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1. Introduction

A lot of work has been done since Ellsberg (1961) casts doubts on the validity of

the Subjective Expected Utility (henceforth, SEU) theory axiomatized by Savage (1954).

One of the seminal works is Schmeidler (1989) that shows that the decision maker’s beliefs

are captured by a capacity and her preferences are represented by the Choquet integral

if she satisfies a set of axioms. As a related paper, Schmeidler (1986) proposes the no-

tion of comonotonic additivity and provides some characterization of comonotonic additive

operators. The notions of comonotonic independence and comonotonic additivity1 are a

key to deriving the axiomatization theorem in Schmeidler (1989). The comonotonic inde-

pendence axiom that is weaker than the independence axiom in Anscombe and Aumann

(1963) enables us to overcome Ellsberg’s paradox and to represent the decision maker’s

preferences in the abovementioned way.

As a generalization of Schmeidler (1986), Kajii, Kojima, and Ui (2007) propose

the concept of cominimum additive operator that is weaker than the concept of additive

operator but is stronger than the concept of comonotonic additive operator considered by

Schmeidler (1986),2 and provide some characterization of cominimum additive operators.

However, two problems remain to be solved. First, Kajii, Kojima, and Ui (2007) do not

provide axiomatizations of the decision maker’s preferences. From a normative point of

view, it is intriguing to shed some light on cominimum additivity, which illuminates the

meaning of cominimum additivity in decision theory. Second, since Kajii, Kojima, and Ui

(2007) analyze only a finite state space, the framework discussed in Kajii, Kojima, and Ui

(2007) is not suitable for axiomatizations of simple acts comparable to the ones introduced

by Schmeidler (1989). Moreover, analyses in an infinite state space are technically difficult.

Therefore, the analysis of Kajii, Kojima, and Ui (2007) within an infinite state space is

interesting not only from a mathematical viewpoint but also from the point of view of

decision theory. The purpose of this paper is to generalize Kajii, Kojima, and Ui (2007)

into an infinite state space, and to provide a new axiomatization of simple acts based on

the notion of E-cominimum independence within the framework of the Choquet Expected

Utility (henceforth, CEU) theory.3

Our axiomatization theorem can be also interpreted as an axiomatization theorem

of totally monotone games. Although only a subset of the set of all totally monotone

games is axiomatized, our axiomatization theorem enables us to derive Gilboa (1989) and

Eichberger and Kelsey (1999) as a corollary. Furthermore, we show that our axiomatization

1For the definitions of comonotonic independence and comonotonic additivity, see Section 3. See also
Schmeidler (1986).

2For the definitions of cominimum operators and comonotonic operators, see Section 3.
3In Section 3, we provide the definition of a collection of sets E in detail.
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theorem within CEU can be related to Multi-prior Expected Utility (or Maxmin Expected

Utility; henceforth, MEU) through the core of a capacity.4 In addition to the existence of

the core, our result clarifies how the core can be represented.

The organization of this paper is as follows. Section 2 provides motivations and

examples. Section 3 provides the notions of cominimum additivity and cominimum func-

tions. Section 4 presents the axioms and the main result of this paper. Section 5 extends

the result of Section 4. Section 6 concludes this paper. Proofs of Lemmas 1 and 2 and of

Theorem 3 are relegated to the Appendix.

2. Motivations and Examples

To provide our motivations for this paper, we explain Ellsberg’s paradox, as pointed

out by Ellsberg (1961). There are 90 balls in an urn. You are supposed to know that 30

balls are red and that the other 60 balls are blue or yellow. You have no additional

information. You draw one ball from the urn. Suppose the following lotteries:

f1: $100 if the ball is red, and $0 if otherwise.

f2: $100 if the ball is blue, and $0 if otherwise.

f3: $100 if the ball is red or yellow, and $0 if otherwise.

f4: $100 if the ball is blue or yellow, and $0 if otherwise.

As pointed out by Ellsberg (1961), most people tend to prefer f1 to f2 and prefer

f4 to f3.

Eichberger and Kelsey (1999) provide an axiomatic foundation for a rational de-

cision maker whose preferences are represented by Choquet integrals and whose beliefs

are E-capacities.5 Their representation is called the E-capacity expected utility. To ex-

plain Eichberger and Kelsey’s (1999) model, let Ω = {R, B, Y } be the state space and

let {{R}, {B,Y }} be a partition of Ω, where R, B, and Y denote the colors of the red,

blue, and yellow balls, respectively. Eichberger and Kelsey (1999) call these events—{R}
and {B,Y }—unambiguous events since their probabilities are known as p({R}) = 1/3

and p({B,Y }) = 2/3, but the events {B}, {Y }, {R,B}, and {R,Y } are ambiguous events

since their probabilities are not known.6 The E-capacity expected utility for this partition

is as follows: for α ∈ (0, 1),

J(f) = α

(
1
3
f(R) +

1
3
f(B) +

1
3
f(Y )

)

4In Section 5, we define the core of a capacity.
5In Section 5, we explain Eichberger and Kelsey’s (1999) representation in detail. For the definition of

E-capacities, see footnote 15.
6See Epstein (1999), Zhang (1999), or Asano (2006) that use a λ-system for a collection of unambiguous

events.
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+ (1 − α)
(

1
3

min
ω∈{R}

f(ω) +
2
3

min
ω∈{B,Y }

f(ω)
)

.

This representation is consistent with the behaviors presented by Ellsberg (1961).

The E-capacity expected utility by Eichberger and Kelsey (1999) can capture de-

cision makers’ preferences when they are facing ambiguous events. However, it is plausible

to analyze more complicated collections of events than partitions. For example, suppose

that in an urn, there are 120 balls with six colors, white (W), blue (B), red (R), yellow

(Y), green (G), and pink (P). You are supposed to know that 40 balls are either white or

blue, 40 balls are either red or yellow, 40 balls are either yellow or green, and 40 balls are

either green or pink. Suppose the following lotteries:

g1: $100 if the ball is white or blue, and $0 if otherwise.

g2: $100 if the ball is red or green, and $0 if otherwise.

Most people are expected to prefer g1 to g2 since event {W,B} is unambigu-

ous while event {R,G} is ambiguous. Now, consider the following lottery h: $100 if

the ball is yellow, and $0 if otherwise. Next, define the following compound lotteries:

g3 = (1/2)g1 + (1/2)h and g4 = (1/2)g2 + (1/2)h. Most people are expected to pre-

fer g4 to g3; this is because there is only one unambiguous event—{W,B}—on which

g3 takes positive values, and there are two unambiguous events—{R,Y } and {Y,G}—
on which g4 takes positive values. In this case, the collection of unambiguous events is

{{W,B}, {R,Y }, {Y,G}, {G,P}}, which is not a partition of the state space, {W,B,R, Y,

G,P}. However, we can express these preferences using the following representation: for

α ∈ (0, 1),

J(f) = α

(
1
6
f(W ) +

1
6
f(B) +

1
6
f(R) +

1
6
f(Y ) +

1
6
f(G) +

1
6
f(P )

)

+ (1 − α)
(

1
4

min
ω∈{W,B}

f(ω) +
1
4

min
ω∈{R,Y }

f(ω) +
1
4

min
ω∈{Y,G}

f(ω) +
1
4

min
ω∈{G,P}

f(ω)
)

.

