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Abstract

There has recently been growing interest in modeling and estimating alternative con-
tinuous time multivariate stochastic volatility models. We propose a continuous time
fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the
conditional Laplace transform of the FIWSV model in order to obtain a closed form
expression of moments. We conduct a two-step procedure, namely estimating the pa-
rameter of fractional integration via log-periodgram regression in the first step, and
estimating the remaining parameters via the generalized method of moments in the
second step. Monte Carlo results for the procedure shows reasonable performances in
finite samples. The empirical results for the bivariate data of the S&P 500 and FTSE
100 indexes show that the data favor the new FIWSV processes rather than one-factor
and two-factor models of Wishart autoregressive processes for the covariance structure.

Keywords: Diffusion process; Multivariate stochastic volatility; Long memory; Fractional Brow-
nian motion; Generalized Method of Moments.

JEL classifications: C32, C51, G13
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1 Introduction

In the framework of discrete time models, the empirical literature has found evidence of slowly

decaying autocorrelations in the volatility of financial time series. This literature is based on

models suggested by Ding, Granger and Engle (1993), Baillie, Bollerslev and Mikkelsen (1996),

and Bollerslev and Mikkelsen (1996) for the ARCH family, Breidt, Crato and de Lima (1998) and

Harvey (1993) for stochastic volatility models, and Andersen et al. (2001), Asai, McAleer and

Medeiros (2012), Koopman, Jungbacker and Hol (2005), and Pong et al. (2004) for models of

realized volatility. With respect to the continuous time framework, Comte and Renault (1998)

suggested a long memory stochastic volatility model. Recently, Bollerslev, Sizova and Tauchen

(2012) developed a volatility equilibrium model.

For multivariate volatility models, a wide range of multivariate GARCH and stochastic volatil-

ity (SV) models has been developed, analyzed, and applied extensively in recent years to char-

acterize the volatility that is inherent in financial time series data. While Bauwens, Laurent

and Rombouts (2006) provided a survey of multivariate GARCH models, Asai, McAleer and Yu

(2006) and Chib, Omori and Asai (2009) deal with multivariate SV models. Recently, there has

been growing interest in continuous time multivariate SV processes. With respect to multivari-

ate derivative pricing models, Gourieroux (2006) and Gourieroux and Sufana (2010) extended

Wishart Autoregressive (WAR) diffusion processes, as originally considered by Bru (1991). Re-

cently, Muhle-Karbe, Pfaffel and Stelzer (2012) developed a multivariate Ornstein-Uhlenbeck-type

SV model based on a Lévy process.

The purpose of the paper is to develop a new continuous time fractionally integrated multivari-

ate SV model, along the lines of Bru (1991) and Gourieroux (2006), combined with a continuous

time fractionally integrated process, as suggested by Comte and Renault (1996, 1998).
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The remainder of the paper is organized as follows. Section 2 proposes the continuous time

fractionally integrated Wishart processes, and derives the conditional Laplace transform. Section

3 considers three kinds of Wishart stochastic volatility (WSV) models, namely one-factor and

two-factor WSV models and the fractionally integrated WSV (FIWSV) model. Section 4 suggests

a two-step procedure for estimating the new FIWSV models, and reports the results of Monte

Carlo experiments. Section 6 provides empirical results for the bivariate returns vector of the

S&P 500 and FTSE 100 indexes. Section 7 gives some conclusions.

In the following, for any symmetric matrix A, A1/2 is defined by the spectral decomposition

of A, so that A1/2A1/2 = A. For any square matrix A, the matrix-exponential operator is defined

by Exp(A) =
∑∞

i=0(1/i!)Ai, with A0 = I.

2 Fractionally Integrated Wishart Autoregressive Model

We develop new continuous time multivariate stochastic volatility (MSV) models, based on the

Wishart Autoregressive (WAR) process, as suggested by Bru (1991) and analyzed by Gourieroux

(2006). The WAR(ν,Φ,Θ) process is defined by

dW (t) =
(
νΘΘ′ +W (t)Φ′ + ΦW (t)

)
dt+W (t)1/2dB(t)Θ′ + ΘdB(t)W (t)1/2, (1)

where the B(t) are m dimensional and symmetric matrix-variate standard Brownian motions, ν

is a scalar such that ν > m, Φ is an m ×m matrix, and Θ is an m dimensional lower triangular

matrix. The Wishart process can be driven by the sum of the cross-products of the vector

Ornstein-Uhlenbeck (OU) process, as

W (t) =
ν∑
i=1

Yi(t)Yi(t)
′,

dYi(t) = ΦYi(t)dt+ ΘdB̃i(t),

(2)
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where B̃i(t) are m dimensional vector of mutually independent standard Brownian motions. How-

ever, the process also exists for non-integer degrees of freedom ν, like the χ2 distribution and the

Wishart distribution.

