E (wt−1(p)
′Mtϵmϵ

′
m′Mt′wt′−1(p))) .

Now, we have that E (wt−1(p)
′Mtϵmϵ

′
m′Mt′wt′−1(p)) = 0 ifm ̸= m′ and E (wt−1(p)

′Mtϵmϵ
′
mMtwt′−1(p)) =

σ2E
(
wt−1(p)

′Mmin(t,t′)wt′−1(p)
)
. Therefore, we have

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T∑
m=t+1

1

T − t+ 1
wt−1(p)

′Mtϵm

∥∥∥∥∥
2

=
σ2

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

T −max(t, t′)

(T − t+ 1)(T − t′ + 1)
tr
(
E
(
wt−1(p)

′Mmin(t,t′)wt′−1(p)
))
.
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We observe that

σ2

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

T −max(t, t′)

(T − t+ 1)(T − t′ + 1)
tr
(
E
(
wt−1(p)

′Mmin(t,t′)wt′−1(p)
))

≤ 2σ2

N2T 2

T−1∑
t=p+1

T−1∑
t′=t

T − t′

(T − t+ 1)(T − t′ + 1)
tr (E (wt−1(p)

′Mtwt′−1(p)))

=
2σ2

N2T 2

T−1∑
t=p+1

T − t

T − t+ 1
tr (E (wt−1(p)

′Mtw̃t−1,T−2(p))) ,

where

w̃t−1,T−2(p) =
1

T − t

T−1∑
t′=t

T − t′

T − t′ + 1
wt′−1(p).

It holds that

tr(E (wt−1(p)
′Mtw̃t−1,T−2(p))) ≤ tr(E (wt−1(p)

′w̃t−1,T−2(p)))

≤ N
√
E(||wi,t−1(p)||2)

√
E(||w̃i,t−1,T−2(p)||2)

= O

(
Np√
T − t

)
,

where E(||w̃i,t−1,T−2(p)||2 = O (Np/(T − t)) by the short memory assumption in As-
sumption 1. Thus, it holds that

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T∑
m=t+1

1

T − t+ 1
wt−1(p)

′Mtϵm

∥∥∥∥∥
2

=
2σ2

N2T 2

T−1∑
t=p+1

T − t

T − t+ 1
O

(
Np√
T − t

)
= O

( p

NT 3/2

)
.

The Chebyshev inequality gives that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵ̄t+1,T

∥∥∥∥∥ = Op

( √
p

√
NT 3/4

)
.

Next, we consider the term

1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtϵt =
1

NT

T−1∑
t=p+1

T−1∑
m=t

1

T − t+ 1
wm(p)

′Mtϵt.
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We have

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtϵt

∥∥∥∥∥
2

=
1

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

1

T − t+ 1

1

T − t′ + 1

T−1∑
m=t

T−1∑
m′=t′

tr (E (wm(p)
′Mtϵtϵ

′
t′Mt′wm′(p))) .

We have that

E (wm(p)
′Mtϵtϵ

′
t′Mt′wm′(p))

= cov (wm(p)
′Mtϵt, wm′(p)′Mt′ϵt′) + E (wm(p)

′Mtϵt)E (ϵ′t′Mt′wm′(p)) .

Let ψt(p) = (ψt, . . . , ψt−p)
′. Since E (ϵ′t′Mtϵt) = 0 for t′ ̸= t, we have that

E (w′
mMtϵt) = E

(
∞∑
k=0

ψkϵ
′
m−kMtϵt

)
= ψm−tE(ϵ

′
tMtϵt) = ψm−tσ

2(t− 1).

It therefore holds that

E (wm(p)
′Mtϵt) = σ2(t− 1)ψm−t(p).

Thus, we can write

1

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

1

T − t+ 1

1

T − t′ + 1

T−1∑
m=t

T−1∑
m′=t′

tr (E (wm(p)
′Mtϵt)E (ϵ′t′Mt′wm′(p)))

=
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

t− 1

T − t+ 1

t′ − 1

T − t′ + 1

T−1∑
m=t

T−1∑
m′=t′

tr (ψm−t(p)ψm′−t′(p)
′)

=
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

t− 1

T − t+ 1

t′ − 1

T − t′ + 1

T−1∑
m=t

T−1∑
m′=t′

ψm−t(p)
′ψm′−t′(p)

=
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

t− 1

T − t+ 1

t′ − 1

T − t′ + 1

(
T−1∑
m=t

ψm−t(p)

)′( T−1∑
m′=t′

ψm′−t′(p)

)
.

Since
∥∥∥∑T−1

m=t ψm−t(p)
∥∥∥ = O(

√
p) uniformly in m, t, T and

T−1∑
t=p+1

t− 1

T − t+ 1
=

T−p∑
s=2

T − s+ 1

s
= O (T log T ) ,
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we have

σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

t− 1

T − t+ 1

t′ − 1

T − t′ + 1

(
T−1∑
m=t

ψm−t(p)

)′( T−1∑
m′=t′

ψm′−t′(p)

)

= O

(
pT 2(log T )2

N2T 2

)
= O

(
p(log T )2

N2

)
.