The example mentioned above can be fully explained if we provide an axiomatic

foundation with representations such as∑
ω∈Ω

βωf(ω) +
∑
T∈E

βT min
ω∈T

f(ω), (1)

where Ω is a state space, E is a collection of events of Ω, T is an event of Ω, βω and βT

are constants, and f : Ω → R is a function. By obtaining such a representation as (1),

our representation theorem in this paper derives Gilboa (1989), Eichberger and Kelsey

(1999), and Rohde (2010) as a corollary. In a multiperiod decision model, Gilboa (1989)

axiomatizes the following:
t∑

i=1

pixi +
t∑

i=2

δi|xi − xi−1|,
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where p1, . . . , pt are positive constants and δ2, . . . , δt are negative constants, and xi denotes

the income for time i = 1, 2, . . . , t. By letting Ω = {1, 2, . . . , t} denote a set of time periods

and letting E = {{1,2}, {2, 3}, · · · , {t−1, t}} denote the collection of adjacent time periods,

Gilboa’s (1989) representation can be rewritten as

t∑
i=1

βixi +
t∑

i=2

β{i−1,i} min{xi−1, xi},

where βi = pi +δi for i = 1, n, βi = pi +δi +δi+1 for i ∈ {2, . . . , n−1}, and β{i−1,i} = −2δi

for i ∈ {2, . . . , n}.7 Rohde (2010) provides a preference foundation for Fehr and Schmidt

(1999) that introduce a social utility function for individuals capturing concerns about

fairness in the sense of inequality aversion. Rohde (2010) axiomatizes the following:

x0 − α

n∑
i=1

max{xi − x0, 0} − β

n∑
i=1

max{x0 − xi, 0},

where α and β are positive constants, and xi denotes individual i’s payoff for i = 0, 1, . . . , n.

By letting Ω = {0, 1, . . . , n} denote a set of individuals and letting E = {{0,1}, {0, 2}, {0, 3},
· · · , {0, n}} denote the collection of individuals, Rohde’s (2010) representation can be

rewritten as

x0 − nβx0 −
n∑

k=1

αxk +
n∑

k=1

(α + β)min{xk, x0}.

3. Choquet Integrals and Cominimum Additive Operators

Let Ω be a nonempty finite or infinite set, and let Σ denote a nonempty algebra

of subsets of Ω. A usual interpretation is that a generic element ω ∈ Ω denotes a state of

the world and that a generic element E ∈ Σ denotes an event. Let RΩ = {x|x : Ω → R}
denote the set of all real valued functions on Ω, and let ΦΣ be the set of functions from Ω

to R, which are constant on each element in some finite measurable partition of Ω; that

is, the set of all finite step functions (simple functions) from Ω to R. Let 1A ∈ RΩ be the

indicator function of an event A ∈ Σ. Let I denote an operator from ΦΣ to R. Let F be the

collection of all nonempty subsets of Ω. Let Fk be the collection of subsets with k elements.

For ease of notation, we write minE x = minω∈E x(ω), argminEx = argminω∈E x(ω),

maxE x = maxω∈E x(ω), and argmaxEx = argmaxω∈E x(ω) for E ∈ F and x ∈ RΩ.

A set function v : 2Ω → R with v(∅) = 0 is called a game or a non-additive

signed measure; further, the set function is monotone if E ⊆ F implies v(E) ≤ v(F )

for all E, F ∈ 2Ω, finitely additive if v(E ∪ F ) = v(E) + v(F ) for all E, F ∈ 2Ω with

7See the proof of Proposition 3 in Kajii, Kojima, and Ui (2007).



5

E ∩ F = ∅, convex if v(E ∪ F ) + v(E ∩ F ) ≥ v(E) + v(F ) for all E, F ∈ 2Ω, normalized

if v(Ω) = 1, and a non-additive measure if it is monotone. A normalized non-additive

measure is called a capacity. Furthermore, v is a finitely additive measure if it is monotone

and finitely additive, and a normalized finitely additive measure is called a finitely additive

probability measure.

For x ∈ RΩ and a game v, the Choquet integral of x is defined as
∫
Ω xdv =

∫ ∞
0 v(x ≥

α)dα +
∫ 0
−∞(v(x ≥ α) − 1)dα, where v(x ≥ α) = v({ω ∈ Ω |x(ω) ≥ α}). Two functions

x, y ∈ RΩ are comonotonic if (x(ω)− x(ω′))(y(ω)− y(ω′)) ≥ 0 for all ω, ω′ ∈ Ω. It can be

shown that these two functions are comonotonic if and only if argminE x∩ argminE y �= ∅
for all E ∈ F . Note that for x, y ∈ RΩ, if argminE x ∩ argminE y �= ∅, then minE(x +

y) = minE x + minE y. It can be proved that for all comonotonic functions x, y ∈ RΩ,∫
(x+y)dv =

∫
xdv+

∫
ydv.8 This is called a comonotonic additivity of Choquet integrals.

Kajii, Kojima, and Ui (2007) extend the notion of comonotonic additivity by replacing F
with a collection of events E ⊆ F where Ω is a finite set. Kajii, Kojima, and Ui (2007)

propose the notion of E-cominimum functions, which is stronger than that of comonotonic

functions. Let E ⊆ F be a collection of events. Two functions x, y ∈ RΩ are said to be

E-cominimum if argminE x ∩ argminE y �= ∅ for all E ∈ E .

Based on the notion of E-cominimum functions, Kajii, Kojima, and Ui (2007)

consider the following class of weak additivity concepts for an operator I : RΩ → R that

includes additivity and comonotonic additivity as extreme cases. An operator I : RΩ →
R is E-cominimum additive if I(x + y) = I(x) + I(y) for any E-cominimum functions

x, y ∈ RΩ. If E = F , then a pair of two functions x and y are comonotonic if and

only if they are E-cominimum. Therefore, if E = F , then E-cominimum additivity is

equivalent to comonotonic additivity. An operator I : RΩ → R is positively homogeneous

of degree one (henceforth, homogeneous) if I(αx) = αI(x) for any α > 0 and any x ∈ RΩ.

Kajii, Kojima, and Ui (2007) show that an operator I : RΩ → R is homogeneous and

E-cominimum additive for some E ⊆ F if and only if I(x) =
∫

xdv for all x ∈ RΩ where

v ∈ RF is defined by the rule v(E) = I(1E). Therefore, a homogeneous E-cominimum

additive operator is associated with a game v. Then, the following definition is in order.

Definition 1. A game v ∈ RF is E-cominimum additive if
∫

(x + y)dv =
∫

xdv +
∫

ydv

whenever x and y are E-cominimum functions.

Let E ⊆ F be a collection of events. Kajii, Kojima, and Ui (2007) introduce the

notion of E-completeness for their characterization theorem (see Theorem 4 in Appendix

A).

8For example, see Schmeidler (1986).
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Definition 2. Let E ⊆ F be a collection of events. An event T ∈ F is E-complete if, for

any two distinct points ω1 and ω2 in T , there exists a set E ∈ E such that {ω1, ω2} ⊆
E ⊆ T . The collection of all E-complete events is called the E-complete collection and is

denoted by Υ(E). Moreover, E is said to be complete if all E-complete subsets belong to

E , that is, E = Υ(E)

Note that a singleton set, F1, is E-complete, and so is any E ∈ E .9 Moreover,

if E is complete, then E contains all singleton sets automatically. The completeness is a

technical condition. However, expanding a collection of events E into larger ones enables us

to obtain important representation theorems in the literature, for example, Gilboa (1989),

Eichberger and Kelsey (1999), and Rohde (2010). This is one reason why we introduce

the notion of completeness.

4. Main Result

In this section, we provide the main result of this paper. Let X be the nonempty

set of all deterministic outcomes, and Y be the set of all distributions over X with finite

supports, that is, Y = {y : X → [0, 1] | y(x) �= 0 for finitely many x ∈ X and
∑

x∈X y(x) =

1}. We call an element of Y a lottery. For notational simplicity, we identify x ∈ X with

the Dirac measure δx ∈ Y : δx is the probability measure that assigns probability one to

{x}. The set of all Σ-measurable finite step functions from Ω to Y is denoted by L0, and

elements of L0 are called simple lottery acts or acts. The set of all constant functions in

L0 is denoted by Lc, and elements of Lc are called constant acts. For all f, g ∈ L0 and

λ ∈ [0, 1], the compound lottery is defined by (λf + (1 − λ)g)(ω) ≡ λf(ω) + (1 − λ)g(ω)

for all ω ∈ Ω. We assume that the decision maker’s preferences are captured by a binary

relation 
 on L0.10 A binary relation 
 on Y is defined by restricting 
 on Lc, and it is

denoted by the same symbol 
. That is, for all y, z ∈ Y , y 
 z if and only if yΩ 
 zΩ

where yΩ and zΩ denote constant functions on Ω. The following definition provides the

comonotonicity of acts with respect to the binary relation.