We employ the fractional Brownian motion, following the work of Comte and Renault (1996,

1998). Comte and Renault (1996) suggested continuous time fractional ARMA processes, while

Comte and Renault (1998) developed continuous time SV models. Based on an m×m standard

Brownian motion, define the fractional Brownian motion of order α as

Bα(t) =

∫ t

0

(t− s)
Γ(α+ 1)

dB(s), 0 ≤ α < 1

2
, (3)

with Bα(0) = O, where Γ(x) is the gamma function. This ‘one-sided’ definition corresponds to

the seminal paper by Mandelbrot and van Ness (1968). For α = 0, Bα(t) reduces to the standard

Brownian motion B(t). We exclude the case that −1/2 < α < 0, as long memory occurs on

the range that 0 < α < 1/2. As noted in Comte and Renault (1996), H = α + 1
2 is the Hurst

parameter. We may define a two-sided range for an increment of a fractional Brownian motion

process, but we follow Comte and Renault (1996).

The fractional Brownian motion process has several features. First, it has zero mean and a

covariance matrix given by

cov (vech{Bα(t)}, vech{Bα(s)}) =
1

2

(
|t|2α+1 + |s|2α+1 − |t− s|2α+1

)
Im(m+1)/2.

Second, the fractional Brownian motion process has a property of H self-similarity, which means

the probability distributions of Bα(βt) and |β|HBα(t) are identical. Third, the conditional variance

of increment Bα(t+ h)−Bα(t) is given by

Vt (vech{Bα(t+ h)−Bα(t)}) =
h2α+1

(2α+ 1){Γ(α+ 1)}2
Im(m+1)/2.
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See Comte and Renault (1996) for further details. Hence, the conditional variance of dBα(t) is

proportional to (dt)2α+1.

We can consider two kinds of extensions of the WAR process in order to develop a fractionally

integrated WAR (FIWAR) process. One extension is to replace B(t) with Bα(t) in equation (1),

while another is to use a vector fractional Brownian motion, B̃α,i(t), instead of B̃i(t) in equation

(2). The former approach produces the FIWAR1 model, given by

dW (t) =
(
νΘΘ′ +W (t)Φ′ + ΦW (t)

)
dt+W (t)1/2dBα(t)Θ′ + ΘdBα(t)W (t)1/2, (4)

with W (0) = W0. The latter approach yields the FIWAR2 model, defined by

W (t) =
ν∑
i=1

Yi(t)Yi(t)
′,

dYi(t) = ΦYi(t)dt+ ΘdB̃α,i(t),

(5)

giving a slightly different process:

dW (t) =
ν

(2α+ 1){Γ(α+ 1)}2
ΘΘ′(dt)2α+1 +

(
W (t)Φ′ + ΦW (t)

)
dt

+W (t)1/2dBα(t)Θ′ + ΘdBα(t)W (t)1/2, W (0) = W0.

(6)

The FIWAR1 process (4) and FIWAR2 process (6) reduce to the WAR model when α = 0. The

difference between the two FIWAR models is characterized by (dt)2α+1. If α > 0, the first term

on the right-hand side of dW (t) in equation (6) vanishes as a consequence of application of the

Ito formula. See Dai and Heyde (1996) for further details of the Ito formula based on fractional

Brownian motion process.

In the following, we derive the conditional and unconditional Laplace transforms (moment

generating function) of the FIWAR processes. As explained in Duffie, Pan and Singleton (2000),

the risk neutral Laplace transform is the basis for derivative pricing because it can be used to ob-

tain explicit or quasi-explicit prices for various derivatives. Applying the approach of Gourieroux
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and Sufana (2010), we can show that W (t) is an affine process. In order to derive the condi-

tional Laplace transform, we use the matrix Riccati linearization technique suggested by Fonseca,

Grasselli and Tebaldi (2008), instead of the approach of Gourieroux and Sufana (2010).

Before we derive conditional Laplace transforms for the two FIWAR processes, we introduce

the conditional Laplace transform of the basic WAR process, which is examined by Bru (1991)

and Gourieroux (2006). The conditional Laplace transform of W (t+ h), given W (t), is

ΨΞ,t(h) ≡ E [exp (tr{ΞW (t+ h)}) |W (t)]

=
exp(tr{(Im − 2ΞΩ(h))−1)ΞM(h)W (t)M(h)′})

[det(Im − 2ΞΩ(h))]ν/2
,

(7)

where Ξ is a symmetric matrix,

M(h) = Exp(Ah), Ω(h) =

∫ h

0
Exp(As)ΘΘ′[Exp(As)]′ds. (8)

Matrices M(h) and Ω(h) can be interpreted using the analogy of the OU process in continuous time

and the Gaussian VAR(1) in discrete time. For the OU process in equation (1), the distribution

of Yi(t + h) conditional on Yi(t) is given by N(M(h)Yi(t),Ω(h)), which constitutes the Gaussian

VAR(1) in discrete time. It is possible to obtain the solution of Ω(h). The conditional distribution

of W (t+ h) is a noncentral Wishart distribution.

Proposition 1 (i) For the WAR process defined by (1), the conditional Laplace transform is

given by equations (7) and (8). If Φ−1 exists, we have

vec(Ω(h)) = [(Im ⊗ Φ) + (Φ⊗ Im)]−1 vec(Exp(Φh)ΘΘ′Exp(Φ′h)−ΘΘ′).

