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1 Introduction

When pricing a discount bond there are two popular models for the short rate, the Vasicek-

and CIR-dynamics. However, it is often said that a one-factor Vasicek or CIR model is not

flexible enough to describe the term structure of bond prices. To address this issue, Hull

and White (1990) extended the two models to the case where the coefficients in the short

rate dynamics are deterministic functions of time to match the term structure observed

in actual financial markets. Other papers that extended the basic models include Hull

and White (1994), Duffie and Kan (1996), Duffie et al. (2000).

Another approach is to introduce a Markov switching regime into the short rate dy-

namics to capture economic cycles like booms and recessions. There are some papers

which consider the case where parameters of the short rate have a Markov switching

structure. In Hansen and Poulsen (2000), the mean-reverting level takes one of the two

values with a symmetric transition rate. Landén (2000) considers the case where the drift

and diffusion parameters are modulated by a Markov process and derives simultaneous

PDEs (which are ODEs in some special cases).

In this paper we derive an explicit expression for bond prices where the short rate

follows Markov switching dynamics under the risk-neutral probability. The key idea is

that we firstly derive a conditional expectation given knowledge of the full history of the

Markov chain and then, using the tower property, take a second expectation. Given the

information of the chain up to maturity, the conditional expectation of the bond is easily

derived as we can use a short rate process in which the exogenous parameters are time-

dependent functions. Then the exact bond price is given by the second expected value of

this conditional expectation.

As we shall see later, the pricing formula includes a solution of a matrix ODE, or a

first-order linear ODEs system with time-dependent coefficients. Unlike previous papers,

our formula is numerically tractable because the calculation of a matrix ODE is not

difficult compared with simultaneous PDEs or a non-linear ODE system. As a corollary,

we obtain a closed-form solution for the bond price in some special cases.

We first obtain the bond price in the case where the short rate follows Vasicek-

dynamics. Given the information about the chain up to maturity, the short rate is a

conditional normal random variable and so the bond price can be found. When the short

rate dynamics have a CIR form with Markov switching, we apply the discussion in Elliott

and van der Hoek (2001). A key ingredient is the theory of stochastic flows, and using

this theory we obtain a conditional expectation of a bond price given the full information
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of the chain history.

The remaining part of the paper is organized as follows. Section 2 considers the pricing

of a discount bond when the short rate has Vasicek-dynamics. Section 3 gives a bond

pricing formula for a CIR-type process. In Section 4 the term structure in our model is

calculated and examined. Some concluding remarks are provided in Section 6.

2 Vasicek-Type Short Rate

This section gives a derivation of the bond pricing with Vasicek-type short rate dynamics.

2.1 Model setup

We assume the short rate has dynamics

dr = κ(θt − r)dt + σdw, (2.1)

where w denotes a Brownian motion under the risk-neutral probability measure.

We suppose that the mean-reverting level θ in the dynamics is determined by a Markov

chain z = {zt, t ≥ 0} with n possible states. Without loss of generality the state space

of z can be identifed with the set of standard unit vectors in Rn, {e1, . . . , en}, where

ei = (0, . . . , 0, 1, . . . , 0)′ ∈ Rn. If the mean-reverting level θt takes one of the n values in

{θ1, . . . , θn}, then θt = 〈ϑ, zt〉, where ϑ = (θ1, . . . , θn)′. We suppose z has a transition-rate

matrix of the form

Γ =




γ11 . . . γ1n

...
. . .

...

γn1 . . . γnn


 .

Here for i 6= j γij denotes the intensity of jumping from regime i to j. Recall that γij ≥ 0

for i 6= j and
∑

j γij = 0. The two processes w and z are supposed independent.

It is well-known that the process z follows the vector stochastic dynamics

dz = Γ′zdt + dm. (2.2)

Here m = {mt, t ≥ 0} is an Rn-valued martingale process.

Suppose Fw
t and Fz

t , respectively, denote the filtrations generated by the Brownian

motion w and the Markov chain process z up to time t. Then Gt = Fw
t ∨Fz

t describes all

the information up to t.
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2.2 Derivation

The following proposition gives the pricing formula of a discount bond in the Vasicek case.