Definition 3. For two acts f, g ∈ L0, f and g are said to be comonotonic if for all

ω, ω′ ∈ Ω, f(ω) 
 f(ω′) ⇔ g(ω) 
 g(ω′).11

Schmeidler (1989) axiomatizes the CEU within the framework of Anscombe and

Aumann (1963).
9In Kajii, Kojima, and Ui (2007), the term “complete” is adopted from an analogy to a complete graph.

For T ∈ F , let us consider an undirected graph with a vertex set T where {ω, ω′} ⊆ T is an edge if there
exists E ∈ E such that {ω, ω′} ⊆ E ⊆ T . Then, this is a complete graph if and only if T is E-complete.
See Kajii, Kojima, and Ui (2007).

10The asymmetric (�) and symmetric (∼) parts of � are defined as usual. For details, see Kreps (1988).
11Equivalently, for two acts f, g ∈ L0, f and g are said to be comonotonic if there are no ω and ω′ such

that f(ω) � f(ω′) and g(ω′) � g(ω). See Schmeidler (1989).
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Axiom 1 (Weak Order). (a) For all f, g ∈ L0, f 
 g or g 
 f .

(b) For all f, g, h ∈ L0, if f 
 g and g 
 h, then f 
 h.12

Axiom 2 (Comonotonic Independence). For every pairwise comonotonic f, g, h ∈
L0 and all α ∈ (0, 1), f 
 g implies αf + (1 − α)h 
 αg + (1 − α)h.

Axiom 3 (Continuity). For all f, g, h in L0, if f 
 g and g 
 h, then there exist α and

β ∈ (0, 1) such that αf + (1 − α)h 
 g and g 
 βf + (1 − β)h.

Axiom 4 (Monotonicity). For all f, g ∈ L0, if f(ω) 
 g(ω) on Ω, then f 
 g.

Axiom 5 (Nondegeneracy). Not for all f, g ∈ L0, f 
 g.

Under the above axioms, Schmeidler (1989) proves the following theorem.

Theorem 1. (Schmeidler (1989)) A binary relation 
 defined on L0 satisfies A1, A2,

A3, A4, and A5 if and only if there exist a unique capacity v on Σ and an affine real

valued function u on Y such that for all f and g in L0,

f 
 g ⇔
∫

Ω
u(f(ω))dv(ω) ≥

∫
Ω

u(g(ω))dv(ω).

We provide our representation theorem within the framework of Anscombe and

Aumann (1963). Our axioms are common, except for Axiom 6. Our new axiom (Axiom 6)

requires that independence should hold true for every pairwise E-cominimum act defined

as follows.

Definition 4. Let E = {E1, E2, . . . , En} ⊆ F be a collection of events. Two acts f, g ∈ L0

are said to be E-cominimum if {ω ∈ Ei | f(ω′) 
 f(ω) for all ω′ ∈ Ei} ∩ {ω ∈ Ei | g(ω′) 

g(ω) for all ω′ ∈ Ei} �= ∅ for all i = 1, . . . , n.

Note that for every Ei ∈ E , there exists an ω ∈ Ei such that f(ω′) 
 f(ω) for all

ω′ ∈ Ei since f is a simple act.

Axiom 6 (E-Cominimum Independence). For every pairwise E-cominimum f, g, h ∈
L0 and α ∈ (0, 1), f 
 g implies αf + (1 − α)h 
 αg + (1 − α)h.

Some remarks are in order here. First, as we explain above, the notion of E-

cominimum acts is stronger than that of comonotonic acts, and the former is equivalent

to the latter if E = F . Axiom 2 (Comonotonic Independence) states that if two acts never

disagree with the ranking of any two states, then independence holds for the two acts.
12A binary relation � is a weak order if and only if � is asymmetric and negatively transitive, whereas

a binary relation � is asymmetric if for all f, g ∈ L0, f � g ⇒ g � f and it is negatively transitive if for
all f, g, h ∈ L0, f � g and g � h ⇒ f � h.
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On the other hand, Axiom 6 (E-Cominimum Independence) states that if two acts assign

the worst ranking to the same state, then independence holds for the two acts. Second,

E-cominimum independence states that independence should hold true for every pairwise

E-cominimum act. Therefore, it can be easily checked that Axiom 6 implies Axiom 2.

Indeed, assume Axiom 6. Moreover, suppose that f, g, h are pairwise comonotonic. If

f, g, h are pairwise comonotonic, then they are pairwise E-cominimum. Therefore, f 
 g

implies αf + (1 − α)h 
 αg + (1 − α)h by Axiom 6. Thus, Axiom 2 holds.

Thus, now we are in a position to present the main result of this paper.

Theorem 2. Let E = {E1, E2, . . . , En} ⊆ F with |Ei| ≥ 2 for i = 1, . . . , n be a collection

of events, and assume that E ∪F1 is complete. A binary relation 
 defined on L0 satisfies

A1, A3, A4, A5, and A6 if and only if there exist a unique capacity v on (Ω,Σ), a

unique finitely additive measure μ on (Ω,Σ), an affine function u and a set of coefficients

ε1, ε2, . . . , εn such that

J(f) =
∫

Ω
u(f(ω))dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(f(ω)) (2)

is the CEU with respect to capacity v satisfying f 
 g ⇔ J(f) ≥ J(g).

Some comments are in order. First, collection E is exogenously given and the

completeness of E is assumed. Second, if Axiom 6 is replaced with Axiom 2, or if we

set E = F , then Schmeidler’s (1989) representation theorem can be obtained. Third, by

letting E = {{W,B}, {R,Y }, {Y,G}, {Y, P}} for state space Ω = {W,B,R, Y,G,P}, the

example mentioned in Section 2 can be explained. Moreover, by letting E be a partition of

Ω = {1, 2, . . . , n}, letting E = {{1,2}, {2, 3}, · · · , {t−1, t}} of Ω = {1, 2, . . . , t}, and letting

E = {{0,1}, {0, 2}, {0, 3}, · · · , {0, n}} of Ω = {0, 1, . . . , n}, Eichberger and Kelsey (1999),

Gilboa (1989), and Rohde (2010) follow from our results in this paper, respectively.13

Finally, to prove this theorem within the framework of simple acts, we must generalize

Kajii, Kojima, and Ui (2007) that analyze the case of a finite state space.

To prove our result, the following two lemmas need to be shown.

Lemma 1. Suppose that I : RΩ → R is an operator such that I(λ1Ω) = λ. For any

pairwise E-cominimum functions, a, b, c ∈ ΦΣ, and any α ∈ (0, 1), if I(a) ≥ I(b) implies

I(αa + (1 − α)c) ≥ I(αb + (1 − α)c), then I is E-cominimum additive.

Proof. See the Appendix.

As mentioned above, the following lemma is a generalization of Kajii, Kojima, and

Ui (2007) into the case of an infinite state space Ω.
13To be precise, the notion of being simple-complete should be introduced. See Section 5 (Definition 5

and Theorem 3) for details.
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Lemma 2. Let E = {E1, E2, . . . , En} ⊆ F with |Ei| ≥ 2 for i = 1, . . . , n be a collection

of events, and assume that E ∪ F1 is complete. Let I : ΦΣ → R be the Choquet integral

with respect to a capacity v on (Ω,Σ). Then, the following two conditions are equivalent:

(i) I is E-cominimum additive.

(ii) There exist a finitely additive measure μ and a set of coefficients ε1, ε2, . . . , εn such

that for every a ∈ ΦΣ,

I(a) =
∫

Ω
a(ω)dμ(ω) +

n∑
i=1

εi min
ω∈Ei

a(ω). (3)

Note that argminEia(ω) �= ∅ for every Ei since a(ω) is a finite step function.