Next, we consider the covariances. Lemma 13 gives

1

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

1

T − t+ 1

1

T − t′ + 1

T−1∑
m=t

T−1∑
m′=t′

tr (cov (wm(p)
′Mtϵt, wm′(p)′Mt′ϵt′))

=
1

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

1

T − t+ 1

1

T − t′ + 1

T−1∑
m=t

T−1∑
m′=t′

p−1∑
j=0

cov
(
w′

m−jMtϵt, w
′
m′−jMt′ϵt′

)
=

1

N2T 2

T−1∑
t=p+1

1

(T − t+ 1)2

T−1∑
m=t

T−1∑
m′=t

p−1∑
j=0

O
(
t+

√
tN
)

+
1

N2T 2

T−1∑
t=p+1

1

(T − t+ 1)2

T−1∑
m=t

T−1∑
m′=t

p−1∑
j=0

∞∑
k=m−j−t+1

∞∑
k=m′−j−t+1

ψkψ
′
kE(ϵ

′
m−j−kMtϵm′−j−k′)

+
2

N2T 2

T−1∑
t′=p+1

T−1∑
t=t′+1

1

T − t+ 1

1

T − t′ + 1

×
T−1∑
m=t

T−1∑
m′=t′

p−1∑
j=0

(ψm−j−t′ψm′−j−t′κ3E(d
′
tMt′ϵt′) + σ4t′ψm−j−t′ψm′−j−t).

We observe that

1

N2T 2

T−1∑
t=p+1

1

(T − t+ 1)2

T−1∑
m=t

T−1∑
m′=t

p−1∑
j=0

O
(
t+

√
tN
)
= O

(
p

N2
+

p

N3/2
√
T

)
.

For the second term, we have

1

N2T 2

T−1∑
t=p+1

1

(T − t+ 1)2

T−1∑
m=t

T−1∑
m′=t

p−1∑
j=0

∞∑
k=m−j−t+1

∞∑
k=m′−j−t+1

ψkψ
′
kE(ϵ

′
m−j−kMtϵm′−j−k′)

= O

(
1

NT 2

T−1∑
t=p+1

1

(T − t+ 1)2

T−1∑
m=t

T−1∑
m′=t

p−1∑
j=0

∞∑
k=m−j−t+1

∞∑
k=m′−j−t+1

ψkψ
′
k

)

= O

 1

NT 2

p−1∑
j=0

T−1∑
t=p+1

1

(T − t+ 1)2

(
T−1∑
m=t

∞∑
k=m−j−t+1

ψk

)2
 .
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Since
∣∣∣∑T−1

m=t

∑∞
k=m−j−t+1 ψk

∣∣∣ ≤∑∞
k=1 k|ψ−j+k|, which exists for any j by Assumption

4.

O

 1

NT 2

p−1∑
j=0

T−1∑
t=p+1

1

(T − t+ 1)2

(
T−1∑
m=t

∞∑
k=m−j−t+1

ψk

)2
 = O

 1

NT 2

p−1∑
j=0

(
∞∑
k=1

k|ψ−j+k|

)2
 .

Now, we observe that

p−1∑
j=0

(
∞∑
k=1

k|ψ−j+k|

)2

≤ p

(
∞∑
k=1

k|ψ−p+1+k|

)2

= p

(
∞∑
k=0

(k + p− 1)|ψk|

)2

= O(p3),

which implies that

O

 1

NT 2

p−1∑
j=0

(
∞∑
k=1

k|ψ−j+k|

)2
 = O

(
p3

NT 2

)
.

Therefore we have that

1

N2T 2

T−1∑
t=p+1

1

(T − t+ 1)2

T−1∑
m=t

T−1∑
m′=t

p−1∑
j=0

∞∑
k=m−j−t+1

∞∑
k=m′−j−t+1

ψkψ
′
kE(ϵ

′
m−j−kMtϵm′−j−k′)

= O

(
p3

NT 2

)
.

Since
∑T−1

m=t ψm−j−t′ = O(1) by Assumption 1, and |E(dtMt′ϵt′−1)| = O(
√
tt′), we have

2

N2T 2

T−1∑
t′=p+1

T−1∑
t=t′+1

1

T − t+ 1

1

T − t′ + 1

×
T−1∑
m=t

T−1∑
m′=t′

p−1∑
j=0

(ψm−j−t′ψm′−j−t′κ3E(d
′
tMt′ϵt′) + σ4t′ψm−j−t′ψm′−j−t)

= O

(
p

N2T 2

T−1∑
t′=p+1

T−1∑
t=t′+1

√
t

T − t+ 1

√
t′

T − t′ + 1

)
= O

( p

N2T

)
.

Therefore, it holds that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtϵt

∥∥∥∥∥ = Op

(√
p log T

N
+

√
p

N
+

√
p

N3/4T 1/4
+

p3/2√
NT

+

√
p

N
√
T

)
= Op

(√
p log T

N
+

√
p

N3/4T 1/4
+

p3/2√
NT

)
,
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because T/N → 0.
Lastly, we consider the term

1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtϵ̄t+1,T =
1

NT

T−1∑
t=p+1

1

(T − t)(T − t+ 1)

T−1∑
m=t

T∑
l=t+1

wm(p)
′Mtϵl.

