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Abstract 

 

The purpose of the paper is to discuss ten things potential users should know about the limits of 

the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-

varying conditional correlations. The reasons given for caution about the use of DCC include the 

following: DCC represents the dynamic conditional covariances of the standardized residuals, 

and hence does not yield dynamic conditional correlations; DCC is stated rather than derived; 

DCC has no moments; DCC does not have testable regularity conditions; DCC yields 

inconsistent two step estimators; DCC has no asymptotic properties; DCC is not a special case of 

GARCC, which has testable regularity conditions and standard asymptotic properties; DCC is 

not dynamic empirically as the effect of news is typically extremely small; DCC cannot be 

distinguished empirically from diagonal BEKK in small systems; and DCC may be a useful filter 

or a diagnostic check, but it is not a model. 

 

 

Keywords: DCC representation, BEKK, GARCC, stated representation, derived model, 
conditional covariances, conditional correlations, regularity conditions, moments, two step 
estimators, assumed properties, asymptotic properties, filter, diagnostic check. 
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1. Introduction 

 

The 21st Century has seen substantial and growing interest in the analysis of dynamic 

covariances and correlations across investment instruments. In particular, there has been great 

emphasis paid to the analysis of financial assets (see Engle (2002) and Cappiello et al. (2006), 

among others, and the references cited in the surveys by Bauwens et al. (2006) and Silvennoinen 

and Terasvirta (2009)). More recently, there has been growing interest in energy finance, 

particularly oil (see Lanza et al. (2006), Chang et al. (2011), and Hammoudeh et al. (2013), 

among others).  

In this research stream, the most widely-used representation is a variation of Multivariate 

GARCH, namely Dynamic Conditional Correlation (DCC), as introduced by Engle (2002). The 

baseline representation has been extended in several directions, dealing with the parameterization 

(see Billio et al. (2006), Cappiello et al. (2006), and Franses and Hafner (2009), among others), 

the introduction of additional elements, such as asymmetry (see Cappiello et al. (2006) and 

Kasch and Caporin (2013), among others), and the proposal of alternative estimation methods 

(see Engle et al. (2008) and Colacito et al. (2011), among others). 

 

Despite the growing interest in DCC and its central role in the estimation of dynamic correlations, 

several important issues relating to this representation seem to have been ignored in the financial 

econometrics literature. These important issues include the absence of any derivation of DCC 

and its mathematical properties, and a lack of any demonstration of the asymptotic properties of 

the estimated parameters (for a summary of these issues, see McAleer (2005)). In this respect, a 

useful contribution is Aielli (2013), who demonstrates the inconsistency of the two step estimator 

of the parameters of DCC. In fact, most published papers dealing with dynamic correlations 

simply do not discuss stationarity of the model, the regularity conditions, or the asymptotic 

properties of the estimators.  

 

Another critical element of DCC is associated with the construction of the dynamic conditional 

correlations. In fact, the representation seems to provide estimated dynamic correlations as a bi-

product of standardization, and not as a direct result of the equation governing the multivariate 
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dynamics. This will be clarified below. An alternative representation which avoids this last 

criticism, but nevertheless has no discussion of the mathematical properties or demonstration of 

the asymptotic properties of the estimators, has been proposed by Tse and Tsui (2002). However, 

this representation seems to have attracted considerably less interest in the literature.  

 

It should be mentioned that many empirical applications involving DCC and related 

representations show that the impact of news can be rather limited, thereby making the estimated 

conditional correlations similar to those implied by simple BEKK models (see Baba et al. (1985) 

and Engle and Kroner (1995), at least in small cross-sectional problems (for further details, see 

Caporin and McAleer (2008) and Franses and Hafner (2009)).  

 

This paper highlights some critical issues associated with the use of the DCC and related 

representations to make potential users aware of the inherent problems they might encounter. 

The main message is not against the use of DCC, which is the most popular representation of 

dynamic conditional correlations, but is intended to be cautionary, so that users can understand 

and appreciate the limits of DCC. In fact, we suggest that DCC be regarded as a filter or as a 

diagnostic check, as in the Exponentially Weighted Moving Average approach adopted in the 

first versions of the RiskMetrics (1996) methodology. When an equation has not been derived in 

a rigorous way, and for which we do not have any explicit details regarding the existence of 

moments, derivation and testability of the stationarity conditions, and demonstrated asymptotic 

properties of the estimators, it should not be considered as a model, but rather as a filter or a 

diagnostic check for estimating and forecasting dynamic conditional correlations. We will 

elaborate on this issue in the remainder of the paper after highlighting the critical aspects of the 

DCC framework. 