Proof. (ii) ⇒ (i): Suppose that a, b ∈ ΦΣ are E-cominimum. Then, for every Ei ∈ E ,

minω∈Ei(a(ω)+b(ω)) = minω∈Ei a(ω)+minω∈Ei a(ω) since argminω∈Eia(ω)∩argminω∈Eia(ω)

�= ∅. Thus, it follows that

I(a + b)

=
∫

Ω
(a(ω) + b(ω))dμ(ω) +

n∑
i=1

εi min
ω∈Ei

(a(ω) + b(ω))

=
∫

Ω
a(ω)dμ(ω) +

∫
Ω

b(ω)dμ(ω) +
n∑

i=1

εi min
ω∈Ei

a(ω) +
n∑

i=1

εi min
ω∈Ei

b(ω)

= I(a) + I(b),

which shows that I is E-cominimum additive.

(i) ⇒ (ii): Only an outline of the proof is provided; the complete proof is provided in

the Appendix. Let Ω be an arbitrary infinite state space. Let E = {E1, E2, . . . , En} with

|Ei| ≥ 2 for i = 1, . . . , n, and assume that E ∪ F1 is complete. Let P be a partition of Ω.

Moreover, let ΩP, E be the partition generated by P and E . Choose one element arbitrarily

from each set in ΩP, E . Denote by Ω∗
P, E the finite set of these elements. Since we assume

that E ∪F1 is complete, we can adopt Kajii, Kojima, and Ui’s (2007) result that is proved

in the framework of a finite state space. Then, expression (3) is obtained with respect

to each partition P. In order to complete the proof, we need to show that (3) does not

depend on the choice of partitions.

Proof of Theorem 2. (if part) A1, A3, A4, and A5 hold by Theorem 1 since J(f) is the

CEU with respect to capacity v. We prove only Axioms 6. Denote J(f) =
∫
Ω u(f(ω))dμ(ω)+∑n

i=1 εi minω∈Ei u(f(ω)). Suppose that f, g, h ∈ L0 are pairwise E-cominimum, and that

f 
 g, that is, J(f) ≥ J(g). Note that minω∈Ei u(αf(ω)+(1−α)h(ω)) = minω∈Ei{u(αf(ω))+
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u((1 − α)h(ω)))} = minω∈Ei u(αf(ω)) + minω∈Ei u((1 − α)h(ω))) since f and h are E-

cominimum and u is an affine function. Then, it follows that

J(αf + (1 − α)h) − J(αg + (1 − α)h)

=
∫

Ω
u(αf(ω) + (1 − α)h(ω))dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(αf(ω) + (1 − α)h(ω))

−
∫

Ω
u(αg(ω) + (1 − α)h(ω))dμ(ω) −

n∑
i=1

εi min
ω∈Ei

u(αg(ω) + (1 − α)h(ω))

=
∫

Ω
u(αf(ω))dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(αf(ω)) −
∫

Ω
u(αg(ω))dμ(ω) −

n∑
i=1

εi min
ω∈Ω

u(αg(ω))

= α(J(f) − J(g)) ≥ 0.

Thus, Axiom 6 holds.

(only if part) Note that Axiom 6 implies Axiom 2. Therefore, we can apply

Theorem 1. By the proof of Theorem 1, we can assume the following properties:

(1) There exist y∗, y∗ ∈ Lc such that y∗ � y∗ and there exists an affine function u : Lc → R

that represents the decision maker’s preference on Lc such that u(y∗) = 1 and u(y∗) = −1.

(2) There exists a function J : L0 → R that represents the decision maker’s preference on

L0 and coincides with u on Lc.

(3) We can construct an operator I : B0(K) → R.

Let K ≡ u(Y ). By property (1), K is a convex subset of the real line includ-

ing interval [−1, 1]. Let B0(K) denote the set of all Σ-measurable, K-valued finite step

functions on Ω, and define U : L0 → B0(K) as follows: for f ∈ L0,

(∀ω ∈ Ω) U(f)(ω) = u(f(ω)).

Then, function U is onto. If U(f) = U(g), then f ∼ g by Axiom 4, which implies that

J(f) = J(g). Furthermore, (∀α ∈ [0, 1])(∀f, g ∈ L0) U(αf + (1 − α)g) = αU(f) + (1 −
α)U(g). Now, we define an operator I : B0(K) → R by I(a) = J(f) such that U(f) = a

for all a ∈ B0(K). Then, I is well-defined, and I is the Choquet integral with respect to

capacity v(T ) = I(1T ).

Now, we prove the following property:

(4) I is E-cominimum additive.

To prove this, it suffices to show the condition in Lemma 1. Suppose that f, g, h

are pairwise E-cominimum, and let a = U(f), b = U(g), c = U(h). Then, a, b, c are

pairwise E-cominimum functions on B0(K). Now, suppose that I(a) ≥ I(b). Then, f 
 g

since J(f) ≥ J(g). Thus, J(αf + (1 − α)h) ≥ J(αg + (1 − α)h) by Axiom 6. Note that

U(αf + (1−α)h) = αa + (1−α)c and U(αg + (1−α)h) = αb + (1−α)c by the affinity of
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u. Therefore, I(αa+(1−α)c) ≥ I(αb+(1−α)c). Hence, it holds that I(a) ≥ I(b) implies

I(αa + (1 − α)c) ≥ I(αb + (1 − α)c). By Lemma 1, it is shown that I is E-cominimum

additive. Therefore, it follows from Lemma 2 that I can be represented by the expression

(3) in Lemma 2. By replacing a with u(f) and I(a) with J(f) the desired representation

is obtained.

5. Uncertainty Aversion and Totally Monotone Games

In this section, based on the following axiom (Axiom 7), that is, uncertainty aver-

sion, proposed by Gilboa and Schmeidler (1989), we provide an axiomatization theorem

of CEU in which all coefficients ε1, . . . , εn take non-negative values. This enables us to

represent the decision maker’s preferences by the core of a capacity that is mentioned

below in detail. For that purpose, in addition to Axiom 7, the following restriction on a

collection E is needed.

Definition 5. A collection E = {E1, E2, . . . , En} ⊆ F with |Ei| ≥ 2 for i = 1, . . . , n is

said to be simple-complete if E satisfies the following two conditions: (i) E∪F1 is complete,

(ii) for every Ei ∈ E , there exist two distinct elements ω1, ω2 ∈ Ei such that there is no

Ej ∈ E with {ω1, ω2} ⊆ Ej � Ei.

To provide an axiomatic foundation for a rational decision maker whose beliefs are

captured by a totally monotone game, we have to impose the simple-completeness on the

collection E that is a stronger condition than completeness. However, as is clear from the

following examples, the notion of being simple-complete is not so restrictive.

Example 1. Let E = {{1,2}, {1, 3}, {1, 2, 3}}. Then, this collection is simple-complete.

Example 2. Any partition of Ω is simple-complete, and so is {{1,2}, {2, 3}, {3, 4}, . . . , {n−
1, n}}. More generally, for E = {E1, E2, . . . , En} with |Ei| ≥ 2 for i = 1, . . . , n, if every

E, F ∈ E with E �= F satisfy both E �⊆ F and F �⊆ E, then E is simple-complete.

The following axiom is one of the key axioms to derive our representation theorem.

This axiom was first proposed by Gilboa and Schmeidler (1989).

Axiom 7 (Uncertainty Aversion). For all f, g ∈ L0 and all α ∈ (0, 1), f ∼ g implies

αf + (1 − α)g 
 f .

Gilboa and Schmeidler (1989) show that a binary relation 
 on L0 satisfies A1,

A3, A4, A5, and A7, and Certainty-Independence14 if and only if there exist a closed

14Certainty-Independence states that for all f, g ∈ L0, all h ∈ Lc, and all α ∈ [0, 1], f � g ⇔ αf + (1 −
α)h � αg + (1 − α)h.
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and convex set of probability measures on (Ω,Σ), P ⊆ M, and a non-constant function

u : X → R such that for all f, g ∈ L0, f 
 g if and only if minp∈P{
∫
Ω u(f(ω))dp(ω)} ≥

minp∈P{
∫
Ω u(g(ω))dp(ω)}, where M is the set of all probability measures on (Ω,Σ). Fur-

thermore, P is unique and u is unique up to positive linear transformations. This repre-

sentation is called MEU.

The convexity of a game v serves as the bridge between CEU and MEU. Schmeidler

(1986) shows that a game v is convex if and only if (i) core(v) �= ∅ and (ii) for all bounded,

real-valued, Σ-measurable functions on Ω,
∫
Ω f(ω)dv(ω) = min

{∫
Ω f(ω)dp(ω) | p ∈ core(v)

}
.