By an argument similar to what shown above, we have

E(w′
mMtϵl) = E

(
∞∑
k=0

ψkϵ
′
m−kMtϵl

)
= ψm−lE(ϵ

′
lMtϵl) = ψm−lσ

2(t− 1).

so that

E (wm(p)
′Mtϵl) = σ2(t− 1)ψm−l(p).

Therefore we have that∥∥∥∥∥E
(

1

NT

T−1∑
t=p+1

1

(T − t)(T − t+ 1)

T−1∑
m=t

T∑
l=t+1

wm(p)
′Mtϵl

)∥∥∥∥∥
2

=
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

t− 1

(T − t)(T − t+ 1)

t− 1

(T − t′)(T − t′ + 1)

×
T−1∑
m=t

T∑
l=t+1

T−1∑
m′=t′

T∑
l′=t′+1

tr (ψm−l(p)ψm′−l′(p)
′) .

Now, we observe that

T−1∑
m=t

T∑
l=t+1

T−1∑
m′=t′

T∑
l′=t′+1

tr (ψm−l(p)ψm′−l′(p)
′)

=

(
T−1∑
m=t

T∑
l=t+1

ψm−l(p)

)′( T−1∑
m′=t′

T∑
l′=t′+1

ψm′−l′(p)

)
= O

(
p
√
(T − t)(T − t′)

)
,

uniformly in m,m′, l, l′. Since

T−1∑
t=p+1

t− 1√
T − t(T − t+ 1)

=

T−p−1∑
s=1

T − s√
s(s+ 1)

= O (T ) ,

we have that∥∥∥∥∥E
(

1

NT

T−1∑
t=p+1

1

(T − t)(T − t+ 1)

T−1∑
m=t

T∑
l=t+1

wm(p)
′Mtϵl

)∥∥∥∥∥
2

= O
( p

N2

)
.
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We then consider the variance. Let gT (t) = (T − t)−1(T − t+ 1)−1. We observe that

tr

(
var

(
1

NT

T−1∑
t=p+1

1

(T − t)(T − t+ 1)

T−1∑
m=t

T∑
l=t+1

wm(p)
′Mtϵl

))

=
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=t+1

T−1∑
m′=t′

T∑
l′=t′+1

tr (cov(wm(p)
′Mtϵl, wm′(p)′Mt′ϵl′))

=
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=t+1

T−1∑
m′=t′

T∑
l′=t′+1

p−1∑
j=0

cov(w′
m−jMtϵl, w

′
m′−jMt′ϵl′).

Noting that O(min(t, t′)) = O(
√
tt′), Lemma 13 shows that

tr

(
var

(
1

NT

T−1∑
t=p+1

1

(T − t)(T − t+ 1)

T−1∑
m=t

T∑
l=t+1

wm(p)
′Mtϵl

))

=
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=max(t,t′)+1

T−1∑
m′=t′

p−1∑
j=0

O(
√
tt′ +

√
min(t, t′)N)

+
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=max(t,t′)+1

T−1∑
m′=t′

×
p−1∑
j=0

∞∑
k=m−j−min(t,t′)+1

∞∑
k=m′−j−min(t,t′)+1

ψkψk′E(ϵ
′
m−j−kMmin(t,t′)ϵm′−j−k′)

+
σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=t+1

T−1∑
m′=t′

T∑
l′=t′+1,l′ ̸=l

p−1∑
j=0

O((
√
tt′).

It follows that

σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=max(t,t′)+1

T−1∑
m′=t′

p−1∑
j=0

O(
√
tt′ +

√
min(t, t′)N)

= O
( p

N2

)
+O

(
p

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

T −max(t, t′)

(T − t+ 1)(T − t′ + 1)
(
√

min(t, t′)N

)

= O

(
p

N2
+
p log T

N3/2T

)
,
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where

T−1∑
t=p+1

T−1∑
t′=p+1

T −max(t, t′)

(T − t+ 1)(T − t′ + 1)

√
min(t, t′)N

=
T−1∑
t=p+1

T − t

(T − t+ 1)2

√
tN + 2

T−1∑
t=p+1

T−1∑
t′=t+1

T − t′

(T − t+ 1)(T − t′ + 1)

√
tN

= O
(√

NT log T
)
+O

(
√
N

T−1∑
t=p+1

T − t

T − t+ 1

√
t

)
= O

(√
NT log T +

√
NT

)
= O

(√
NT log T

)
.

For the second term, it holds that

∣∣∣ σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=max(t,t′)+1

T−1∑
m′=t′

p−1∑
j=0

×
∞∑

k=m−j−min(t,t′)+1

∞∑
k=m′−j−min(t,t′)+1

ψkψk′E(ϵ
′
m−j−kMmin(t,t′)ϵm′−j−k′)

∣∣∣
≤ σ6

NT 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=max(t,t′)+1

T−1∑
m′=t′

p−1∑
j=0

∞∑
k=m−j−min(t,t′)+1

∞∑
k′=m′−j−min(t,t′)+1

|ψk| · |ψk′|

=
σ6

NT 2

p−1∑
j=0

T−1∑
t=p+1

gT (t)
1

(T − t+ 1)

(
T−1∑
m=t

∞∑
k=m−j−t+1

|ψk|

)2

+2
σ6

NT 2

p−1∑
j=0

T−1∑
t=p+1

T−1∑
t′=t+1

gT (t)
1

(T − t′ + 1)

(
T−1∑
m=t

∞∑
k=m−j−t+1

|ψk|

)(
T−1∑
m′=t′

∞∑
k′=m′−j−t+1

|ψk′|

)
.