Proposition 1. Let Θ be the diagonal matrix whose i-th component is θi and 1 =

(1, . . . , 1)′. When the short rate r has Vasicek dynamics as in (2.1), the price of a zero-

coupon bond at time t with maturity τ is given by

p(t, τ, r, z) =
〈
Φ(t, τ ; e−κ(τ−t))z,1

〉× exp

{
−1− e−κ(τ−t)

κ
r

+
1

2

(σ

κ

)2
(

(τ − t)− 2(1− e−κ(τ−t))

κ
+

1− e−2κ(τ−t)

2κ

)}
,

(2.3)

where Φ(t, τ ; η) is the n× n matrix function defined by the ordinary differential equation

dΦ(u, t; η)

dt
= (Γ′ − (1− ηeκt)Θ)Φ(u, t; η) (2.4)

with Φ(u, u; η) = I (identity matrix).

Proof. From (2.1), the short rate satisfies

rt = e−κtr0 + κ

∫ t

0

e−κ(t−u)θudu + σ

∫ t

0

e−κ(t−u)dwu.

Thus we have

∫ τ

0

rudu =
1− e−κτ

κ
r0 +

∫ τ

0

(
1− e−κ(τ−u)

)
θudu +

σ

κ

∫ τ

0

(
1− e−κ(τ−u)

)
dwu. (2.5)

Note that given Fz
τ , the history of z to maturity τ , (2.5) is normally distributed with

mean

E0

[∫ τ

0

rudu

∣∣∣∣Fz
τ

]
=

1− e−κτ

κ
r0 +

∫ τ

0

(
1− e−κ(τ−u)

)
θudu,

and variance

V0

[∫ τ

0

rudu

∣∣∣∣Fz
τ

]
=

(σ

κ

)2
∫ τ

0

(
1− 2e−κ(τ−u) + e−2κ(τ−u)

)2
du

=
(σ

κ

)2
[
τ − 2(1− e−κτ )

κ
+

1− e−2κτ

2κ

]
.

Here E0 and V0 are the expectation and variance operators given r0 and z0, respectively.

Therefore, given Fz
τ

E0

[
exp

{
−

∫ τ

0

rudu

}∣∣∣∣Fz
τ

]
= exp

{
−1− e−κτ

κ
r0 −

∫ τ

0

(
1− e−κ(τ−u)

)
θudu

+
1

2

(σ

κ

)2
(

τ − 2(1− e−κτ )

κ
+

1− e−2κτ

2κ

)}
.
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Thus conditioning out Fz
τ the bond price is equal to

p(0, τ) = qτE0[hτ ],

where

qτ = exp

{
−1− e−κτ

κ
r0 +

1

2

(σ

κ

)2
(

τ − 2(1− e−κτ )

κ
+

1− e−2κτ)

2κ

)}

and

hτ = exp

{
−

∫ τ

0

(
1− e−κ(τ−u)

)
θudu

}
. (2.6)

To calculate E0[hτ ], consider the processes

gη
t = exp

{
−

∫ t

0

(1− ηeκu)〈ϑ, zu〉du

}
. (2.7)

for an arbitrary constant η, and the n-dimensional vector process gη
t zt. As z satisfies (2.2)

and gη
t is given by (2.7), the vector process gη

t zt has dynamics

d(gη
t zt) =gη

t dzt + ztdgη
t

=(Γ′ − (1− ηeκt)〈ϑ, zt〉)gη
t ztdt + gη

t dmt. (2.8)

Note that 〈ϑ, zt〉gη
t zt = Θgη

t zt. Hence (2.8) can be written as

gη
t zt = z0 +

∫ t

0

(Γ′ − (1− ηeκu)Θ)gη
uzudu +

∫ t

0

gη
udmu. (2.9)

Taking the expectation of both sides of (2.9), we obtain

E0[g
η
t zt] = z0 +

∫ t

0

(Γ′ − (1− ηeκu)Θ)E0 [gη
uzu] du.

Now suppose Φ = Φ(u, t; η) is the solution of (2.4). Then we have

E0[g
η
t zt] = Φ(0, t; η)z0. (2.10)

Because 〈zt,1〉 = 1, we see that

E0[g
η
t ] = E[〈gη

t zt,1〉] = 〈Φ(0, t; η)z0,1〉.

Now e−κτ is not random, so we can set η = e−κτ . Then we have

E0[hτ ] =
〈
Φ(0, τ ; e−κτ )z0,1

〉
.