(ii) The WAR process (1) is stationary if and only if all the eigenvalues of Φ are negative. Under

this condition, the WAR process has the invariant distribution, and follows the Wishart

distribution, W (Ω, ν), where

vec(Ω) = − [(Im ⊗ Φ) + (Φ⊗ Im)]−1 vec(ΘΘ′).
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Proof. See Appendix A.1.

Remark 1. By the property of the Wishart distribution, W (t) is positive definite if and only if (a)

ν > m and (b) Ω is positive definite. The second condition is guaranteed by the two conditions;

(b1) all the eigenvalues of Φ are negative, and (b2) the diagonal elements of C are non-zero.

Before we turn to the two FIWAR processes, we give the conditional Laplace transform of the

vector OU-type process with fractional Brownian motion.

Lemma 1 For the vector OU-type process with fractional Brownian motion defined by equation

(5), the conditional Laplace transform of Yi(t+ h), given Yi(t), is

ψαΞ,t(h) ≡ E
[
exp

(
γ′Y (t+ h)

)
|Y (t)

]
= exp

(
b†(h)′Y (t) + c†(h)

)
where

b†(h) = Exp(Φ′h)γ, c†(h) =
1

2
tr
{

Ωα(h)γγ′
}
, (9)

with

Ωα(h) = c−1
α

∫ h

0
s2αExp(Φs)ΘΘ′Exp(Φ′s)ds,

where cα = (2α+ 1)2{Γ(α+ 1)}2. If Φ−1 exists and 0 < α < 1/2, we have

vec(Ωα(h)) = c−1
α h2α [Im2 − (Im ⊗ Φ)− (Φ⊗ Im)]−1 vec(Ω(h)− Exp(Φh)ΘΘ′Exp(Φ′h)), (10)

where Ω(h) is defined by Proposition 1.

Proof. See Appendix A.2.

Remark 2. The distribution of Yi(t+ h) conditional on Yi(t) is given by N(M(h)Yi(t),Ωα(h)).

The following proposition shows the conditional Laplace transform regarding the FIWAR2

process.
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Proposition 2 For the FIWAR2 process (5), the conditional Laplace transform of W (t + h),

given W (t), is

Ψα
2,Ξ,t(h) ≡ E [exp (tr{ΞW (t+ h)}) |W (t)]

=
exp(tr{(Im − 2ΞΩα(h))−1)ΞM(h)W (t)M(h)′})

[det(Im − 2ΞΩα(h))]ν/2
,

(11)

where Ξ is a symmetric matrix, M(h) = Exp(Ah), and Ωα(h) is defined by Lemma 1.

Proof. With respect to the case that ν is an integer, it is straightforward from Lemma 1. As

in the case of the WAR process, the conditional distribution of W (t+ h) is a noncentral Wishart

distribution. It is known that this distribution exists also for noninteger degrees of freedom ν. �

Now we move to the conditional Laplace transform for the FIWAR1 process.

Proposition 3 For the FIWAR1 process (4), the conditional Laplace transform of W (t + h),

given W (t), is

Ψα
1,Ξ,t(h) ≡ E [exp (tr{ΞW (t+ h)}) |W (t)]

= exp(c(h) + tr{(Im − 2ΞΩα(h))−1)ΞM(h)W (t)M(h)′}),
(12)

where Ξ is a symmetric matrix,

c(h) =

∫ h

0
νtr
{

[Im − 2ΞΩα(s)]−1ΞExp(Φs)ΘΘ′Exp(Φ′s)
}
ds, (13)

and M(h) and Ωα(h) are as before.

Proof. See Appendix A.3.

Remark 3. We can apply the approach shown in Appendix A.3 to obtain the conditional Laplace

transform of equation (6). The result is the same as Proposition 2.

Owing to the integral of c(h), it is not straightforward to use the Laplace transform of FIWAR1.

For this reason, we concentrate on the FIWAR2 model defined by equation (5) for the remainder

of the paper.
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3 Fractionally Integrated Wishart Stochastic Volatility

Let pt be an m dimensional vector of financial log-prices evolving in continuous time. The con-

tinuous time multivariate stochastic volatility (MSV) model is defined by

dp(t) = µ(p, t)dt+ Σ(t)1/2dB̃0(t), (14)

where B̃0(t) are m dimensional vector of mutually independent standard Brownian motions, and

Σ(t)1/2 (m ×m) is a function of diffusion processes. Here, Σ(t) is the instantaneous covariance

matrix. For modeling Σ(t), we consider three kinds of specifications based on the WAR and

FIWAR processes, as follows:

(i) Wishart Stochastic Volatility (WSV) Model

Σ(t) = CV (t)C ′, where V (t) ∼WAR(ν,Φ, Im);

(ii) Two Factor WSV (2WSV) Model

Σ(t) = C[V1(t) + V2(t)]C ′, where Vk(t) ∼WAR(νk,Φk, Im) (k = 1, 2);

(iii) Fractionally Integrated WSV (FIWSV) Model

Σ(t) = CV (t)C ′, where V (t) ∼ FIWAR2(ν,Φ, Im, δ),

where C is an m dimensional lower triangular matrix. For purposes of identification, we restrict

the (1, 1) element of C to be positive. As our analysis focuses on modeling covariance processes

rather than correlation processes (see McAleer et al. (2008) and Caporin and McAleer (2012)),

we assume µ(p, t) = 0.