Using the above, Schmeidler (1989) shows that if a game v is convex, then the CEU with

respect to v is equal to the MEU with the core(v) as the decision maker’s set of priors.

Note that the core of v is defined by

core(v) ≡ {p | p(Ω) = v(Ω), p is a probability measure on Σ and p(A) ≥ v(A) for all A ∈ Σ} .

Schmeidler (1989) also shows that A7 is equivalent to the convexity of a capacity.

Then, our result in this section is in order.

Theorem 3. Let E = {E1, E2, . . . , En} ⊆ F with |Ei| ≥ 2 for i = 1, . . . , n be a collection

of events, and assume that E is simple-complete. A binary relation 
 defined on L0

satisfies A1, A3, A4, A5, A6, and A7 if and only if there exist a unique capacity v on

(Ω,Σ), a unique finitely additive measure μ on (Ω,Σ), an affine function u : X → R, and

a set of coefficients ε1, ε2, . . . , εn, such that for all f and g in L0,

J(f) =
∫

Ω
u(f(ω))dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(f(ω)) (4)

is the CEU with respect to capacity v satisfying f 
 g ⇔ J(f) ≥ J(g) where coefficients

ε1, ε2, . . . , εn are all non-negative.

Note that all coefficients ε1, ε2, . . . , εn take non-negative values in Theorem 3,

which can be accomplished by assuming Axiom 7 together with E being simple-complete.

This representation theorem provides an axiomatization of a totally monotone game v

that can be written as v =
∑

T βT uT where all βT are non-negative. Collection {βT }T∈F
is called the Möbius inversion of v. For the definitions of totally monotone games and

Möbius inversions, see Appendix A. It should be emphasized that not all totally monotone

games are axiomatized by Theorem 3 but only a subset of the set of all totally monotone

games is. This restrictive result comes from the fact that E must be simple-complete.

The relation between capacity v’s convexity and collection E ’s simple-completeness

should be mentioned. First, the convexity of v (equivalently, Axiom 7) and the simple-

completeness of E imply that capacity v is a totally monotone game written by v =
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∑
T βT uT where all coefficients βT are non-negative, which also implies that all coefficients

εi for all i = 1, . . . , n are non-negative. If the non-negativity of the Möbius inversions, βT ,

holds true, then the additivity of the core follows from Strassen (1964), as we mention be-

low. This property does not follow only from the convexity of capacities. Some additional

condition—the simple-completeness of E—should be imposed. If the simple-completeness

of E together with the above axioms are assumed, then the decision maker’s beliefs are

captured by a totally monotone game v =
∑

T βT uT where all coefficients βT are non-

negative, which implies that core(v) =
∑

T βT core(uT ), as shown by Strassen (1964). This

additivity of the core enables us not only to represent the decision maker’s preferences by

the min-operator but also to represent the decision maker’s beliefs by the core explicitly.

For that purpose, Axioms 1, 3, 4, 5, 6, and 7 together with E being simple-complete should

be imposed.

Proof. (if part) It suffices to prove A7. Assume that f ∼ g. Then,

∫
Ω

u(f)dμ(ω) +
n∑

i=1

εi min
ω∈Ei

u(f(ω)) =
∫

Ω
u(g)dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(g(ω)).

It follows that for any α ∈ (0, 1),

∫
Ω

u(αf + (1 − α)g)dμ(ω) +
n∑

i=1

εi min
ω∈Ei

u(αf + (1 − α)g)

≥ α

∫
Ω

u(f)dμ + (1 − α)
∫

Ω
u(g)dμ(ω) + α

n∑
i=1

εi min
ω∈Ei

u(f) + (1 − α)
n∑

i=1

εi min
ω∈Ei

u(g)

=
∫

Ω
u(f)dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(f(ω)).

The inequity holds since εi ≥ 0 for all i = 1, . . . , n, and u is affine. Thus, it holds that

αf + (1 − α)g 
 f .

(only if part) See the Appendix.

Finally, as a corollary of Theorem 3, we provide a generalization of Eichberger and

Kelsey (1999) that axiomatize the E-capacity expected utility. The E-capacity expected

utility states that if a set of axioms are satisfied, then the decision maker’s beliefs are

captured by an E-capacity v and her preferences are represented by the Choquet integral

with respect to capacity v.15 The ε-contamination is included as a special case as the

15Let {E1, . . . , En} be a partition of Ω. Let E = {E1, . . . , En}. A capacity v ∈ RF is called an E-
capacity if there exist a finitely additive probability measure π, a real number ε ∈ [0, 1], and a finitely
additive probability measure ρ on E such that v = (1 − ε)π + ε

∑n
i=1 ρ(Ei)uEi , where uEi denotes the

unanimity game on Ei for each i.



14

E-capacity expected utility.16 For a state space Ω and a collection of subsets of Ω, E ,

while Eichberger and Kelsey (1999) assume that Ω is finite and E is a partition of Ω, this

paper assumes that Ω is infinite and E is simple-complete. As pointed out by Example

2, any partition of Ω is simple-complete. Therefore, our framework in this paper is more

general than that of Eichberger and Kelsey (1999).

Let Δ(Ω) be the set of all finitely additive probability measures and let ΠE be

the set of finitely additive probability measures that assign probability measure one to an

event E ∈ F : ΠE ≡ {p ∈ Δ(Ω) | p(E) = 1}.

Corollary 1. Let E = {E1, E2, . . . , En} ⊆ F with |Ei| ≥ 2 for i = 1, . . . , n be a collection

of events, and assume that E is simple-complete. A binary relation 
 defined on L0 satisfies

A1, A3, A4, A5, A6, and A7 if and only if there exist a unique finitely additive probability

measure π, numbers ρ1, ρ2, . . . , ρn ∈ [0, 1] with
∑n

i=1 ρi ≤ 1, and an affine function u such

that

f 
 g ⇔ H(f) ≥ H(g),

where H(f) = min{∫ u(f)dq | q = (1 − ∑n
i=1 ρi)π +

∑n
i=1 ρipi, pi ∈ ΠEi}.

This corollary implies that our axiomatization theorem within CEU can be related

to MEU through the core of a capacity. In addition to the existence of the core, our

corollary clarifies how the core can be represented. That is, for capacity v derived in

Theorem 3, the core of v can be written as follows:

core(v) =

{
q ∈ Δ(Ω)

∣∣∣∣ q = (1 −
n∑

i=1

ρi)π +
n∑

i=1

ρipi, pi ∈ ΠEi

}
.

This task is accomplished by assuming Axiom 7 together with E being simple-complete.

As in Schmeidler (1989), Axiom 7 only guarantees the non-emptyness of the core. We

prove this corollary directly, but it can also be shown by adopting Strassen (1964).

Proof. It suffices to show that J(f) ≥ J(g) ⇔ H(f) ≥ H(g). By Theorem 3, there exist a

unique finitely additive measure μ on (Ω,Σ), an affine function u, and a set of non-negative

coefficients ε1, ε2, . . . , εn, such that

f 
 g ⇔ J(f) ≥ J(g)

⇔
∫

Ω
u(f(ω))dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(f(ω)) ≥
∫

Ω
u(g(ω))dμ(ω) +

n∑
i=1

εi min
ω∈Ei

u(g(ω)).

16Let M(Ω) be the set of all probability measures and let ε ∈ [0, 1]. Then, the set of probability measures
defined by {(1 − ε)p + εq | q ∈ M(Ω)} is called the ε-contamination of p, where p is the true probability
measure. Our paper derives a set of coefficients ε0, ε1, . . . , εn endogenously.
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Let us define ζ ≡ μ(Ω) +
∑n

i=1 εi, and define π ≡ μ/μ(Ω). Then, π is a finitely additive

probability measure on (Ω,Σ). Thus,

J(f) ≥ J(g) ⇔ (μ(Ω)/ζ)
∫

Ω
u(f(ω))dπ +

n∑
i=1

(εi/ζ) min
ω∈Ei

u(f(ω))

≥ (μ(Ω)/ζ)
∫

Ω
u(g(ω))dπ +

n∑
i=1

(εi/ζ) min
ω∈Ei

u(g(ω)).