 

The plan of the paper is to discuss ten things you should know about the DCC representation. 

These caveats are discussed in Section 2. Some concluding remarks are given in Section 3. 

 

 

2. Ten Caveats About DCC 
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The DCC representation was introduced by Engle (2002) to capture the empirically observed 

dynamic contemporaneous correlations of asset returns. The representation can be given as 

follows. Denote by tr  the vector containing the log-returns of k assets. The density of the returns 

is characterized by the absence of serial correlation in the mean returns, and by the presence of 

time-varying second-order moments: 

 

 1| ,t t tr I D            (1) 

 

where 1tI   denotes the information set to time t-1,   is the unconditional mean, which is 

generally equal, or very close, to zero, t  is the dynamic conditional covariance matrix, and D  

is a generic multivariate density function depending on the mean vector and dynamic conditional 

covariance matrix.  

 

Following Engle (2002), the covariance matrix can be decomposed into the product of dynamic 

conditional standard deviations and dynamic conditional correlations: 

 

t t t tD R D             (2) 

 

where  1 2, ,...,t kD diag    ,   diag a is a matrix operator creating a diagonal matrix with the 

vector a along the main diagonal, and tR  is a dynamic correlation matrix. From equations (1) and 

(2), the marginal density of each element of tr  has a time-varying conditional variance, and can 

be modeled, for example, as a univariate GARCH process. 

 

The DCC representation focuses on the dynamic evolution of tR  in (2), and recovers that 

quantity by considering the dynamics of the conditional variance of the standardized residuals, 

which are defined as follows: 

 

 1
t t tD r             (3) 

 



  6

By construction, the standardized residuals have second-order unconditional moment equal to 

 

t tE R  
 

           (4) 

 

with R being the unconditional correlation, thereby motivating the focus on standardized 

residuals to recover the dynamics for the conditional correlations.  

 

In practice, the standardized residuals can be used to verify empirically the existence of 

dynamics in the conditional correlations, for instance, by means of a rolling regression approach. 

Moreover, if the data generating process of the returns is given in equations (1) and (2), the 

dynamic conditional covariance of the standardized residuals is given as: 

 

1|t t t tE I R 
  
 

          (5) 

 

Without distinguishing between the dynamic conditional covariance and dynamic conditional 

correlation matrices, Engle (2002) presents the following equation based on the outer cross-

products of the standardized residuals: 

 

  1 1 11t t t tQ Q Q      
             (6) 

 

where (6) has scalar parameters, as in the most common DCC representation, Q  is assumed to be 

a positive definite matrix with unit elements along the main diagonal (which is alleged to be a 

conditional correlation matrix), the two scalar parameters satisfy a stability constraint of the form 

1   , and the sequence tQ  purportedly drives the dynamics of the conditional correlations.  

 

However, as the matrix tQ  in (6) does not satisfy the definition of a (dynamic) conditional 

correlation matrix, as in (2), Engle (2002) introduces the following standardization: 
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     0.5 0.5

t t t tR diag dg Q Q diag dg Q
 

         (7) 

 

where  dg A  is a matrix operator returning a vector equal to the main diagonal of matrix A. [In 

discussing the equivalent of equation (7) above, namely equation (25) in Engle (2002), a 

typographical error is present as the exponent is reported as -1 instead of -0.5.]  

 

It is clear that (7) is a simple standardization, suggesting that the primary statistic of interest, 

namely the dynamic conditional correlation matrix, can be computed from (6). However, to state 

the obvious, a dynamic conditional correlation matrix is a standardization of a dynamic 

conditional covariance matrix, but not every standardization, such as that in (7), is consistent 

with a dynamic conditional correlation matrix. This lack of equivalence is even more obvious if 

it cannot be demonstrated (as distinct from being stated) that (6) is a dynamic conditional 

correlation matrix. [A simple illustration would be to divide 10 elephants by 20 elephants, which 

is not a correlation despite being a fraction.] It should be clear that, as the second term on the 

right-hand side of (6) is not a dynamic update of a conditional correlation matrix, the 

representation in (6) cannot be a dynamic conditional correlation matrix. 

 

Bearing these points in mind, the following caveats should be seriously considered before using 

the DCC representation. 

 

 

(1) DCC is based on the conditional second-order moment of the standardized residuals, 

and hence does not directly yield conditional correlations. 