The first model is based on the WAR process, and Σ(t) is equivalent to W (t) in equation (1).

The second model is motivated by recent empirical analyses on univariate two-factor SV models,
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including the papers of Bollerslev and Zhou (2002) and Chernov et al. (2003). By introducing

a second factor, the model can describe a longer persistence process than the simple one-factor

model. The third model works with the FIWAR2 model examined in the previous section.

Now we turn to the conditional Laplace transform of the log-price process p(t). Regarding

the WSV and 2WSV processes, we obtain the conditional Laplace transform as special cases of

Proposition 1 of Asai and McAleer (2012). For the general K factor WSV model, we have

Ψ̃γ,t(h) ≡ Et
[
exp

(
γ′p(t+ h)

)]
= exp

[
K∑
k=1

tr (Ak(h)Vk(t)) + b(h)′p(t) + c(h)

]
, (15)

where

Ak(h) = [Ñ22,k(h)]−1Ñ21,k(h), (k = 1, . . . ,K),

b(h) = γ,

c(h) = −1

2

K∑
k=1

νk

[
log det(Ñ22,k(h)) + htr(Φ′k)

]
,

with (
Ñ11,k(h) Ñ12,k(h)

Ñ21,k(h) Ñ22,k(h)

)
= Exph

(
Φk −2Im

1
2Cγγ

′C ′ −Φ′k

)
,

if [Ñ22,k(h)]−1 exists.

The next proposition gives the conditional Laplace transform of the log-price process p(t) of

the FIWSV process.

Proposition 4 For the FIWSV model with equation (6), Θ = Im, and equation (14), the condi-

tional Laplace transform of p(t+ h), given (p(t), V (t)), is

Ψ̃α
γ,t(h) ≡ Et

[
exp

(
γ′p(t+ h)

)]
= exp

[
tr
(
Ã(h)V (t)

)
+ b̃(h)′p(t) + c̃(h)

]
, (16)
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where the symmetric matrices Ã(h), vector b̃(h) and scalar c̃(h) satisfy the system of Riccati

equations:

d

dh
Ã(h) = Φ′Ã(h) + Ã(h)Φ + 2c−1

α h2α[Ã(h)]2 + Γ̃,

d

dh
b̃(h) = 0,

d

dh
c̃(h) = νc−1

α h2αtr
(
Ã(h)

)
,

with Γ̃ = 1
2Θγγ′Θ′, cα defined by Lemma 1, and the initial conditions that Ã(0) = O, b̃(0) = γ

and c̃(0) = 0. The solutions are given by

Ã(h) = [Ñ22(h)]−1Ñ21(h),

b̃(h) = γ,

c̃(h) = −1

2
ν
[
log det(Ñ22(h)) + htr(Φ′)

]
,

where (
Ñ11(h) Ñ12(h)

Ñ21(h) Ñ22(h)

)
= Exph

(
Φk −2c−1

α h2αIm
Γ̃ −Φ′k

)
,

if [Ñ22(h)]−1 exists.

Proof. See Appendix A.4.

Define the vector of asset returns as y(t + h) = p(t + h) − p(t). Noting that the fractional

Brownian motion process (3) starts from zero, we can obtain the moment generating function of

y(t+ h), conditional on V (0), as follows:

E
[
exp(γ′y(t+ h))|V (0)

]
= E0Et

[
exp(γ′(p(t+ h)− p(t)))

]
= E0 exp(−γ′p(t))Ψ̃α

γ,t(h)

= E0 exp
(
c̃(h) + tr

{
Ã(h)V (t)

})
= exp (c̃(h)) Ψα

2,Ã(h),0
(t), (17)
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where Ψα
2,Ξ,t(h) is defined by equation (11). This result constitutes the basics of the estimation

procedure shown in the next section.

4 Estimation

For estimating the FIWSV models, we use the following two-step method: (i) Estimate the order

of the fractional Brownian motion, α, via the Geweke and Porter-Hudak (1993) (GPH) log-

periodgram regression estimator; (ii) Estimate the remaining parameters via a generalized method

of moments (GMM), based on the moment generating function of y(t+ h).

Robinson (1995) gives the formal proof for the asymptotic normality of the GPH estimator

and its multivariate extension. Deo and Hurvich (2001) present Monte Carlo results for estimating

the degree of fractional integration of ARFIMA plus noise models, using the GPH estimator. Deo

and Hurvich (2001) investigated an appropriate order of the length of periodgrams, and found

that it is o(T 0.3). For the data of {vech(y(t)y(t)′)}Tt=1, we estimate the single parameter α by

imposing linear restrictions on the multivariate log-periodgram regression.