The proposition follows because r is a time-homogeneous Markov process.
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Remark 1. The simultaneous PDE system in Proposition 3.2 of Landén (2000) becomes

a simultaneous ODE system when the short rate has Vasicek-dynamics, (see Example 3.1

in her paper), with a Markov switching θ. However, her ODE system does not take the

form of a matrix ODE but a system of non-linear ODEs and thus requires a condition for

the solution of the ODEs to exist. On the other hand, our ODEs are a linear system of a

matrix form with a smooth matrix function, and so the solution of the ODEs exists and is

unique. The solution of our matrix ODE is easily calculated while solutions of non-linear

ODEs or PDEs are not. This difference comes from the treatment of η = e−κ(τ−t). In

other words, the ODEs become simple by taking a conditional expectation of the bond

price and then setting e−κτ in (2.6) as a non ramdom parameter.1

Remark 2. If Γ′Θ = ΘΓ′, then the solution of (2.4) is given by

Φ(u, t; η) = exp

{
(t− u)Γ′ −

(
(t− u)− η(e−κt − eκu)

κ

)
Θ

}

=e(t−u)Γ′ × e−
(
(t−u)− η(e−κt−eκu)

κ

)
Θ

where the exponential matrix eA is simply

eA =
∞∑

k=0

1

k!
Ak.

In this case, we have

〈Φ(t, τ ; e−κ(τ−t))z,1〉 =〈e(τ−t)Γ′z, e−
(
(τ−t)− η(e−κτ−eκt)

κ

)
Θ1〉

=
n∑

i=1

wi
τ−t(z)e

−
(
(τ−t)− η(e−κτ−eκt)

κ

)
θi

,

where

wτ (z) := (w1
τ (z) . . . wn

τ (z))′ = eτΓ′z. (2.11)

Hence the price formula (2.3) becomes

p(t, τ, r, z) =
n∑

i=1

wi
τ−t(z)pV(t, τ, r; θi),

where pV is the pricing formula in the standard Vasicek case with constant mean-reverting

level θi. That is, the bond price is equal to the weighted average of solutions in the

standard Vasicek case when Θ and Γ′ commute.

1It is worth mentioning that Landén (2000) considers a more general setting and so her PDE system

holds for more cases than ours.

5



As a corollary of Remark 2, we can obtain a closed-form solution for a bond price

when for i 6= j γij is a constant. That is, when γij = γ for i 6= j, the weights are given by

wi
τ (ek) =





1−e−nγτ

n
i 6= k,

1−∑
j 6=k wj

τ (ek) i = k.

The case n = 2 corresponds to the model of Hansen and Poulsen (2000).

Proposition 1 can be generalized to the case where not only θ but also σ are modulated

by a Markov chain. We omit the proof because it is a simple variation of Proposition 1.

Proposition 2. Suppose that the short rate process has Vasicek dynamics with θt = 〈ϑ, zt〉
and σt = 〈σ, zt〉 and the matrix Σ is defined by

Σ = diag[σ].

Then the price of a zero-coupon bond at time t with maturity τ is given by

p(t, τ, r, z) = 〈Φ(t, τ ; e−κ(τ−t))z,1〉 × exp

{
−1− e−κ(τ−t)

κ
r

}
.

Here Φ(t, τ ; η) is the n× n matrix function defined by the ordinary differential equation

dΦ(u, t; η)

dt
=

(
Γ′ − (1− ηeκt)Θ +

1

2

(
1− ηeκt

κ

)2

Σ2

)
Φ(u, t; η)

with Φ(u, u; η) = 1.

3 CIR-Type Short Rate

In this section we shall derive the price of a discount bond when the short rate is given

by a CIR-type process with a mean-reverting level which follows a Markov chain. The

procedure is similar to the Vasicek case. We first derive a conditional expectation of the

bond price given the history of the chain and then take a second expectation. To calculate

the conditional expectation, we apply the discussion of Elliott and van der Hoek (2001),

who consider CIR dynamics without regime switching.