 

The simple observation of equation (6) recognizes the structure of the scalar BEKK model of 

dynamic conditional correlations (see Baba et al. (1985) and Engle and Kroner (1995)), pointing 

to an inherent contradiction in the DCC model. Combining equations (1), (2), and (3) leads to: 

 

   1 0,t t t tD r D R    . 
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Moreover, using equation (7), this is equivalent to 

 

        0.5 0.51 0,t t t t t tD r D diag dg Q Q diag dg Q 
    . 

 

However, if we consider the tQ  dynamic recurrence in (6) as a BEKK model, then tQ  might be 

interpreted as the dynamic conditional covariance matrix of the innovation term, which is t , and 

it thereby suggests that the following holds: 

 

   1 0,t t t tD r D Q             (8) 

 

which is inconsistent with what is implied in (1)-(3) and (5). Therefore, we note an implicit 

contradiction in the way the DCC correlation dynamics are derived. 

 

In addition, a dynamic conditional correlation matrix may be obtained only through the 

standardization in (7). However, we can also note an inconsistency between the dynamic 

conditional expectation reported in (5) and the way in which the dynamic conditional correlation 

matrix is obtained in (7). Such inconsistency causes further problems as tQ  is not the conditional 

covariance of t , as shown in (5), and is not the conditional correlation of t  as it is just positive 

definite, but need not correspond to a dynamic conditional correlation matrix.  

 

The last remark can easily be verified by visual inspection of the estimates of tQ , which are 

typically not considered in empirical analysis. However, by using several datasets, it is 

straightforward to show that the elements of tQ  can be greater than 1 (see, for example, 

McAleer et al. (2008)). As a consequence, it might be stated that the sequence tQ  is a convenient 

device for obtaining dynamic conditional correlations but, as it stands, has no proper 

interpretation as either a dynamic conditional covariance or dynamic conditional correlation 

matrix.  

 

This leads to another caveat about DCC. 



  9

 

 

(2) DCC is stated rather than derived. 

 

From the previous comments, it clearly emerges that DCC is a stated representation, but it is not 

a derived model that is based on the relationship between the innovations to returns and the 

standardized residuals. Moreover, the DCC representation does not satisfy the definition that 

relates dynamic conditional correlations to dynamic conditional covariances, as given in equation 

(2). As such, the interpretation of DCC as a representation that may yield dynamic conditional 

correlations is inherently flawed. This quandary also begs the question as to whether DCC is 

actually a model, namely a set of assumptions, or alternatively as a representation with explicit 

and testable mathematical properties and derivable statistical properties. 

 

A further motivation for the previous claim is inherently related to the construction of the 

conditional correlations within the DCC representation. Generally speaking, conditional 

correlations can be derived from a conditional covariance model by standardization of the 

covariances, namely 1 1
, , , ,ij t ij t i t j t      . However, such a procedure cannot be applied to the DCC 

representation because the covariance is obtained as  0.5 0.5
, , , , , ,ij t i t j t ij t i t j tq q q     . Consequently, the 

traditional way of deriving correlations applies to the conditional matrix tQ  and not to the full 

conditional covariance. We conclude that we cannot derive conditional correlations in the usual 

way due to the presence of two standardizations rather than just one. 

 

The above discussion also affects the many representations which are obtained as generalizations 

of the DCC representation including, among others, Billio et al. (2005), Cappiello et al. (2006), 

and Aielli (2013). Moreover, this has further consequences for the model structure and the 

associated statistical properties. 

 

 

(3) DCC has no moments. 
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This follows from the stated rather than derived properties of the representation (see McAleer et 

al. (2008) for further details). Therefore, there is no connection between univariate models of 

conditional variance, such as ARCH (Engle (1982)) and GARCH (Bollerslev (1986)), and 

multivariate models of conditional correlations. This is in marked contrast to the direct 

connection between the alternative univariate conditional volatility models and the BEKK 

multivariate model of dynamic conditional covariances (see Baba et al. (1985) and Engle and 

Kroner (1995)), and the direct connection between univariate conditional volatility models and 

the GARCC multivariate model of dynamic conditional correlations (see McAleer et al. (2008)). 

Nevertheless, we observe that the financial econometrics literature includes several other models 

and approaches where the underlying stochastic component is characterized, for instance, by the 

known existence of lower-order moments while higher-order moments, or even the variance, 

might not exist. In any event, such approaches have been used extensively, with useful and 

interesting empirical results, within a risk management framework. 

 

 

(4) DCC does not have testable regularity conditions. 