In the second step, we conduct GMM using equation (17). Following Gourieroux and Sufana

(2010), we work with the moments of exp(u′2y(t + 2h) + u′1y(t + h)) for y(t). For the case of

n = 2, we consider 17 moment conditions of (u′2, u
′
1): (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 2, 0), (0, 0, 0, 2),

(0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0), (1, 0, 2, 0), (0, 1, 0, 2), (1, 0, 0, 2), (0, 1, 2, 0),

(2, 0, 2, 0), (0, 2, 0, 2), (2, 0, 0, 2), (0, 2, 2, 0). For the parameter vector θ, we define the 17×1 vector

as

ft(θ) =
{

exp(u′2y(t+ 2h) + u′1y(t+ h)))− E[exp(u′2y(t+ 2h) + u′1y(t+ h)))|V0]
}
.

By construction, Et[ft(θ)] = 0, and we can define the corresponding GMM estimator by θ̂T =

argmingT (θ)′WgT (θ), where gT (θ) is the sample mean of the moment conditions, gT (θ) = T−1
∑T−2

t=1 ft(θ),
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and W denotes the inverse of the asymptotic covariance matrix of gT (θ) (Hansen, 1982). Under

standard regularity conditions, the minimized value of the objective function multiplied by the

sample size follows the chi-square distribution asymptotically, which enables us to conduct an om-

nibus test of the overidentifying restrictions. Moreover, we have
√
T (θ̂− θ0)→dN(0, (G′WG)−1),

where θ0 is the true value of θ and G = dgT (θ0)
dθ′ .

At this point, we need to examine estimators of W−1. As we are dealing with long memory

processes, the conventional heteroskedasticity and autocorrelation consistent (HAC) covariance

matrix estimators, such as those of Newey and West (1987) and Andrews (1991), are inconsistent,

leading to asymptotically invalid tests and inconsistent interval estimates. In order to cope with

this problem, Robinson (2005) developed a consistent estimator in the presence of long memory.

Also, we use this approach for estimating Σ(0) in V (0) = C−1Σ(0)C ′−1 for the initial value V (0),

as we can use the estimator of Robinson (2005) for the special case d = 0.

We present the results of a Monte Carlo study to investigate the finite sample performance of

the GMM estimation for n = 2. We generate R simulated time series of {yt, xt}Tt=1 for the FIWSV

model (equation (5), Θ = Im, and equation (14)) and for some given “true” parameter vector.

Subsequently, we treat the parameter vector as unknown and estimate it for each series using

GMM. We compute the sample mean, standard deviation, and root mean squared error (RMSE),

and compare it with the true parameter values.

The two sets of true parameter values for generating Monte Carlo samples are given in the first

column of Tables 1(a)(b), which are based on the empirical analysis in Section 4. More precisely,

we use dν̂e for the true value of ν, where dxe is the integer from rounding up a scalar value x,

in order to generate samples from equation (5). Furthermore, we consider α̂+ 0.1 for the second

DGP in order to examine the effects of the long memory parameter. The results given in Table 1

14



are for sample size T = 2500, with the number of iterations set to R = 2000.

Table 1(a) shows the downward bias for the GPH estimator of α, as T = 2500 is a relatively

small sample size for estimating the long memory parameter. With respect to the second step,

the GMM estimator has an upward bias in Θ and ν, which is mainly caused by the bias in α. The

estimators of the diagonal elements of Φ have a downward bias, while those of the off-diagonal

elements have an upward bias. Table 1(a) shows that most of the values of the standard deviations

are close to those of the RMSE, indicating that the biases in finite samples are negligible. Table

1(b) deals with the case of longer persistence, that is, α̂ + 0.1. Compared with Table 1(a),

the biases, standard deviations and RMSE become larger due to the long range persistence, as

expected.

5 Empirical Analysis

This section presents the estimates of the alternative continuous time WSV models using bivariate

data for Standard & Poor’s 500 Stock Index (S&P) and the Financial Times Stock Exchange 100

Index (FTSE). The sample period for both series is Jan/2/2001 to Jan/28/2011, giving T = 2534

observations. Returns, yit, are defined as {logPit − logPi,t−1}, where Pit is the closing price on

day t for stock i.

We estimate one-factor and two-factor WSV models, including the simple WSV, 2WSV and

FIWSV models given in Section 3. As a diagnostic statistic, we use the conventional GMM J-test

of Hansen (1982). Under standard regularity conditions, the minimized value of the objective

function multiplied by the sample size is asymptotically chi-square distributed, which allows for

an omnibus test of the overidentifying restrictions.

The first column of Table 2 presents the GMM estimates of the WSV model. The estimate of Φ
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is close to the zero matrix, implying that Exp(Φ̂) is close to the identity matrix (see the first column

of Table 3). Intuitively, we may consider the process V (t) for constructing covariance matrices

as the sum of outer products of VAR processes, Yi(t + h) ∼ N(Exp(Φ)Yi(t), In), as described

in the vector OU process (2). In this sense, the Yi(t) which constitute V (t) may be considered

as a process integrated of order one. Hence, we need to consider even longer persistence in the

covariance structure. As the estimates of Θ and ν are insignificant, this implies the possibility

that the covariance matrix estimator is inconsistent for the presence of longer memory. The J-test

of overidentifying restrictions strongly rejects the WSV model.