Observing that

T−1∑
m=t

∞∑
k=m−j−t+1

|ψk| ≤
∞∑
k=1

k|ψ−j+k|,

T−1∑
m′=t′

∞∑
k′=m′−j−t+1

|ψk| ≤
∞∑
k=1

k|ψt′−t−j+k|,
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it follows that∣∣∣ σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=max(t,t′)+1

T−1∑
m′=t′

p−1∑
j=0

×
∞∑

k=m−j−min(t,t′)+1

∞∑
k=m′−j−min(t,t′)+1

ψkψk′E(ϵ
′
m−j−kMmin(t,t′)ϵm′−j−k′)

∣∣∣
= O

 1

NT 2

p−1∑
j=0

(
∞∑
k=1

k|ψ−j+k|

)2


+O

(
1

NT 2

p−1∑
j=0

T−1∑
t=p+1

T−1∑
t′=t+1

1

(T − t)(T − t+ 1)

1

(T − t′ + 1)

(
∞∑
k=1

k|ψ−j+k|

)(
∞∑
k=1

k|ψt′−t−j+k|

))
.

Now, we observe that

p−1∑
j=0

(
∞∑
k=1

k|ψ−j+k|

)2

≤ p

(
∞∑
k=1

k|ψ−p+1+k|

)2

= p

(
∞∑
k=0

(k + p− 1)|ψk|

)2

= O(p3),

and

p−1∑
j=0

(
∞∑
k=1

k|ψ−j+k|

)(
∞∑
k=1

k|ψt′−t−j+k|

)
≤

p−1∑
j=0

(
∞∑
k=1

k|ψ−j+k|

)2

= O(p3).

It therefore follows that∣∣∣ σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=max(t,t′)+1

T−1∑
m′=t′

p−1∑
j=0

×
∞∑

k=m−j−min(t,t′)+1

∞∑
k=m′−j−min(t,t′)+1

ψkψk′E(ϵ
′
m−j−kMmin(t,t′)ϵm′−j−k′)

∣∣∣
= O

(
p3

NT 2

)
+O

(
p3 log T

NT 2

)
= O

(
p3 log T

NT 2

)
.

For the third term, we have

σ4

N2T 2

T−1∑
t=p+1

T−1∑
t′=p+1

gT (t)gT (t
′)

T−1∑
m=t

T∑
l=t+1

T−1∑
m′=t′

T∑
l′=t′+1,l′ ̸=l

p−1∑
j=0

O((tt′)1/2) = O
( p

N2

)
.

Therefore we have that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtϵ̄t+1,T

∥∥∥∥∥ = Op

(√
p

N
+

√
p log T

N3/4
√
T

+
p3/2

√
log T√
NT

)
.
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To sum up, we have

||G2|| = Op

(√
p

NT

)
+Op

( √
p

N1/2T 3/4

)
+Op

(√
p log T

N
+

√
p

N3/4T 1/4
+

p3/2√
NT

)
+Op

(√
p

N
+

√
p log T

N3/4
√
T

+
p3/2

√
log T√
NT

)
= Op

(√
p

NT
+

√
p log T

N
+

√
p log T

N3/4
√
T

+
p3/2

√
log T√
NT

)
by T/N → 0.

Lemma 15. Suppose that Assumptions 1, 2, 3 and 4 are satisfied. If N → ∞,
T → ∞ and p→ ∞ with p2T/N → 0 and p3 log T/T → 0, then

√
NTℓ′pΓ

−1
p G2/vp →d N(0, 1).

Proof. We observe that

G2 =
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′ϵt +
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)ϵt +G22,

where

G22 = − 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′Mtϵ̄t+1,T − 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtϵt

+
1

NT

T−1∑
t=p+1

T − t

T − t+ 1
w̄t,T−1(p)

′Mtϵ̄t+1,T .

The proof of Lemma 14 shows that

∥G22∥ = Op

( √
p

√
NT 3/4

)
+Op

(√
p log T

N
+

√
p

N3/4T 1/4
+

p3/2√
NT

)
+Op

(√
p

N
+

√
p log T

N3/4
√
T

+
p3/2

√
log T√
NT

)
= Op

( √
p

√
NT 3/4

+

√
p log T

N
+

√
p

N3/4T 1/4
+

√
p log T

N3/4
√
T

+
p3/2

√
log T√
NT

)
so that

√
NT ||G22|| = op(1) if p

2/T → 0, pT (log T )2/N → 0, p2T/N → 0, p2 log T/N →
0 and p3 log T/T → 0, which are satisfied by the conditions of the lemma. It therefore
follows that∥∥∥√NTℓ′pΓ−1

p G22

∥∥∥ ≤ ∥ℓp∥1 ·
∥∥Γ−1

p

∥∥
1
·
∥∥∥√NTG22

∥∥∥ = op(1),
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by the assumption that ∥ℓp∥1 = O(1) and Assumption 2.
We consider the first term in the decomposition of G2. Lemma 4 gives

√
NTℓ′pΓ

−1
p

1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′ϵt/vp →d N(0, 1).