 

This follows from point (3) above. In particular, Engle (2002, p. 342) refers to “reasonable 

regularity conditions” and “standard regularity conditions”, without stating them explicitly. 

Aielli (2013, pp. 10-11) assumes that the unstated regularity conditions, whatever they might be, 

are satisfied. Cappiello et al. (2006) develop an extension of the DCC representation to 

incorporate asymmetries, but do not provide any explicit regularity conditions. With no testable 

regularity conditions, such as log-moment or second moment conditions, the internal consistency 

of the model cannot be checked. There is, therefore, no evidence as to whether the purported 

estimates of dynamic conditional correlations have any connection to the definition of dynamic 

conditional correlations. 

  

The absence of explicit regularity conditions and of explicit moment affects also the derivation 

of asymptotic properties of the parameter estimates. Engle (2002) suggests the following “two 

step” approach for estimating DCC parameters. Within a Quasi Maximum Likelihood framework, 

we have the following Gaussian log-likelihood for one observation of the returns tr : 
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11 1
ln

2 2t t t t tr r       

 

Following the decomposition in (2), we have: 

 

1 1 11 1
ln

2 2t t t t t t t t tD R D r D R D r       

 

2 1 1 1 1 11 1 1 1
ln ln

2 2 2 2t t t t t t t t t t tD R r D D r r D R D r             

2 1 1 11 1 1 1 1
ln ln

2 2 2 2 2t t t t t t t t t t tD r D D r R R                   
   

 

 

   ,V C
t V t V C       

 

where it is shown that the single observation likelihood can be decomposed into two terms, 

namely a function of the variance parameters only, V , and a function of both the variance and 

correlations parameters, V  and C , respectively. Note that the first likelihood component is based on 

a correlation matrix set to the identity matrix, which is then used to recover the variance parameters only. 

The second likelihood component is used to estimate the correlation parameters, conditionally on the first 

stage likelihood estimated parameters ( ˆ
V ).  

 

Engle (2002) suggests that the first likelihood component can be further decomposed into the sum of 

univariate likelihoods representing the marginal contribution of each return series, under the assumption 

of independence. This is a first simplification imposed to deal with the curse of dimensionality that 

generally affects multivariate GARCH models (see Caporin and McAleer (2012) for further details). In 

addition, to simplify the computational burden associated with the maximization of the second stage 

likelihood    1
ˆ ˆ, ,T C

V C t t V CL       , Engle (2002) suggests replacing the matrix Q  with the 

sample correlation matrix of the standardized residuals t , thereby introducing an intermediate “1.5” step.  
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The previously outlined approach entails a number of assumptions which are generally not satisfied by 

empirical data, as follows: 

 

- Marginal variances are assumed to be independent, which rules out any form of spillovers 

or feedback across variances and shocks of the various assets. This is related to the 

general idea of having dependence across assets governed only by the correlations. 

However, this is not always the case, and shocks of different assets can affect the 

variance of a single asset. 

- The sample correlation matrix is assumed to be an appropriate estimator for the matrix Q , 

which is not necessarily a correlation matrix. 

- The approach is called “two step”, when in reality it is a “three step” procedure when 

sample correlations are used for Q , and is a proper “two step” procedure when the 

correlation likelihood  1 ,T C
t t V Cl    is maximized with respect to the full parameter set 

C ,  and conditionally on the variance parameters V . 

 

However, the possible incompatibility between the assumptions leading to the estimation 

approach described above do not prevent its use, which can be motivated and supported by its 

computational simplicity, an important issue of which users should be aware. Nevertheless, the 

asymptotic properties of the “two step” estimator are not discussed in Engle (2002), apart from a 

reference to Engle and Sheppard (2001), which remains an unpublished manuscript and does not, 

in fact, demonstrate any asymptotic properties for the DCC parameters.  

 

We have the additional following caveat: 

 

 

(5) DCC yields inconsistent “two step” estimators. 

 

Engle (2002, p. 342) states that the standardized residuals in equation (6) are “a Martingale 

difference by construction” in suggesting how to estimate the parameters of DCC by resorting to 

standard ARMA methods. Moreover, the fact that the errors are a martingale difference sequence 
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allows recovery of general results for multivariate GARCH processes and, in particular, those in 

Engle and Kroner (2005). However, Aielli (2013) points out that the DCC representation cannot 

be interpreted as a linear multivariate GARCH, and this leads to the inconsistency of the “two 

step” DCC estimator discussed above. The inconsistency is governed by the fact that in equation 

(6) the matrix tQ  is not the expectation of the standardized residuals cross-products. Therefore, it 

is not possible to obtain a martingale difference by rewriting equation (6) in a companion 

VARMA form.  