The price is given in the following proposition:

Proposition 3. Suppose that the short rate process is given by the CIR dynamics

dr = κ(〈ϑ, zt〉 − r)dt + σ
√

rdw, (3.1)
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where z follows (2.2). Then the price of a discount bond is given by

p(t, τ, r, z) = 〈Φ(t, τ ; eζ(τ−t))z,1〉 × exp

{
− 2(eζ(τ−t) − 1)

(κ + ζ)(eζ(τ−t) − 1) + 2ζ
r

}
,

where ζ =
√

κ2 + 2σ2 and Φ(t, τ ; η) is the n × n matrix function defined by the ordinary

differential equation

dΦ(u, t; η)

dt
=

(
Γ′ − 2κ(ηe−ζt − 1)

(κ + ζ)(ηe−ζt − 1) + 2ζ
Θ

)
Φ(u, t; η) (3.2)

with Φ(u, u; η) = I.

Proof. With r given by (3.1), we have

E0

[
e−
R τ
0 rudu

∣∣∣Fz
τ

]
= exp

{
−κ

∫ τ

0

〈ϑ, zu〉b(u, τ)du− b(0, τ)r

}
, (3.3)

where

b(t, τ) =
2(eζ(τ−t) − 1)

(κ + ζ)(eζ(τ−t) − 1) + 2ζ
.

See Appendix A for a proof. Therefore, conditioning out Fz
τ the price of a discount bond

is:

p(0, τ, r, z) =E
[
exp

{
−κ

∫ τ

0

〈ϑ, zu〉b(u, τ)du

}∣∣∣∣ z0 = z

]
e−b(0,τ)r. (3.4)

Define the process gη by

gh
t = exp

{
−

∫ t

0

κ〈ϑ, zu〉 2(ηe−ζu − 1)

(κ + ζ)(ηe−ζu − 1) + 2ζ
du

}

and the n-dimensional vector process gη by

gη
t = gη

t zt.

Then gη satisfies

dgη
t =− κ〈ϑ, zt〉 2(ηe−ζt − 1)

(κ + ζ)(ηe−ζt − 1) + 2ζ
gη

t dt + gη(Γ′ztdt + dmt).

That is,

gη
t =

∫ t

0

(
Γ′ − 2κ(ηe−ζu − 1)

(κ + ζ)(ηe−ζu − 1) + 2ζ
Θ

)
gη

udu +

∫ t

0

gη
udmu. (3.5)

Taking the expectation of (3.5), we obtain

ĝη
t =

∫ t

0

(
Γ′ − 2κ(ηe−ζu − 1)

(κ + ζ)(ηe−ζu − 1) + 2ζ
Θ

)
ĝη

udu,
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where ĝη
t = E[gη

t |z0].

From a similar discussion to the Vasicek case, we have

ĝη
τ = E0[g

η
τzτ ] = Φ(0, τ ; η)z0

where Φ(u, t; η) is defined by the ODE (3.2). We then obtain

E [gη
τ | z0 = z] = E [〈gη

τ ,1〉| z0 = z] = 〈Φ(0, τ ; eζτ )z,1〉

and the proof is completed.

As in the Vasicek case, the price is equal to the weighted average of those in the

constant case when Γ′ and Θ commute. That is, if Γ′Θ = ΘΓ′, then the price is

p(t, τ, r, z) =
n∑

i=1

wi
τ−t(z)pCIR(t, τ, r; θi).

Here pCIR is the price in the standard CIR case and wi
τ are defined by (2.11).

Note also that, unlike the Vasicek case, we cannot extend our proof of Proposition 3

to the case where other parameters are also modulated by a Markov chain.

4 Term Structure

In this section we give some numerical calculations and examine how the existence of

regime shifts affects bond prices and term structure.

The basic parameter setting used in the analysis is presented in Table 1. Here we

Table 1: Basic parameter setting for the numerical calculations.

n κ σ θ1 θ2 γ12 γ21

2 0.2 0.02 0.1 0.04 0.1 0.2

set θ1 > θ2, meaning that regime 1 represents an economic boom while regime 2 is a

recession. To match actual situations, we set γ12 > γ21. In this parameter setting, the

long-run mean rate is equal to 8%.

Figure 1 depicts the bond yield up to ten years when the short rate has Vasicek-type

dynamics for totally six cases: r = 0.02, 0.06, 0.12 and z = e1, e2.

[Figure 1 is inserted here.]
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We observe from the figure that even when the initial interest rate is the same level, the

ten-year bond yield varies, depending on the current regime. For example, when r = 0.02,

the ten-year zero rate in the case z = e1 is 5.64% while that in the case of e2 is 4.23%.

Note also that in the case r = 0.06, the shape of the term structure changes significantly

when the regime changes.