Next, we consider the second term in the decomposition of G2. Since wt−1(p)
′(I−

Mt)ϵt is a martingale difference sequence, we have that

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)ϵt

∥∥∥∥∥
2

=
1

N2T 2

T−1∑
t=p+1

(
T − t

T − t+ 1

)2

σ2tr (E(wt−1(p)
′(I −Mt)wt−1(p))) .

Hence, as in the proof of Lemma 10, we have that

tr (E(wt−1(p)
′(I −Mt)wt−1(p))) = O

(
Np2

t

)
.

It therefore follows that

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)ϵt

∥∥∥∥∥
2

= O

(
1

N2T 2

T−1∑
t=p+1

(
T − t

T − t+ 1

)2
Np2

t

)

= O

(
p2 log T

NT 2

)
.

By the Chebyshev inequality, it holds that∥∥∥∥∥ 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)ϵt

∥∥∥∥∥ = Op

(
p(log T )1/2

N1/2T

)
.

This result implies that∥∥∥∥∥√NTℓ′pΓ−1
p

1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)ϵt

∥∥∥∥∥
≤ ∥ℓp∥1 ·

∥∥Γ−1
p

∥∥
1
·

∥∥∥∥∥√NT 1

NT

T−1∑
t=p+1

T − t

T − t+ 1
wt−1(p)

′(I −Mt)ϵt

∥∥∥∥∥
= Op

(
p(log T )1/2

T 1/2

)
= op(1),

by by the assumption that ∥ℓp∥1 = O(1), Assumption 2 and the assumption that
p2 log T/T → 0.
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C.1 Proof of Theorem 5

Proof. We have

||α̂G(p)− α(p)|| ≤ ||(Γ̂G
p )

−1||1||G1||+ ||(Γ̂G
p )

−1||1||G2||.

Lemmas 3 and 10 give that ||(Γ̂G
p )

−1||1 = Op(1). Lemma 11 gives that ||G1|| = op(1)
when p1/2

∑∞
k=p+1 αk → 0 and ||G2|| = op(1) follows by Lemma 14.

C.2 Proof of Theorem 6

Proof. We note that

√
NT (ℓ′pα̂G(p)− ℓ′pα(p))

=
√
NTℓ′p(Γ̂

G
p )

−1G1 +
√
NTℓ′p(Γ̂

G
p )

−1G2

=
√
NTℓ′p(Γ̂

G
p )

−1G1 +
√
NTℓ′p((Γ̂

G
p )

−1 − Γ−1
p )G2 +

√
NTℓ′pΓ

−1
p G2.

Lemma 15 gives

√
NTℓ′pΓ

−1
p G2/vp →d N(0, 1).

Next, we show that

||
√
NTℓ′p(Γ̂

G
p )

−1G1|| ≤ ||ℓp||1||(Γ̂G
p )

−1||1||
√
NTG1|| = op(1),

where we have ||ℓp||1 = O(1) by the assumption, ||(Γ̂G
p )

−1||1 = Op(1) by Lemmas 3

and 10 and ||
√
NTG1|| = op(1) by Lemma 11 because

√
NTp

∑∞
k=T−1 |αk| → 0.

Lastly, we see that

||
√
NTℓ′p((Γ̂

G
p )

−1 − Γ−1
p )G2|| ≤ ||ℓp||1||(Γ̂G

p )
−1 − Γ−1

p ||1||
√
NTG2||.

We have ||ℓp||1 = ℓ′pℓp ≤ C. ||(Γ̂G
p )

−1 − (Γ̂G
p )

−1||1 = Op(p/T
1/2) by Lemmas 3 and 10.

||
√
NTG2|| = Op(p

1/2+p1/2T 1/2 log T/N1/2+p1/2(log T )1/2/N1/4+p3/2(log T )1/2/T 1/2) =
Op(p

1/2) by Lemma 14 and the condition that p2T/N → 0 and p3 log T/T → 0. There-
fore we have ||

√
NTℓ′p((Γ̂

G
p )

−1 − Γ−1
p )G2|| = Op(p

3/2/T 1/2) which is of order op(1) by
the condition p3 log T/T → 0.

D Hayakawa’s efficient IV estimator

This section presents several lemmas and the proofs of Theorem 7 and 8.
The estimation error of the Hayakawa’s IV estimator can be decomposed as

α̂(p)− α(p) = (Γ̂H
p )

−1H1 + (Γ̂H
p )

−1H2
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where

Γ̂H
p =

1

NT

T−1∑
t=p+2

ht(p)
′x∗t (p), H1 =

1

NT

T−1∑
t=p+2

ht(p)
′b∗t,p and H2 =

1

NT

T−1∑
t=p+2

ht(p)
′ϵ∗t .

Note that we can write

x∗t (p) =

√
T − t

T − t+ 1
(wt−1(p)− w̄t,T−1(p)) and ht(p) =

√
T − t

T − t+ 1
(wt−1(p)− w̄p,t−2(p)) .

Lemma 16. Suppose that Assumptions 1 and 2 are satisfied. If N → ∞, T → ∞
and p→ ∞ with p2/T → 0, then

||Γ̂H
p − Γp|| = Op

(
p√
T

)
Proof. We observe that

Γ̂H
p =

1

NT

T−1∑
t=p+2

ht(p)
′x∗t (p)

=
1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′wt−1(p)−
1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′w̄t,T−1(p)

− 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′wt−1(p) +
1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′w̄t,T−1(p).