Since ζ = μ(Ω) +
∑n

i=1 εi, 1 − ∑n
i=1 ρi = μ(Ω)/ζ, where ρi ≡ εi/ζ. Therefore,

J(f) ≥ J(g) ⇔ (1 −
n∑

i=1

ρi)
∫

Ω
u(f(ω))dπ +

n∑
i=1

ρi min
ω∈Ei

u(f(ω))

≥ (1 −
n∑

i=1

ρi)
∫

Ω
u(g(ω))dπ +

n∑
i=1

ρi min
ω∈Ei

u(g(ω)).

Now, we have

(1 −
n∑

i=1

ρi)
∫

Ω
u(f(ω))dπ +

n∑
i=1

ρi min
ω∈Ei

u(f(ω))

= min
{∫

u(f)dq

∣∣∣∣q = (1 −
n∑

i=1

ρi)π +
n∑

i=1

ρipi, pi ∈ ΠEi

}
.

Indeed, take p′i = δxi ∈ ΠEi for any xi ∈ arg minω∈Ei u(f(ω)) (i = 1, 2, . . . , n), and put

q′ = (1 − ∑n
i=1 ρi)π +

∑n
i=1 ρip

′
i. Then,

∫
u(f)dq′ = (1 −

n∑
i=1

ρi)
∫

Ω
u(f(ω))dπ +

n∑
i=1

ρi min
ω∈Ei

u(f(ω)).

Moreover, for all q = (1 − ∑n
i=1 ρi)π +

∑n
i=1 ρipi with pi ∈ ΠEi , it holds that∫

u(f)dq

= (1 −
n∑

i=1

ρi)
∫

u(f)dπ +
n∑

i=1

ρi

∫
u(f)dpi

≥ (1 −
n∑

i=1

ρi)
∫

Ω
u(f(ω))dπ +

n∑
i=1

ρi min
ω∈Ei

u(f(ω)),

which completes the proof.
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6. Conclusion

The aim of this paper is to axiomatize the decision maker’s rational behaviors

within the framework of the Choquet Expected Utility (henceforth, CEU) theory by

proposing the E-cominimum independence axiom that is stronger than the comonotonic

independence axiom but weaker than the independence axiom. In order to achieve this

aim, we generalize Kajii, Kojima, and Ui (2007) that characterize cominimum additive

operators in terms of Choquet integrals into an infinite state space. Furthermore, we show

that our axiomatization theorem within CEU can be related to MEU through the core

of a capacity. In addition to the existence of the core, our corollary clarifies how the

core can be represented. This task is accomplished by assuming Axiom 7 (Uncertainty

Aversion) together with E being simple-complete. Our axiomatization theorem can also

be interpreted as an axiomatization theorem of a totally monotone game, which enables

us to derive Gilboa (1989) and Eichberger and Kelsey (1999) as a corollary.

However, some tasks are yet to be accomplished. It should be emphasized that

not all totally monotone games are axiomatized by Theorem 3 but only a subset of the set

of all totally monotone games is. This restrictive result comes from the fact that E must

be simple-complete. An axiomatization of all totally monotone games is a topic for future

research.
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Appendices

Appendix A

As defined in Section 2, Ω is a nonempty finite or infinite set, Σ is a nonempty

algebra of subsets of Ω, RΩ = {x|x : Ω → R} denotes the set of all real valued functions

on Ω, and F is the collection of all non-empty subsets of Ω.

A set function v : 2Ω → R with v(∅) = 0 is k-monotone for k ≥ 2 if v
(∪k

i=1Ai

) ≥∑
{I:∅�=I⊂{1,... ,k}}(−1)|I|+1v (∩i∈IAi) for all A1, . . . , Ak ∈ 2Ω, it is a capacity if v(E) ≤ v(F )

for all E ⊆ F and v(Ω) = 1, and it is totally monotone if it is non-negative and k-monotone

for all k ≥ 2. A totally monotone game v with v(Ω) = 1 is called a belief function.

Let Ω be finite. For T ∈ F , let uT ∈ RF be the unanimity game on T that is

defined by the following: uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise. The following

lemma has been proved by Shapley (1953).

Lemma 3 (Shapley (1953)). Let Ω be finite. Collection {uT }T∈F is a linear base for

RF . The unique collection of coefficients {βT }T∈F satisfying the form

v =
∑
T∈F

βT uT , (5)

or equivalently v(E) =
∑

T⊆E βT for all E ∈ F , is provided by βT =
∑

E⊆T (−1)|T |−|E|v(E).

Collection {βT }T∈F is called the Möbius inversion of v. A totally monotone game

v can be characterized by coefficients βT for all T ∈ F . The following lemma is shown by

Shafer (1976).

Lemma 4 (Shafer (1976)). For any v ∈ RF , v is totally monotone if and only if in

unique representation (5), βT is non-negative for all T ∈ F .

Gilboa and Schmeidler (1994) prove the following lemma with respect to the ad-

ditivity of Choquet integrals through Möbius inversions.

Lemma 5. Let x ∈ RΩ and let v =
∑

T∈F βT uT ∈ RF . Then,∫
xdv =

∑
T∈F

βT

∫
xduT =

∑
T∈F

βT min
T

x.

The following lemma is a special case of Proposition 3 in Chateauneuf and Jaffray

(1987).17

17We are grateful to an anonymous referee who pointed out that Lemma 6 is very similar to a result in
Chateauneuf and Jaffray (1987).
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Lemma 6. Let v =
∑

T∈F βT uT . Then, for all X, Y ∈ F ,

v(X ∪ Y ) + v(X ∩ Y ) − v(X) − v(Y ) =
∑

T∈FX,Y

βT ,

where FX,Y ≡ {T |T ∩ (X ∩ Y c) �= ∅, T ∩ (Xc ∩ Y ) �= ∅, and T ⊆ X ∪ Y }.

Kajii, Kojima, and Ui (2007) characterize the Möbius inversion of a game v by v’s

E-cominimum additivity.

Theorem 4 (Kajii, Kojima, and Ui (2007)). Let Ω be finite. Let v =
∑

T∈F βT uT ∈
RF be a game. v is E-cominimum additive if and only if βT = 0 for any T /∈ Υ(E). If E
is complete, that is, E = Υ(E), v is E-cominimum additive if and only if βT = 0 for any

T /∈ E.

Appendix B: Proofs

Proof of Lemma 1

Proof. Suppose that for all pairwise E-cominimum functions a, b, c ∈ ΦΣ and for all α ∈
(0, 1), I(a) ≥ I(b) implies I(αa + (1 − α)c) ≥ I(αb + (1 − α)c). First, let us prove the

following claim: if x, y ∈ ΦΣ are E-cominimum and α ∈ (0, 1), then I(αx + (1 − α)y) =

αI(x) + (1 − α)I(y). Indeed, for any ε > 0, (I(x) + ε)1Ω satisfies I((I(x) + ε)1Ω) > I(x)

and (I(y) + ε)1Ω satisfies I((I(y) + ε)1Ω) > I(y) by the assumption that I(λ1Ω) = λ.

Hence, αI(x) + (1 − α)I(y) + ε = I(α(I(x) + ε)1Ω + (1 − α)(I(y) + ε)1Ω) > I(αx +

(1 − α)(I(y) + ε)1Ω) > I(αx + (1 − α)y). The first inequality holds since (I(x) + ε)1Ω,

x, and (I(y) + ε)1Ω are pairwise E-cominimum and the second inequality holds since

(I(y) + ε)1Ω, y, and x are pairwise E-cominimum. Since ε is any positive number, we

obtain that αI(x) + (1−α)I(y) ≥ I(αx + (1−α)y). Furthermore, the converse inequality

can be shown by using a similar argument as that for ε < 0. Therefore, it is proved

that I(αx + (1 − α)y) = αI(x) + (1 − α)I(y). Then, our claim is proved. Next, let us

use this claim twice. First, let α = 1/2, x = 2a, and y = 0. Then, I(a) = (1/2)I(2a)

for all a ∈ ΦΣ. Similarly, let α = 1/2, y = 2b, and x = 0. Then, I(b) = (1/2)I(2b)

for all b ∈ ΦΣ. Second, let α = 1/2, x = 2a, and y = 2b. Then, for all a, b ∈ ΦΣ,

I(a + b) = (1/2)I(2a) + (1/2)I(2b) = I(a) + I(b). Now we show Lemma 1.