Figure 2 depicts the bond yield up to ten years when the short rate has CIR-type

dynamics for the six cases.

[Figure 2 is inserted here.]

We also have a similar observation that the effect of the current regime on the price and

yield is non-negligible. For example, the ten-year zero rate in the case of regime 1 is 5.82%

while that in the case of regime 2 is 4.42%.

In summary, we conclude from the numerical results that the regime structure can

have a significant impact on the bond price and the term structure.

5 Option Pricing

This section presents how to calculate the price of derivatives for the case of Vasicek-type

dynamics. The key step again is an initial conditional expectation given the information

of the chain up to maturity.

Consider a European call option on a discount bond with maturities of the option and

the underlying bond t and τ , respectively. The price of a call option at time 0 is given by

c(0, t, τ, r, z) = E
[
e−
R t
0 rudu{p(t, τ, rt, zt)− k}+

∣∣∣ r0 = r, z0 = z
]
, (5.1)

where k is the strike price.

To calculate (5.1), we firstly derive the conditional expectation given the full history

of the chain, that is, given Fz
τ . Let

p̃(0, τ, r, {z}) = E0

[
e−
R τ
0 rudu

∣∣∣Fz
τ

]

= exp

{
−1− e−κτ

κ
r +

1

2

(σ

κ

)2
(

τ − 2(1− e−κτ )

κ
+

1− e−2κτ

2κ

)

−
∫ τ

0

(
1− e−κ(τ−u)

) 〈ϑ, zu〉du

}
.

Then we have

E0

[
e−
R t
0 rudu max {p(t, τ)− k, 0}

∣∣∣Fz
τ

]

= p̃(0, τ, r, {z})N(d̃(0, t, τ))− p̃(0, t, r, {z})kN(d̃(0, t, τ)− σp),
(5.2)
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where N is a cumulative density function of a standard normal,

d̃(0, t, τ) =
1

σp

log

(
p̃(0, τ, r, {z})
p̃(0, t, r, {z})

)
+

σp

2

=
1

σp

(
e−κτ − e−κt

κ
r +

1

2

(σ

κ

)2
(

(τ − t) +
2(e−κτ − e−κt)

κ
− e−2κτ − e−2κt

2κ

)

∫ t

0

{
1{0≤u<t}(e

−κτ − e−κt)eκu + 1{u≥t}(1− e−κ(τ−u))
} 〈ϑ, zu〉du

)
+

σp

2

(5.3)

and

σ2
p =

σ2

κ2

∫ t

0

(
e−κ(t−u) − e−κ(τ−u)

)2
du.

See, for example, Section 9.6 of Elliott and Kopp (2005) for more discussions of the

derivation. Therefore the price of the option is expressed as

c(0, t, τ, r, z) = E0[p̃(0, τ, r, {z})N(d̃(0, t, τ))]− E0[p̃(0, t, r, {z})kN(d̃(0, t, τ)− σp)].

(5.4)

Consider the first term of (5.4). It can be written as

E0[p̃(0, τ, r0, {z})Φ(d̃(0, t, τ))] =E0[p̃(0, τ, r0, {z})]E0

[
p̃(0, τ, r0, {z})

E0[p̃(0, τ, r0, {z})]N(d̃(0, t, τ))

]

=p(0, τ, r0, z0)Eτ
0[N(d̃(0, t, τ))]

where the probability measure Pτ
0 is defined by

Pτ
0(A) =E0

[
p̃(0, τ, r0, {z})

E0[p̃(0, τ, r0, {z})]1A

]
= E0


 e−

R τ
0 (1−e−κ(τ−u))〈#,zu〉du

E0

[
e−
R τ
0 (1−e−κ(τ−u))〈#,zu〉du

]1A




=
E0

[
e−
R τ
0 (1−e−κ(τ−u))〈#,zu〉du × 1A

]

〈Φ(0, τ ; e−κτ )z0,1〉 (5.5)

for A ∈ Gτ . Equation (5.5) with (5.3) implies that we can calculate the option price if the

density function under Pτ
0 of

∫ τ

0

(
1{0≤u<t}(e

−κτ − e−κt)eκu + 1{u≥t}(1− e−κ(τ−u))
) 〈ϑ, zu〉du (5.6)

is obtained.