 

The primary merit of Aielli (2013) is in highlighting the inconsistency problem, but the proposed 

‘solution’ still suffers from the same troubles afflicting the DCC representation of Engle (2002). 

In fact, Aielli (2013) discusses targeting and a modification to DCC to enable consistent 

estimation. However, he assumes that the estimators of the modified DCC representation are 

asymptotically normal under “standard” regularity conditions, without stating what the 

conditions might be. Caporin and McAleer (2008, 2012) have shown that dynamic conditional 

correlations can be estimated consistently by using an indirect DCC representation based on the 

BEKK model, but asymptotic normality cannot be established. 

 

 

(6) DCC has no desirable asymptotic properties. 

 

McAleer et al. (2008), Caporin and McAleer (2012) and Aielli (2013) have shown that the 

estimated parameters of the DCC representation under the standard two step approach have no 

asymptotic properties. Moreover, the asymptotic properties of the joint maximum likelihood 

estimator (for all parameters in one step) are not known. In their extension of DCC, Cappiello et 

al. (2006) do not establish any asymptotic properties. In a recent contribution, Engle et al. (2008) 

claim to prove consistency of the estimates of the DCC representation in Theorem 1, but the 

proof refers to pseudo-true parameters rather than the parameters of interest. In Theorem 2, the 

authors assume consistency of the estimated parameters of interest (such that the pseudo-true 

parameters are identical to the parameters of interest) in claiming a proof of asymptotic 

normality (see Caporin and McAleer (2012) for further details).  
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It is clear that the availability of asymptotic properties is still an open question. As a 

consequence, the reliability of standard inferential procedures, such as statistical significance, or 

likelihood ratio testing across nested DCC representations, remains unknown, and should be 

considered only on the basis of appropriate simulation experiments. 

 

 

(7) DCC is not a special case of GARCC, which has testable regularity conditions and 

standard asymptotic properties. 

 

McAleer et al. (2008) derive the Generalized Autoregressive Conditional Correlation (GARCC) 

model based on the relationship between the innovations to returns and the standardized 

residuals, using a vector random coefficient autoregressive process. The scalar and diagonal 

versions of BEKK are also shown to be special cases of a vector random coefficient 

autoregressive process, though not the Hadamard and full BEKK models. The GARCC model 

provides a motivation for dynamic conditional correlations that satisfy the definition of a 

conditional correlation matrix, and hence can be shown to produce dynamic conditional 

correlations. As an application of a vector random coefficient autoregressive process, the 

GARCC model also has testable regularity conditions, and the estimated parameters can be 

shown to be consistent and asymptotically normal. 

 

 

(8) DCC is not dynamic empirically and variance misspecification impact is not known. 

 

Are the purported dynamic conditional correlations real or apparent, and do they arise solely 

from the standardization of the dynamic conditional covariances? What is the impact of variance 

misspecification? 

 

With respect to the first question, we refer to the parameter estimates which are generally 

observed in empirical studies, whereby β is large and close to 1, while α is typically small and 

less than 0.05. As a result, the conditionally dynamic matrix tQ  may ‘appear’ to be dynamic as 

both parameter estimates are statistically significant. However, the limited impact of the shocks, 
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driven by the small estimate of α, makes tQ  almost constant, with limited oscillations around the 

unconditional tQ  value of Q . In addition, such a limited dynamic effect might be amplified in 

the dynamic correlation matrix tR  , as defined in (7), due to the presence of the standardization. 

This may well confuse the user of the DCC representation, who might not be aware that that the 

purported dynamics are spurious. 

 

Moving to the second question, we give the underlying intuition starting from a classical 

example. In the context of the Box-Jenkins procedure, if an ARMA(1,1) is estimated when an 

ARMA(2,1) representation is correct, then the residuals might still show some AR dynamics. For 

instance, in the limiting case of real roots for the ARMA(2,1) model, if the roots of the estimated 

model correspond to those of the true model (such that the AR component captures precisely one 

of the two roots of the ARMA(2,1) model), then the residuals would still be an AR(1) process. 

Therefore, estimating the residuals with an AR filter could possibly capture the remaining 

dynamics.  