Table 2 also gives the GMM estimates of the 2WSV model, which produces longer persistence

in the covariance matrix process than does the WSV model. With respect to the first factor, the

estimate of ν is 4.20 and significant. Although the estimate of Φ is close to the zero matrix, the

estimates of Φ11, Φ21 and Φ22 are significant. For the second factor, the estimate of ν2 is 7.82.

The sum of ν and ν2 is 12, which is close to the estimates for the one-factor model. The estimates

of ν2 and Φ2 are insignificant.

The second column of Table 3 shows the persistence of these two factors, with Exp(Φ̂) ' 0.94I2

and Exp(Φ̂2) ' O. Returning to Table 2, the J-test of overidentifying restrictions rejects the

2WSV model. Noting that the J-test statistic is the minimized value of the objective function

multiplied by the sample size, the objective function for the 2WSV model is improved compared

with the case of the WSV model. Note that it is not possible to impose the restriction on Φ2 of

Exp(Φ2) = O in order to reduce the number of parameters, as the restriction indicates that the

diagonal elements of Φ2 are −∞.

Now we turn to the estimates of the FIWSV process shown in Table 2. By construction, the

FIWSV model has a longer memory in the covariance structure than the two-factor WAR process.
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The GPH estimate of the memory parameter α is 0.335 and significant. As the model with

α = 0 corresponds to the simple WSV model, this shows that the data prefer the FIWSV model.

The estimate of ν is 2.51 and significant. The estimates of the elements of Φ are insignificant,

corresponding to Exp(Φ̂) ' O, which is shown in the third column of Table 3. Intuitively,

Yi(t), which constitutes V (t) in equation (5), can be considered as a process with fractional

Gaussian noise, which is defined by the difference between a fractional Brownian motion process

with its one-period lag. Again we are unable to restrict Φ = Log(O) in order to reduce the

number of parameters. The J-test of overidentifying restrictions does not reject the FIWSV

model. Therefore, the data prefer the FIWSV model, as compared with the WSV and 2WSV

models.

6 Conclusion

In this paper, we suggested the continuous time fractionally integrated Wishart stochastic volatil-

ity (FIWSV) process, which is an extension of the Wishart autoregressive process of Bru (1991)

and Gourieroux (2006). We also derived the closed-form expression of the conditional Laplace

transform (moment generating function) of the FIWSV model. We proposed a two-step proce-

dure for estimating the FIWSV model. The first step is to estimate the parameter of fractional

integration via the GPH estimator. In the second step, we estimate the remaining parameter

using the GMM technique, with Robinson’s (2005) asymptotic covariance matrix estimator for

the long memory process. We reported the results for Monte Carlo experiments. The empirical

results for the bivariate data of the S&P 500 and FTSE 100 indexes showed the usefulness of the

new FIWSV specification as compared with the one-factor and two-factor WSV models.
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Appendix

A.1 Proof of Proposition 1

In order to prove Proposition 1, we need to show some properties of the matrix-exponential oper-

ator. Before we proceed, we should note that for any m×m matrix A, the spectral decomposition

is given by A = ULUH , where U is the unitary matrix, and L is the diagonal matrix of eigenvalues

such that L = diag{λ1, . . . , λm}.

We work with the following two lemmas.

Lemma 2 For any square matrix A (m×m), we have the decomposition,

Exp(A) = U

 exp(λ1) O
. . .

O exp(λm)

UH .

Proof. See Bellman (1970) and Chiu et al. (1996).

Lemma 3 For any square matrix A (m×m),

d

ds
Exp(As) = A Exp(As).

Proof. It is straightforward from the definition, as we have

d

ds
Exp(As) =

d

ds

{
I + lim

n→∞

n∑
i=1

1

i!
Aisi

}
= lim

n→∞

d

ds

n∑
i=1

1

i!
Aisi

= lim
n→∞

A
n∑
i=1

1

(i− 1)!
Ai−1si−1 = A Exp(As). �

Under the stationary condition, the transition at horizon h tends to the invariant distribution

of the process in the long run (h→∞).

Proof of Proposition 1. By Lemma 1, we have M(∞) = O if and only if the stationary

condition is satisfied.
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Denote g(h) = Exp(Φh)ΘΘ′Exp(Φ′h). Then, Ω(h) =
∫ h

0 G(s)ds. Noting that dg(s)
ds = Φg(s) +

g(s)Φ′ by Lemma 2, we have

vec(Ω(h)) = [(Im ⊗ Φ) + (Φ⊗ Im)]−1 vec(Exp(Φh)ΘΘ′Exp(Φ′h)−ΘΘ′),

if Φ−1 exists. Hence,

vec(Ω(∞)) = − [(Im ⊗ Φ) + (Φ⊗ Im)]−1 vec(ΘΘ′),

if and only if the stationary condition is satisfied.