Write

ζu =1{0≤u<t}(e
−κτ − e−κt)eκu + 1{u≥t}(1− e−κ(τ−u)).
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Since (5.6) is

∫ τ

0

〈ϑ, ζuzu〉du,

its distribution is determined if we can find the characteristic function of the n-dimensional

random vector

vτ =

∫ τ

0

ζuzudu =

(∫ τ

0

ζu1{θu=θ1}du . . .

∫ τ

0

ζu1{θu=θn}du

)
.

The characteristic function of vτ under Pτ
0 is given by

ψvτ (ξ) =Eτ
0[e

i〈‰,vτ 〉] =
E0

[
e−
R τ
0 (1−e−κ(τ−u))〈#,zu〉du+i〈‰,vτ 〉

]

〈Φ(0, τ)z0,1〉

=

E0

[
exp

{
−

∫ τ

0

(1− e−κ(τ−u))〈ϑ, zu〉du + i

∫ τ

0

〈ξ, ζuzu〉du

}]

〈Φ(0, τ)z0,1〉

=

E0

[
exp

{
−

∫ τ

0

〈(1− e−κ(τ−u))ϑ + iζuξ, zu〉du

}]

〈Φ(0, τ)z0,1〉 . (5.7)

To calculate the numerator of (5.7), consider the process

gη
t = exp

{
−

∫ t

0

〈(1− ηeκt)ϑ + iζuξ, zu〉du

}

for any arbitrary constant η and the vector process

gη
t = gη

t zt.

The SDE satisfied by gη
t is

dgη
t =ztdgη

t + gη
t dzt = ztg

η
t

〈−(1− ηeκt)ϑ + iζtξ, zt

〉
dt + gη

t (Γ
′ztdt + dmt)

=
(
Γ′ − (1− ηeκt)Θ + iζtΞ

)
gη

t dt + gη
t dmt

where Ξ = diag[ξ].

Suppose Ψ(u, t; η) is the n× n complex matrix function defined by

dΨ(u, t; η)

dt
=

(
Γ′ − (1− ηeκt)Θ + iζtΞ

)
Ψ(u, t; η)

with Ψ(u, u; η) = I. We have from a similar discussion to the derivation of (2.10) that

ĝη
t = E0[g

η
t ] is given by

ĝη
t = Ψ(0, t; η)z0.

11



So

E0[g
η
t ] = E0[〈gη

t ,1〉] = 〈Ψ(0, t; η)z0,1〉.

In summary, the characteristic function of vτ under Pτ
0 is

ψvτ (ξ) =
〈Ψ(0, τ ; e−κτ )z0,1〉
〈Φ(0, τ ; e−κτ )z0,1〉 .

For the second term of (5.4), we can calculate the characteristic function of vτ under

the probability measure Pt
0 in a similar way. The ODE system can be solved numerically

and so we finally obtain the call option on a discount bond in the case of regime switching

Vasicek dynamics

6 Conclusions

In this paper we have obtained the price of discount bonds when the mean-reverting level

of the short rate follows a Markov chain. The pricing formula includes a solution of a

simple linear matrix ODE, which is easy to handle numerically.

Our model has the advantage that it can capture economic cycles observed in the

economy, while the tractability still remains. The methodology is also applicable to

pricing of CDS and other derivative securities which depend on the economic conditions.

This will be discussed in later work.

A Derivation of (3.3)

Following Elliott and van der Hoek (2001), we use the notation rst(r) to denote that the

spot rate at time t depends on rs = r, the spot price at s for s ≤ t. In other words, we

have

rst(r) = r + κ

∫ t

s

(θt − rsu(r))du + σ

∫ t

s

√
rsu(r)dwu. (A.1)

Suppose that we have the history of θ up to maturity, or Fz
τ . Using the theory of

stochastic flows, we can differentiate (A.1) to obtain

Dst ≡ ∂rst(r)

∂r
= 1− κ

∫ t

s

Dsudu +
σ

2

∫ t

s

Dsu√
rsu(r)

dwu. (A.2)

Now consider the price of a discount bond

p(t, τ, r) = Et

[
exp

{
−

∫ τ

t

rtu(r)du

}]
, (A.3)

12



where the expectation operator is conditional on Gt. Differentiating (A.3) with respect to

r gives us

∂p(t, τ, r)

∂r
= Et

[(
−

∫ τ

t

∂rtu(r)

∂r
du

)
exp

{
−

∫ τ

t

rtu(r)du

}]
. (A.4)

Recall the forward measure Pτ is defined by

dPτ

dP
=

e−
R τ
0 r0u(r)du

E0

[
e−
R τ
0 r0u(r)du

] =
e−
R τ
0 r0u(r)du

p(0, τ)
.