Proof of Lemma 2

Proof. Since the proof for (ii) ⇒ (i) has been already provided in Section 3, we prove the

converse.

(i) ⇒ (ii). Let Ω be an arbitrary infinite set and E = {E1, E2, . . . , En} ⊆ F with |Ei| ≥ 2



19

for i = 1, . . . , n be a collection of events. Denote by Π the set of all finite partitions of Ω and

by ΠE the set of all finite partitions of Ω, which separate each Ei for i = 1, . . . , n to at least

two nonempty subsets. That is, if P = {P1, P2, . . . , Pk} ∈ ΠE is a partition of Ω, then for

every Ei for i = 1, . . . , n, there are at least two nonempty sets in P1∩Ei, P2∩Ei, . . . , Pk∩Ei.

Fix a partition P = {P1, P2, . . . , Pk} ∈ ΠE . Let σ(P, E) ⊆ Σ be the algebra generated

by P and E : the smallest algebra containing P1, P2, . . . , Pk, E1, E2, . . . , En. Denote by

Φσ(P,E) the set of all σ(P, E)-measurable functions in ΦΣ. Note that
⋃

P∈ΠE Φσ(P,E) =⋃
P∈Π Φσ(P,E) = ΦΣ. Let ΩP,E be the collection of minimal elements of σ(P, E), which

constitutes a well defined partition of Ω. Note that ΩP,E is a collection of the subsets

of Ω, not a set of states. We explain this set ΩP,E in detail. Let Ei
1, Ei

2, . . . , Ei
mi

be

nonempty sets in σ(P, E) that are subsets of Ei, where mi ≥ 2. That is, {Ei
1, E

i
2, . . . , E

i
mi

}
constitutes a partition of Ei for i = 1, . . . , n. Moreover, denote the nonempty sets in ΩP,E ,

which are in (∪1≤i≤nEi)c, by Q1, Q2, . . . , Qm. Thus, the collection

{E1
1 , E1

2 , . . . , E1
m1

, . . . , Ei
1, E

i
2, . . . , E

i
mi

, . . . , En
1 , En

2 , . . . , En
mn

, Q1, Q2, . . . , Qm}
constitutes ΩP,E . Choose one element ei

j from each Ei
j for i = 1, . . . , n and j = 1, . . . ,mi

arbitrarily, and choose qi from each Qi for i = 1, . . . ,m arbitrarily. Denote finite set

{ei
j |1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {qi|1 ≤ i ≤ m} by Ω∗

P,E , finite set {ei
j |1 ≤ j ≤ mi} by E∗

i for

each i = 1, . . . , n, and finite set {qi|1 ≤ i ≤ m} by Q∗. Thus, Ω∗
P,E = E∗

1 ∪ · · · ∪ E∗
n ∪ Q∗.

Note that by construction, Ω∗
P,E is a subset of Ω. Denote by E∗ collection {E∗

1 , E∗
2 , . . . , E∗

n}
and by F∗

1 the collection of singleton subsets in 2Ω∗
P,E . Moreover, denote by Φ∗

Ω∗
P,E

the set

of real valued functions on finite set Ω∗
P,E .

Now, we define capacity v∗P,E on power set 2Ω∗
P,E as follows: for every X ∈ 2Ω∗

P,E ,

v∗P,E(X) = v((∪ei
j∈XEi

j) ∪ (∪qi∈XQi)). For example, v∗P,E(∅) = 0, v∗P,E ({e1
2, q3}) = v(E1

2 ∪
Q3), v∗P,E (E∗

i ) = v∗P,E({ei
1, . . . , e

i
mi

}) = v(∪1≤j≤miE
i
j) = v(Ei).

Next, we define a function a∗ on Ω∗
P,E that corresponds to a function a ∈ Φσ(P,E).

For every σ(P, E)-measurable function a ∈ Φσ(P,E), define the function a∗ ∈ Φ∗
Ω∗

P,E
as

follows: for any ω ∈ Ω∗
P,E , a∗(ω) = a(ω) naturally; that is, a∗(ei

j) = a(ei
j) and a∗(qj) =

a(qj). The value a∗(ω) is the same on each Ei
j and on each Qj regardless of the choice

of the representation element, since a is constant on each Ei
j and on each Qj by the

assumption of a being σ(P, E)-measurable.

Define by I∗(a∗) the Choquet integral of a∗ with respect to capacity v∗P,E ; that

is, I∗(a∗) ≡ ∫
Ω∗

P,E
a∗dv∗P,E . We show that I∗(a∗) = I(a) for all a ∈ Φσ(P,E). Suppose

a∗(ω1) ≥ a∗(ω2) ≥ · · · ≥ a∗(ωt). Since a is σ(P, E)-measurable, it follows that

I∗(a∗)

= (a∗(ω1) − a∗(ω2))v∗P,E({ω1}) + (a∗(ω2) − a∗(ω3))v∗P,E ({ω1, ω2})
+(a∗(ω3) − a∗(ω4))v∗P,E ({ω1, ω2, ω3}) + · · ·



20

= (a(ω1) − a(ω2))v(∪ω1∈X1∈ΩP,E X1) + (a(ω2) − a(ω3))v(∪ωj∈Xj∈ΩP,E ,(j=1,2) Xj)

+(a(ω3) − a(ω4))v(∪ωj∈Xj∈ΩP,E ,(j=1,2,3) Xj) + · · · = I(a).

Here, we claim that for every a, b ∈ Φσ(P,E), the condition that a and b are E-

cominimum on Ω is equivalent to the condition that a∗ and b∗ are E∗-cominimum on

Ω∗
P,E . Indeed, suppose that a∗ and b∗ are E∗-cominimum. Then, there exists an ωi ∈

argminω∈E∗
i
a∗(ω) ∩ argminω∈E∗

i
b∗(ω) for every i = 1, . . . , n. Such an ωi satisfies ωi ∈

argminω∈Eia(ω) ∩ argminω∈Eib(ω) since a ∈ Φσ(P,E) is a σ(P, E)-measurable function.

Thus, a and b are E-cominimum. The converse also holds similarly. Hence, our claim is

shown.

Now, let a, b ∈ Φσ(P,E) and suppose that a∗ and b∗ are E∗-cominimum. Then, a

and b are E-cominimum, and thus, I(a+ b) = I(a)+ I(b) since I is E-cominimum additive.

By I∗(a∗) = I(a) for all a ∈ Φσ(P,E), it holds that I∗(a∗ + b∗) = I∗(a∗) + I∗(b∗) since

(a + b)∗ = a∗ + b∗. Thus, it holds that I∗ is E∗-cominimum additive. Note that if F1 ∪ E
is complete, then F∗

1 ∪ E∗ is clearly complete. Since Ω∗
P,E is a finite set, we can apply

Theorem 4. Thus, there exist coefficients {βP,E
{ω}}ω∈Ω∗

P,E , {βP,E
E∗

i
}1≤i≤n such that

v∗P,E =
∑

ω∈Ω∗
P,E

βP,E
{ω}u{ω} +

∑
1≤i≤n

βP,E
E∗

i
uE∗

i
. (6)

Note that for all ω ∈ Ω∗
P,E , βP,E

{ω} = v∗P,E({ω}) ≥ 0 since v∗P,E is a capacity. Take any

a ∈ Φσ(P,E). Then, for a∗ ∈ Φ∗
Ω∗

P,E
, by Lemma 5, it holds that

I∗(a∗) =
∫

Ω∗
P,E

a∗dv∗P,E =
∑

ω∈Ω∗
P,E

βP,E
{ω}a

∗(ω) +
∑

1≤i≤n

βP,E
E∗

i
min
ω∈E∗

i

a∗(ω). (7)

Note that minω∈E∗
i
a∗(ω) = minω∈Ei a(ω) for all a ∈ Φσ(P,E). Thus, we can use notation

{βP,E
Ei

}1≤i≤n instead of {βP,E
E∗

i
}1≤i≤n. Moreover, it holds that a∗(ω) = a(ω) for all ω ∈ Ω∗

P,E .