 

Transposing the same argument into the GARCH framework, the conditional variance might be 

estimated as GARCH(1,1), but the correct model might have asymmetry, leverage, jumps, 

thresholds and/or higher time-varying moments. As a result, the parameter estimates might be 

biased. The standardized residuals, which are typically not checked for further conditional 

heteroskedasticity (as the common wisdom is that GARCH(1,1) should be sufficient), may have 

remaining heteroskedasticity, however mild. Fitting standardized residuals using a GARCH(1,1) 

model, which is the diagonal term of the DCC representation, will capture some dynamics. Even 

if the conditional correlations happen to be constant, the conditional covariances across the 

standardized residuals may appear to be dynamic because of the misspecification. Therefore, 

standardization does not filter out the dynamics in the covariances due to the biases in the initial 

GARCH(1,1) estimates. As a result, the conditional correlations may appear to be dynamic (with 

significant parameter estimates) due to misspecification in the first step. However, no research 

seems to have followed this line of research, and so it is not clear what the potential impact of the 

conditional variance misspecification might be on the conditional correlation dynamics. 
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(9) DCC cannot be distinguished empirically from diagonal BEKK in small systems. 

 

Caporin and McAleer (2008) show that the estimates of the dynamic conditional correlations 

from a scalar BEKK model, in effect an indirect DCC representation, are very similar to those 

from the DCC representation. This supports the argument that the DCC representation can mimic 

dynamic conditional correlations, at least for small financial portfolios. Theoretical arguments to 

support this claim are presented in Caporin and McAleer (2012). However, there is no empirical 

evidence of the similarities/dissimilarities between the dynamic correlations obtained from the 

DCC representation and those obtained, for instance, from a diagonal BEKK model. As a 

consequence, we cannot verify if the empirical fit provided by the DCC representation might be 

better than the fit obtained from a more general BEKK model in which the dependence across 

the conditional variance and covariances is taken into account. Clearly, the advantage of the 

DCC representation is in the ease of estimation, but mainly in large systems. 

 

 

(10) DCC may be a useful filter or a diagnostic check, but it is not a model. 

 

A significant problem in empirical practice is that many users seem to be under the 

misapprehension that DCC is a model when it is not. DCC has no obvious or desirable 

mathematical or statistical properties. Nevertheless, DCC may be a useful filter or a diagnostic 

check that can capture the dynamics in what are purported to be conditional ‘correlations’, even 

if they arise through possible model misspecification. In this context, the DCC filter may 

perform well empirically. In fact, the popularity of the DCC representation is motivated by two 

main elements, namely the ease in estimation, and the ability of the filter to capture the possible 

presence of dynamic correlations of conditional variance misspecification. 

 

Consequently, the DCC filter may play a useful role in forecasting out-of-sample dynamic 

conditional covariances and correlations.  
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3. Conclusion 

 

The paper discussed ten things potential users should know about the Dynamic Conditional 

Correlation (DCC) representation for estimating and forecasting time-varying conditional 

correlations. The reasons given for being cautious about the use of DCC included the following: 

DCC represents the dynamic conditional covariances of the standardized residuals, and hence 

does not yield dynamic conditional correlations; DCC is stated rather than derived; DCC has no 

moments; DCC does not have testable regularity conditions; DCC yields inconsistent two step 

estimators; DCC has no asymptotic properties; DCC is not a special case of GARCC, which has 

testable regularity conditions and standard asymptotic properties; DCC is not dynamic 

empirically as the effect of news is typically extremely small; DCC cannot be distinguished 

empirically from diagonal BEKK in small systems; and DCC may be a useful filter or a 

diagnostic check, but it is not a model.  

 

The computational advantages of the DCC representation might become relevant when focusing 

on large systems. However, there is no empirical evidence on the comparison of conditional 

correlations obtained directly from the DCC representation and indirectly from the BEKK model 

in a large cross section of assets. As a result, we cannot verify if the use of the DCC filter 

provides conditional paths that are similar to those obtained from a viable alternative model. On 

the other hand, the BEKK model is more general as it allows for direct spillovers and feedback 

effects across conditional variance and covariances, as well as indirect spillovers and feedback 

effects across conditional correlations. The GARCC model is also a viable alternative as it 

satisfies the definition of a dynamic conditional correlation matrix, and also has demonstrable, as 

distinct from assumed, regularity conditions and asymptotic properties. 

 

As DCC is presently the most popular representation of dynamic conditional correlations, 

potential users are strongly encouraged to understand and appreciate the limits of DCC in order 

to be able to use it as a sensible filter or as a diagnostic check for estimating and forecasting 

dynamic conditional correlations. 
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