Then (A.4) can be written as

∂p(t, τ, r)

∂r
= −Eτ

t

[∫ τ

t

Dtudu

]
p(t, τ, r) = −

(∫ τ

t

D̂tudu

)
p(t, τ, r),

where Eτ
t [Dtu] = D̂tu. Integrating in r, we see

p(t, τ, r) = exp {a(t, τ)− b(t, τ)r} (A.5)

for some functions a(t, τ) and b(t, τ) =
∫ τ

t
D̂tudu.

We now determine the function D̂tu. It follows from Girsanov’s theorem that the

Brownian motion wτ under Pτ is written with w, the Brownian motion under P, as

wτ
t = wt +

∫ t

s

(∫ τ

u1

D̂u1u2dut

)
σ
√

rsu1(r)du1. (A.6)

Substituting (A.6) into (A.2) yields

Dst = 1− κ

∫ t

s

Dsudu− σ2

2

∫ t

s

Dsu1

(∫ τ

u1

D̂u1u2du2

)
du1 +

σ

2

∫ t

s

Dsu√
rsu(r)

dwτ
u.

Taking the expectation under Pτ
s , we obtain

D̂st = 1− κ

∫ t

s

D̂sudu− σ2

2

∫ t

s

D̂su1

(∫ τ

u1

Eτ
s [D̂u1u2 ]du2

)
du1. (A.7)

Recall that the stochastic flow satisfies the property rsu2(r) = ru1u2(rsu1(r)). Thus we

have

Dsu2 =
∂ru1u2(rsu1(r))

∂r
=

∂ru1u2(rsu1(r))

∂rsu1

∂rsu1(rsu1(r))

∂r
= Du1u2Dsu1 .

and so

Eτ
s [Dsu1D̂u1u2 ] = Eτ

s [Dsu1Eτ
u1

[Du1u2 ]] = Eτ
s [Dsu1Du1u2 ] = D̂su2 . (A.8)

Substituting (A.8) into (A.7), we obtain

D̂st = 1− κ

∫ t

s

D̂sudu− σ2

2

∫ t

s

∫ τ

u1

D̂su2du2du1. (A.9)
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Differentiating (A.9) twice with respect to t gives us

d2

dt2
D̂st = −κ

d

dt
D̂st +

σ2

2
D̂st. (A.10)

Noticing that the initial conditions are D̂ss = 1 and

d

dt
D̂st

∣∣∣∣
t=s

= −1− σ2

2

∫ τ

s

D̂sudu,

the solution of (A.10) is given by

D̂st = aeα+(t−s) + (1− a)eα−(t−s),

where α1 and α, α1 > α2, are the roots of the equation z2 + κz − σ2/2 = 0. Write

a =−
α2 + κ + σ2

2
eα2(τ−s)−1

α−

α1 − α2 + σ2

2

(
eα1(τ−s)−1

α1
− eα2(τ−s)−1

α2

) .

Then

b(t, τ) =

∫ τ

t

D̂tudu =
2(eζ(τ−t) − 1)

(κ + ζ)eζ(τ−t) − 2ζ
.

where ζ =
√

κ2 + 2σ2.

Now recall that the bond price p(t, τ, r) with short rate process (3.1) satisfies

∂p

∂t
+ κ(θt − r)

∂p

∂r
+

σ2

2
r
∂2p

∂r2
− rp = 0 (A.11)

with P (τ, τ, r) = 1. It follows after substituting (A.5) into (A.11) that for any r,

(
∂a

∂t
− ∂b

∂t
r

)
− r − κ(θt − r)b +

σ2

2
rb2 = 0.

Setting r = 0 yields

∂a

∂t
= κθtb(t, τ),

implying from the boundary condition that

a(t, T ) = −κ

∫ τ

t

θub(u, τ)du.

Hull and White (1990) and Maghsoodi (1996) also derive a similar formula for the case

where the coefficients are deterministic functions of time using a different approach.
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Figures

Figure 1: Term structure in the Vasicek-type.
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Figure 2: Term structure in the CIR-type.
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