Thus, by I∗(a∗) = I(a), (6) and (7) can be rewritten as follows:

v∗P,E =
∑

ω∈Ω∗
P,E

βP,E
{ω}u{ω} +

∑
1≤i≤n

βP,E
Ei

uE∗
i
; (8)

I(a) =
∫

Ω
adv =

∑
ω∈Ω∗

P,E

βP,E
{ω}a(ω) +

∑
1≤i≤n

βP,E
Ei

min
ω∈Ei

a(ω). (9)

Now, define a finitely additive measure μP,E on σ(P, E) as follows: μP,E(Ei
j) = βP,E

{ei
j}

for

every Ei
j ∈ ΩP,E for i = 1, . . . , n and j = 1, . . . ,mi; and μP,E(Qj) = βP,E

{qj} for every

Qj ∈ ΩP,E for j = 1, . . . ,m. Then, (9) can be rewritten as follows:

I(a) =
∫

Ω
a(ω)dμP,E (ω) +

∑
1≤i≤n

βP,E
Ei

min
ω∈Ei

a(ω). (10)
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Next, we shall show that finitely additive measure μP,E and coefficients {βP,E
Ei

}1≤i≤n

in expression (10) does not depend on the choice of partition P ∈ ΠE . In the proof, the

uniqueness of the Möbius inversion plays a crucial role. Let us take another partition

P ′ ∈ ΠE such that σ(P, E) ⊆ σ(P ′, E), and repeat the above procedure. Let us define

another finite set Ω∗
P ′,E . We can choose the elements in Ω∗

P ′,E such that Ω∗
P,E ⊆ Ω∗

P ′,E .

For such a set Ω∗
P ′,E , let us denote E′∗

i = {ω ∈ Ω∗
P ′,E |ω ∈ Ei}, which is the set of

representation elements in Ei. Then, it holds that E∗
i ⊆ E′∗

i for all i = 1, . . . , n. By

defining capacity v∗P ′,E on finite power set 2Ω∗
P′,E , we can show that there exist coefficients

{βP ′,E
{ω} }ω∈Ω∗

P′,E
, {βP ′,E

Ei
}1≤i≤n such that

v∗P ′,E =
∑

ω∈Ω∗
P′,E

βP ′,E
{ω} u{ω} +

∑
1≤i≤n

βP ′,E
Ei

uE′∗
i
, (11)

and that there exists a finitely additive measure μP ′,E(ω) on σ(P ′, E) such that for all

a ∈ Φσ(P′,E),

I(a) =
∫

Ω
a(ω)dμP ′,E(ω) +

∑
1≤i≤n

βP ′,E
Ei

min
ω∈Ei

a(ω). (12)

To complete our proof, we have to show that βP ′,E
Ei

= βP,E
Ei

for all i = 1, . . . , n and

that μP ′,E = μP,E on σ(P, E). To do so, we need to define another capacity V ∗ on 2Ω∗
P,E

as follows. First, for every element ω ∈ Ω∗
P,E , define Γ(ω) = {X ∈ ΩP ′,E |X ⊆ Y such

that ω ∈ Y ∈ ΩP,E}. In other words, Γ(ω) is the partition of Y with respect to algebra

σ(P ′, E) where Y is the cell in partition ΩP,E such that ω ∈ Y . Second, for every element

ω ∈ Ω∗
P,E , define γ{ω} =

∑
X∈Γ(ω) μP ′,E(X). Third, define a capacity V ∗ on 2Ω∗

P,E by

V ∗ =
∑

ω∈Ω∗
P,E

γ{ω}u{ω} +
∑

1≤i≤n

βP ′,E
Ei

uE∗
i
. (13)

Note that coefficient βP ′,E
Ei

has a prime symbol on P and that unanimity game uE∗
i

has

no prime symbol on E. Let us show that V ∗ in (13) coincides with v∗P,E in (8). Indeed,

pick any T ∈ 2Ω∗
P,E and define T̃ ∈ σ(P, E) by T̃ =

⋃
T∩X �=∅,X∈ΩP,E X. This set T̃ is the

minimal set in σ(P, E) that contains all the elements of T . Then,

V ∗(T )

=
∑
ω∈T

γ{ω} +
∑

E∗
i ⊆T

βP ′,E
Ei

=
∑
ω∈T

∑
X∈Γ(ω)

μP ′,E(X) +
∑

Ei⊆T̃

βP ′,E
Ei

=
∑

X⊆T̃ ,X∈ΩP′,E

μP ′,E(X) +
∑

Ei⊆T̃

βP ′,E
Ei
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= μP ′,E(T̃ ) +
∑

Ei⊆T̃

βP ′,E
Ei

= I(1T̃ ) = I∗(1∗T ) = v∗P,E(T ).

Hence, V ∗ coincides with v∗P,E for all T ∈ 2Ω∗
P,E . Therefore, by the uniqueness of the Möbius

inversion, it must hold that βP ′,E
Ei

= βP,E
Ei

for all i = 1, . . . , n and that μP ′,E = μP,E on

σ(P, E). Then, when defining βP,E
Ei

= εi and μP,E = μ, we obtain our expression (1).

Proof of (only if part) of Theorem 3

Proof. Since A1, A3, A4, A5, and A6 hold, by Theorem 2, there exist a unique finitely

additive measure μ on (Ω,Σ), an affine function u, and a set of coefficients ε1, ε2, . . . , εn,

such that f 
 g ⇔ J(f) ≥ J(g) where J(f) =
∫
Ω u(f(ω))dμ(ω)+

∑n
i=1 εi minω∈Ei u(f(ω)).

Therefore, it suffices to show that all coefficients ε1, . . . , εn are non-negative. Let U be

the function from L0 to B0(K) and I be the operator on B0(K), both of which are defined

in Property (3) of the proof of Theorem 2. Then, for every a = U(f), I(a) is Choquet

integral
∫

adv with respect to capacity v(T ) = I(1T ). Moreover, by A7, it holds that

v(X ∪ Y ) + v(X ∩ Y ) ≥ v(X) + v(Y ) for all X,Y ∈ 2Ω.

Now, pick any Ei ∈ E . By the assumption of E being simple-complete, we can find

a two-element set {p, q} ⊆ Ei such that there is no Ej ∈ E satisfying {p, q} ⊆ Ej � Ei.

Moreover, take a partition P ∈ ΠE in the proof of Lemma 2 such that p, q ∈ Ω∗
P,E . Recall

that for every X ∈ 2Ω∗
P,E , v∗P,E(X) = v(

⋃
ei
j∈X Ei

j∪
⋃

qi∈X Qi). Thus, v(X∪Y )+v(X∩Y ) ≥
v(X)+v(Y ) for all X,Y ∈ 2Ω implies that v∗P,E(X∪Y )+v∗P,E(X∩Y ) ≥ v∗P,E(X)+v∗P,E(Y )

for all X,Y ∈ 2Ω∗
P,E .

Here, it holds that there is no E∗
j ∈ E∗ satisfying {p, q} ⊆ E∗

j � E∗
i . Let T1 =

E∗
i \{p} and T2 = E∗

i \{q}. Thus, T1 ∪ T2 = E∗
i . Note that for every S ⊆ T1 ∪ T2, S �⊆ T1

and S �⊆ T2 are equivalent to {p, q} ⊆ S. It follows that

0 ≤ v∗P,E(T1 ∪ T2) − v∗P,E(T1) − v∗P,E(T2) + v∗P,E(T1 ∩ T2)

=
∑

E∗
j ⊆T1∪T2,E∗

j �⊆T1,E∗
j �⊆T2

εj =
∑

{p, q}⊆E∗
j ⊆E∗

i

εj = εi,

where the inequality holds by the convexity of v∗P,E and the first equality holds by Lemma

6.
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