For the first term in the decomposition, Lemma 2 gives∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′wt−1(p)− Γp

∥∥∥∥∥ = Op

(
p√
NT

+
p3/2

T

)
.

The second term is∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′w̄t,T−1(p)

∥∥∥∥∥ ≤ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
∥wt−1(p)∥ · ∥w̄t,T−1(p)∥

= Op

(
1

NT

T−1∑
t=p+2

T − t

T − t+ 1

√
Np

√
Np

1

T − t

)
= Op

(
p√
T

)
,

where the first equality follows from Lemma 1.
For the third term, we observe that∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′wt−1(p)

∥∥∥∥∥ ≤ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
∥wt−1(p)∥ · ∥w̄p,t−2(p)∥

= Op

(
1

NT

T−1∑
t=p+2

T − t

T − t+ 1

√
Np

√
Np

1

t− p

)
= Op

(
p√
T

)
,
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where the first equality is given by Lemma 1.
Lastly, again applying Lemma 1, we obtain∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′w̄t,T−1(p)

∥∥∥∥∥
≤ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
∥w̄p,t−2(p)∥ · ∥w̄t,T−1(p)∥

= Op

(
1

NT

T−1∑
t=p+2

T − t

T − t+ 1

√
Np

1

T − t

√
Np

1

t− p

)
= Op

(
p√
T

)
.

To sum up, it holds that∥∥∥Γ̂H
p − Γp

∥∥∥ = Op

(
p√
NT

+
p3/2

T
+

p√
T

)
= Op

(
p√
T

)
.

Lemma 17. Suppose that Assumption 1 is satisfied. If N → ∞, T → ∞ and p→ ∞,
then

||H1|| = Op

(
√
p

∞∑
k=p+1

|αk|

)
= op(1).

Proof. Similarly to the proof of Lemma 11, we have We have that

E ∥ht(p)∥2 = NE(tr(hit(p)hit(p)
′)) = N

p∑
k=1

E
(
(hit,k)

2) = NpE((hit,1)
2) = Op(Np),

so that ∥ht(p)∥ = Op(
√
Np) and

∥∥b∗t,p∥∥ = Op

(
√
N

∞∑
k=p+1

|αk|

)
by (17). Thus, it holds that

||H1|| =

∥∥∥∥∥ 1

NT

T−1∑
t=p+2

ht(p)
′b∗t,p

∥∥∥∥∥ ≤ 1

NT

T−1∑
t=p+2

∥∥ht(p)′b∗t,p∥∥ ≤ 1

NT

T−1∑
t=p+2

∥ht(p)∥ ·
∥∥b∗t,p∥∥

=
1

NT

T−1∑
t=p+2

Op

(√
Np
)
Op

(
√
N

∞∑
k=p+1

|αk|

)

= Op

(
√
p

∞∑
k=p+1

|αk|

)
.
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Lemma 18. Suppose that Assumptions 1 is satisfied. If N → ∞, T → ∞ and
p→ ∞ with p/T → 0, then

||H2|| = Op

(√
p

NT

)
= op(1).

Proof. We observe that

H2 =
1

NT

T−1∑
t=p+2

ht(p)
′ϵ∗t

=
1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′ϵt −
1

NT

T−1∑
t=p+2

√
T − t

T − t+ 1
ht(p)

′ϵ̄t+1,T

− 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′ϵt.

As in the proof of Lemma 14, it holds that∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′ϵt

∥∥∥∥∥ = Op

(√
p

NT

)
.

Let ḣt(p) =
√

(T − t+ 1)/(T − t)ht(p) = wt−1(p)− w̄p,t−2. Then, the second term
in the decomposition is

1

NT

T−1∑
t=p+2

T − t

T − t+ 1
ḣt(p)

′ϵ̄t+1,T =
1

NT

T−1∑
t=p+2

T∑
m=t+1

1

T − t+ 1
ḣt(p)

′ϵm.

Now, we have that

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T∑
m=t+1

1

T − t+ 1
ḣt(p)

′ϵm

∥∥∥∥∥
2

=
1

N2T 2

T−1∑
t=p+2

T−1∑
t′=p+2

1

T − t+ 1

1

T − t′ + 1

T∑
m=t+1

T∑
m′=t′+1

tr
(
E
(
ḣt(p)

′ϵmϵ
′
m′ḣt′(p)

))
=

σ2

N2T 2

T−1∑
t=p+2

T−1∑
t′=p+2

T −max(t, t′)

(T − t+ 1)(T − t′ + 1)
tr
(
E
(
ḣt(p)

′ḣt′(p)
))

since E
(
ḣt(p)

′ϵmϵ
′
m′ḣt′(p)

)
= 0 ifm ̸= m′ and E

(
ḣt(p)

′ϵmϵ
′
mḣt′(p)

)
= σ2E

(
ḣt(p)

′ḣt′(p)
)
.
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We observe that

σ2

N2T 2

T−1∑
t=p+2

T−1∑
t′=p+2

T −max(t, t′)

(T − t+ 1)(T − t′ + 1)
tr
(
E
(
ḣt(p)

′ḣt′(p)
))

≤ 2σ2

N2T 2

T−1∑
t=p+2

T−1∑
t′=t

T − t′

(T − t+ 1)(T − t′ + 1)
tr
(
E
(
ḣt(p)

′ḣt′(p)
))

=
2σ2

N2T 2

T−1∑
t=p+2

T − t

T − t+ 1
tr
(
E
(
ḣt(p)

′˜̇ht,T−1(p)
))

,

where

˜̇ht,T−1(p) =
1

T − t

T−1∑
t′=t

T − t′

T − t′ + 1
ḣt′(p).