By setting h → ∞ in equations (7) and (8), we can show that the invariant distribution of

W (t) exists, if and only if the stationary condition is satisfied. The invariant distribution which

is characterized by the moment generating function, ΨΞ,t(∞) = [det(Im − 2ΞΩ(∞))]−ν/2, is the

Wishart distribution. �

A.2 Proof of Lemma 1

As Yi(t) is an affine process, the conditional Laplace transform is exponential affine such that

exp
(
b†(h)′Yi(t) + c†(h)

)
. By applying the Feynman-Kac argument, we obtain

0 = − d

dh
b†(h)′Yi −

d

dh
c†(h)

+ b†(h)′ΦYi +
1

2
tr
{
c−1
α h2αΘΘ′b†(h)b†(h)′

}
,

with boundary conditions b(0) = γ and c(0) = 0. Note that c−1
α h2αIm is the first derivative of

E[(B̃α(t + h) − B̃α(t))(B̃α(t + h) − B̃α(t))′). By identifying the coefficients of Yi, we have the

ordinary differential equations for b†(h) as

d

dh
b†(h) = Φb†(h)

d

dh
c†(h) =

1

2cα
tr
{
h2αΘΘ′b†(h)b†(h)′

}
.
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Thus, we have the solutions in (9).

Using g(h) in Appendix A.1, we have

Ωα(h) = c−1
α

∫ h

0
s2αg(s)ds,

where cα is defined by Proposition 2. If 0 < α < 1/2, we obtain

cαΩα(h) = [s2αΩ(s)]h0 −
∫ h

0
(2α)s2α−1g(s)ds

= h2αΩ(h)− [s2αg(s)]h0 +

∫ h

0
s2αdg(s)

ds
ds

= h2α {Ω(h)− g(h)}+ cαΦΩα(h) + cαΩα(h)Φ′.

The last equality is based on the fact that dg(s)
ds = Φg(s) + g(s)Φ′. If Φ−1 exists, we have equation

(10). �

A.3 Proof of Proposition 3

By applying the same approach of Gourieroux and Sufana (2010), it is straightforward to show that

the FIWAR process is an affine process. Hence, the conditional Laplace transform is exponential

affine such that exp (A(h)W (t) + c(h)). By applying the Feynman-Kac argument, we obtain

0 = −tr

[
d

dh
A(h)W

]
− d

dh
c(h)

+ tr
{

(νΘΘ′ +WΦ′ + ΦW )A(h) + 2c−1
α h2αWA(h)ΘΘ′A(h)

}

with boundary conditions A(0) = O and c(0) = 0. By identifying the coefficients of W , we have

the ordinary differential equations for A(h) and c(h) given by

d

dh
A(h) = ΦA(h) + ΦA(h) + 2c−1

α h2αA(h)ΘΘ′A(h)

d

dh
c(h) = tr

{
νΘΘ′A(h)

}
.
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As usual, the function c(h) can be obtained by direct integration.

Following Fonseca, Grasselli and Tebaldi (2008), we linearize the Matrix Riccati equation for

B(h) by doubling the dimension of the problem. Consider a decomposition which satisfies

A(h) = [F (h)]−1G(h).

Then we have

d

dh
[F (h)A(h)]− d

dh
[F (h)]A(h) = F (h)

d

dh
[A(h)].

Substituting the Matrix Riccati equation for A(h) into the above equation, we obtain

d

dh
G(h)− d

dh
[F (h)]A(h) = G(h)Φ +

[
F (h)Φ′ + 2c−1

α h2αG(h)ΘΘ′
]
Ak(h).

Hence, we can construct a system of (2m) linear equations given by

d

dh
G(h) = G(h)Φk,

d

dh
F (h) = −F (h)Φ′ − 2c−1

α h2αG(h)ΘΘ′,

with initial conditions G(0) = Ξ and Fk(0) = Im. The above equations can be written as follows:

d

dh
(G(h) F (h)) = (G(h) F (h))

(
Φ −2c−1

α h2αΘΘ′

O −Φ′

)
.

Hence, we obtain the solution by matrix-exponentiation:

(G(h) F (h)) = (Ξ Im)N(h), N(h) = Exph

(
Φ −2c−1

α h2αΘΘ′

O −Φ′

)
.

Denoting the partitioned matrices of N(h) as Nij(h) i, j = 1, 2, we have N11(h) = Exp(Φh),

N22(h) = Exp(−Φ′h) and N21(h) = O. With tedious but cumbersome matrix calculus, we have

N12(h) = −2Ωα(h)Exp(−Φ′h), if Φ−1 exists. Since we have

(G(h) F (h)) = (ΞN11(h) +N21(h) ΞN21(h) +N22(h)) ,
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we obtain the solution of A(h) as

A(h) = Exp(Φ′h)(Im − 2ΞΩα(h))−1)ΞExp(Φh).

Using the solution of A(h) and c(h), we have equation (12). �

A.3 Proof of Proposition 4

We can use the approach, which is analogous to Proposition 3, for obtaining the sytem of Riccati

equations and solutions of Ã(h) and b̃(h). Hence, we explain the way to derive the solution of

c̃(h).

By linearizing the Matrix Riccati equation for Ã(h), we have F̃ (h) which satisfies

[F̃ (h)]−1 d

dh
F̃ (h) = −Φ′ − 2c−1

α h2αÃ(h).

We can remove Ã(h) from the ODE of c̃(h), in order to have

d

dh
c̃(h) = −1

2
νtr

(
[F̃ (h)]−1 d

dh
F̃ (h) + Φ′

)
.

Note that 2c−1
α h2α was cancelled out by the substitution. On the other hand, we also have

F̃ (h) = Ñ22(h) defined by Proposition 4, to derive the solution of Ã(h). Now we can integrate

the last equation and obtain the solution of c̃(h) given by Proposition 4.
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Table 1: Monte Carlo Results for FIWSV Model

(a) DGP1

Para. True Bias Std.Dev. RMSE

α 0.3354 −0.0892 0.1853 0.2057
Θ11 0.0470 0.0121 0.2143 0.2146
Θ12 −0.0155 0.0120 0.3243 0.3245
Θ22 −0.0765 0.0515 0.4930 0.4956
ν1 3.0000 0.2035 3.0808 3.0875

Φ11 −49.367 −0.2430 2.5288 2.5405
Φ21 −9.8194 0.4994 2.2700 2.3243
Φ12 −9.8870 0.3420 2.3569 2.3816
Φ22 −42.784 −0.7457 2.9187 3.0125

(b) DGP2

Para. True Bias Std.Dev. RMSE

α 0.4354 −0.1489 0.2180 0.2581
Θ11 0.0470 0.0201 0.2324 0.2333
Θ12 −0.0155 0.0322 0.1693 0.1723
Θ22 −0.0765 0.0575 0.3315 0.3534
ν1 3.0000 0.2183 3.1611 3.1723

Φ11 −49.367 −0.2270 2.1101 2.1223
Φ21 −9.8194 0.5105 2.3513 2.4061
Φ12 −9.8870 0.4675 2.1337 2.1843
Φ22 −42.784 −0.8073 2.9107 2.9954

Note: We estimate the long memory parameter α by
the GPH method in the first step, and obtain the GMM
estimates based on α̂ in the second step.
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Table 2: Estimates for WSV Processes

Parameters WSV 2WSV FIWSV

GPH Estimate
α 0.3354 (0.0237)

GMM Estimates
Θ11 0.0009 (0.0012) 0.0022 (2.1251×10−5) 0.0470 (0.0154)
Θ21 0.0001 (0.0011) 0.0004 (5.8339×10−5) −0.0155 (0.0126)
Θ22 0.0006 (0.0008) 0.0021 (2.0196×10−5) −0.0765 (0.0062)
ν 12.937 (36.371) 4.1960 (0.4509) 2.5142 (0.4688)

Φ11 −0.0393 (0.0986) −0.0711 (0.0014) −49.367 (31.823)
Φ21 0.0160 (0.1427) 0.0065 (0.0038) −9.8194 (19.208)
Φ12 −0.0140 (0.0877) −0.0273 (0.0029) −9.8870 (23.268)
Φ22 −0.0164 (0.0447) −0.0639 (0.0014) −42.784 (6.8394)
ν2 7.8179 (6.9510)

Φ2,11 −12.637 (19.700)
Φ2,21 1.7311 (9.9463)
Φ2,12 2.5824 (9.8638)
Φ2,22 −3.8836 (2.2194)
J-test 70.663 15.727 16.144
d.o.f. 9 4 9
p-Value [0.0000] [0.0034] [0.0639]

Note: Standard errors are in parentheses. ‘J-test’ is the GMM test of overidentifying restric-
tions. The inverse of the weighting matrix is calculated using the asymptotic covariance matrix
estimator of Robinson (2005) for the moment conditions of FIWSV, and the estimator of Newey
and West (1987) with a lag length of 20 for the WSV model and 200 for 2WSV.
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Table 3: Estimates for Persistence Parameters

V (t) =

ν∑
i=1

Yi(t)Yi(t)
′, dYi(t) = ΦYi(t)dt+ ΘdB̃α,i(t)

Yi(t+ 1)|Yi(t) ∼ N(Exp(Φ)Yi(t),Ωα(h))

Parameters WSV 2WSV FIWSV

α 0 0 0.3354
Exp(Φ)

(1,1) 0.9614 0.9366 0.0000
(2,1) 0.0156 0.0092 0.0000
(1,2) −0.0136 −0.0196 0.0000
(2,2) 0.9836 0.9363 0.0000

Exp(Φ2)
(1,1) 0.0019
(2,1) 0.0067
(1,2) 0.0099
(2,2) 0.0351

Note: Although the estimates of ν are not inte-
gers, this expression gives an intuitive interpreta-
tion of the WSV models.
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