It holds that

tr(E
(
ḣt(p)

′˜̇ht,T−1(p)
)
) ≤ N(E(||ḣi,t(p)||2))1/2(E(||˜̇hi,t,T−1(p)||2))1/2 = O

(
Np√
T − t

)
,

where E||˜̇hi,t,T−1(p)||2 = O (Np/(T − t)) by the short memory assumption in As-
sumption 1. Thus, it holds that

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T∑
m=t+1

1

T − t+ 1
ḣt(p)

′ϵm

∥∥∥∥∥
2

= O

(
1

N2T 2

T−1∑
t=p+2

T − t

T − t+ 1

Np√
T − t

)
= O

( p

NT 3/2

)
.

The Chebyshev inequality gives that∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
ḣt(p)

′ϵ̄t+1,T

∥∥∥∥∥ = Op

( √
p

√
NT 3/4

)
.

For the third term, since w̄p,t−2(p)
′ϵt is a martingale difference sequence, we observe

that

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′ϵt

∥∥∥∥∥
2

=
1

N2T 2

T−1∑
t=p+2

(
T − t

T − t+ 1

)2

σ2tr(E(w̄p,t−2(p)
′w̄p,t−2(p))).

Since tr(E(w̄p,t−2(p)
′w̄p,t−2(p))) = O(Np/(t− p)) by Lemma 1 and (T − t)2/(T − t+

1)2 < 1, we have

E

∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′ϵt

∥∥∥∥∥
2

= O

(
1

N2T 2

T−1∑
t=p+2

(
T − t

T − t+ 1

)2
Np

t− p

)
= O

(
p log T

NT 2

)
.
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Therefore, the Chebyshev inequality gives∥∥∥∥∥ 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′ϵt

∥∥∥∥∥ = Op

(√
p log T√
NT

)
.

To sum up, we have

||H2|| = Op

(√
p

NT

)
+Op

( √
p

√
NT 3/4

)
+O

(√
p log T√
NT

)
= Op

(√
p

NT

)
.

Lemma 19. Suppose that Assumptions 1 and 2 are satisfied. If N → ∞, T → ∞
and p→ ∞ with p2/T → 0, then

√
NTℓ′pΓ

−1
p H2/vp →d N(0, 1).

Proof. We observe that

H2 =
1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′ϵt +H22,

where

H22 = − 1

NT

T−1∑
t=p+2

√
T − t

T − t+ 1
ht(p)

′ϵ̄t+1,T − 1

NT

T−1∑
t=p+2

T − t

T − t+ 1
w̄p,t−2(p)

′ϵt.

First, Lemma 4 gives

√
NTℓ′pΓ

−1
p

1

NT

T−1∑
t=p+2

T − t

T − t+ 1
wt−1(p)

′ϵt/vp →d N(0, 1).

The proof of Lemma 18 shows that

∥H22∥ = Op

( √
p

√
NT 3/4

)
+O

(√
p log T√
NT

)
= Op

( √
p

√
NT 3/4

)
so that

√
NT ||H22|| = op(1) if p

2/T → 0. It therefore follows that∥∥∥√NTℓ′pΓ−1
p H22

∥∥∥ ≤ ∥ℓp∥1 ·
∥∥Γ−1

p

∥∥
1
·
∥∥∥√NTH22

∥∥∥ = op(1),

by the assumption that ∥ℓp∥1 = O(1) and Assumption 2.
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D.1 Proof of Theorem 7

Proof. We have

||α̂H(p)− α(p)|| = ||(Γ̂H
p )

−1(H1 +H2)|| ≤ ||(Γ̂H
p )

−1||1||H1||+ ||(Γ̂H
p )

−1||1||H2||.

Lemmas 3 and 16 give that ||(Γ̂H
p )

−1||1 = Op(1). Lemma 17 gives that ||H1|| = op(1)
and ||H2|| = op(1) follows by Lemma 18.

D.2 Proof of Theorem 8

Proof. We note that
√
NT (ℓ′pα̂H(p)− ℓ′pα(p))

=
√
NTℓ′p(Γ̂

H
p )

−1H1 +
√
NTℓ′p(Γ̂

H
p )

−1H2

=
√
NTℓ′p(Γ̂

H
p )

−1H1 +
√
NTℓ′p((Γ̂

H
p )

−1 − Γ−1
p )H2 +

√
NTℓ′pΓ

−1
p H2

Lemma 19 gives
√
NTℓ′pΓ

−1
p H2/vp →d N(0, 1).

Next, we consider

||
√
NTℓ′p(Γ̂

H
p )

−1H1|| ≤ ||ℓp||1||
√
NT (Γ̂H

p )
−1H1|| ≤ ||ℓp||1||(Γ̂H

p )
−1||1||

√
NTH1||.

We have ||ℓp||1 = O(1) by the assumption. ||(Γ̂H
p )

−1||1 = Op(1) by Lemmas 3 and 16.

||
√
NTH1|| = op(1) by Lemma 17 because

√
NTp

∑∞
k=p+1 |αk| → 0. Therefore, we

have ||
√
NTℓ′p(Γ̂

H
p )

−1H1|| = op(1).
Lastly, we see that

||
√
NTℓ′p((Γ̂

H
p )

−1 − Γ−1
p )H2|| ≤ ||ℓp||1||(Γ̂H

p )
−1 − Γ−1

p ||1||
√
NTH2||.

We have ||(Γ̂H
p )

−1 − Γ−1
p ||1 = Op(p/

√
T ) by Lemmas 3 and 16 and ||

√
NTH2|| =

Op(
√
p) by Lemma 18. These results imply that ||

√
NTℓ′p((Γ̂

H
p )

−1 − Γ−1
p )H2|| =

Op(p
3/2/

√
T ) which is of order op(1) if p

3/T → 0.

E Proof of Theorem 9

Proof. We present only the proof of the consistency of v̂p,F . The consistency of the
other estimators can be established analogously.

It is sufficient to show that

1

NT

N∑
i=1

T∑
t=p+1

(ỹit − x̃it(p)
′α̂F (p))

2 →p σ
2 (18)
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and ∥∥∥∥∥∥
(

1

NT

T∑
t=p+1

x̃t(p)
′x̃t(p)

)−1

− Γ−1
p

∥∥∥∥∥∥
1

→p 0. (19)

The convergence (19) holds by Lemma 5. For (18), observe that

1

NT

N∑
i=1

T∑
t=p+1

(ỹit − x̃it(p)
′α̂F (p))

2

=
1

NT

N∑
i=1

T∑
t=p+1

(x̃it(p)
′(α(p)− α̂F (p)) + b̃it,p + ϵ̃it)

2

= (α(p)− α̂F (p))
′ 1

NT

N∑
i=1

T∑
t=p+1

x̃it(p)x̃it(p)
′(α(p)− α̂F (p))

′ +
1

NT

N∑
i=1

T∑
t=p+1

b̃2it,p

+
1

NT

N∑
i=1

T∑
t=p+1

ϵ̃2it + 2
1

NT

N∑
i=1

T∑
t=p+1

b̃it,px̃it(p)
′(α(p)− α̂F (p))

+2
1

NT

N∑
i=1

T∑
t=p+1

ϵ̃itx̃it(p)
′(α(p)− α̂F (p)) + 2

1

NT

N∑
i=1

T∑
t=p+1

b̃it,pϵ̃it.

The first term converges to zero in probability by Theorem 1, Lemma 5 and Assump-
tion 2. For the second term, as in the proof of Lemma 6,

∑N
i=1

∑T
t=p+1 b̃

2
it,p/(NT ) =

Op((
∑∞

k=p+1 |αk|)2/T ) = op(1). It is easy to see that
∑N

i=1

∑T
t=p+1 ϵ̃

2
it/(NT ) →p σ

2.
Theorem 1 and Lemma 6 imply that the fourth term converges to zero in probability.
Similarly, Theorem 1 and Lemma 8 imply that the fifth term converges to zero in
probability. For the sixth term, we have

1

NT

N∑
i=1

T∑
t=p+1

b̃it,pϵ̃it =
1

NT

N∑
i=1

T∑
t=p+1

bit,pϵit −
T − p

NT
b̄′p+1,T ϵ̄p+1,T .

Since E(bit,pϵit) = 0 and var(
∑N

i=1

∑T
t=p+1 bit,pϵit/(NT )) = O(1/(NT )), we have

1

NT

N∑
i=1

T∑
t=p+1

bit,pϵit →p 0.

Moreover, we have∥∥∥∥T − p

NT
b̄′p+1,T ϵ̄p+1,T

∥∥∥∥ ≤ T − p

NT

∥∥b̄p+1,T

∥∥ · ∥ϵ̄p+1,T∥ = Op

(√
p

T

∞∑
k=p+1

|αk|

)
= op(1).

Thus, the sixth term also converges to zero in probability. Therefore, the convergence
(18) holds.
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F Proof of Theorem 10

Proof. We first show that tp(α̂(p)) →d N(0, 1) as p→ ∞. Since

tp(α̂) =

√
NT (e′pα̂(p)− e′pα(p))

v̂p
+

√
NTe′pα(p)

v̂p
,

it holds by noting that α̂(p) is asymptotically normal and that
√
NTe′pα(p) =

√
NTαp →

0 by the assumption. The rest of the proof is exactly the same as the proof of Lemma
5.2 of Ng and Perron (1995) and thus is omitted.

Additional References

Anderson, T. W. (1971). The Statistical Analysis of Time Series, John Wiley and
Sons, Inc., New York.

Davidson, J. (1994). Stochastic Limit Theory, Oxford University Press, Oxford.

Wiener, N. and Masani, P. (1958). The prediction theory of multivariate stochastic
processes, ii: The linear predictor, Acta Mathematica 99: 93–137.

87


