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Abstract

In this paper, we develop a three-period model that incorporates parents’ heteroge-

neous skills and a welfare constraint for newborn children. Our numerical analysis shows

how the optimal tax system is affected by the weight attached to the newborn child by

a social planner. The main finding is that an increase in the guaranteed welfare level

for newborn children makes the optimal capital income tax rate more regressive. This

result is closely related to the trade-off between incentives for parents and insurance for

the newborn child.
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1 Introduction

Reducing inequality is an important topic for researchers and a worthy objective for pol-

icymakers. In particular, society is responsible for protecting the living standards of the

newborn child. In countries with high government debt, there is substantial intergen-

erational inequality because newborn children face the prospect of repaying large debts.

Although fiscal policy can be used to reduce this inequality, this may adversely affect the

current generation. The purpose of this paper is to design an optimal mechanism for the

“current generation” that can be implemented by a social planner whose aim is to reduce

intergenerational inequality. Although there are many ways of developing such a policy,

the mechanism we use is based on optimal tax theory, known as “New Dynamic Public

Finance.”

In recent decades, many studies of optimal tax theory have emerged. Ramsey (1927)

proposes that the tax system be used not only to finance government purchases but also

to maximize social welfare. Developing this idea further, Mirrlees (1971) analyzes an

economy in which there are heterogeneous agents whose skills are private information.

Judd (1985) and Chamley (1986) extend Ramsey’s work to dynamic economies.

During this century, these strands of literature merged into “New Dynamic Public

Finance.” In these dynamic economic models, agents’ skills are private information that

follow arbitrary stochastic processes. Golosov, Kocherlakota and Tsyvinski (2003) show

that the intertemporal optimality condition is distorted as agents are discouraged from

saving. This means that agents’ marginal benefits of investing in capital exceed the

marginal costs of doing so under the constraint of efficient allocation. This optimality

condition is known as the inverse Euler equation or reciprocal Euler equation, and the

associated distortion is termed the capital wedge. Golosov, Tsyvinski and Werning (2007)

develop a two-period model that incorporates this wedge. The wedge is consistent with

a tax on capital income. Kocherlakota (2005) and Albanesi and Sleet (2006) design tax

policies that generate constrained efficient allocation. Kocherlakota (2005) shows that the

optimal capital income tax is regressive.

There is another strand of literature on optimal tax systems. Tax systems are also

used to reduce income inequality. Farhi and Werning (2007) develop a social discounting

model in which intergenerational inequality is analyzed. Their study is extended by

Farhi and Werning (2010), who analyze insurance for the newborn child. The planner

solves a Pareto problem in which the average utility of the newborn child must exceed

a certain level. They show that the intertemporal optimality condition has a negative
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wedge, which implies that each agent is encouraged to leave a bequest. They term this

wedge an implicit estate tax. This wedge is consistent with a negative estate tax; i.e., a

subsidy on bequests. Moreover, Farhi and Werning confirm that the implicit estate tax

should be progressive, so that parents leaving larger bequests earn lower net returns on

their bequests. By incorporating agents’ skills that follow arbitrary stochastic processes,

their model exhibits the discouraged savings problem. However, the relationship between

the capital wedge and the implicit estate tax is not explained clearly. They are vague on

how the weight attached to the newborn child by the planner affects the capital wedge

and the optimal tax system that is designed to deliver constrained efficient allocation.

In this paper, we develop a three-period model that incorporates two types of wedges.

A continuum of parents live for two periods and each couple produces a single child

who lives for one period. Parents have heterogeneous productivity levels acquired at the

beginning of each period. This framework enables us to analyze the relationship between

the two types of wedges. This is because the capital wedge and the implicit estate tax

emerge separately from the model. We first consider the planner’s problem. We assume

that the planner’s objective function is that of a utilitarian. The three constraints in the

planner’s problem are the incentive constraint, the resource constraint and the newborn

child’s welfare constraint. In Section 3, we define the capital wedge and the implicit

estate tax, both of which represent the difference between the intertemporal marginal

rate of substitution and the marginal rate of transformation. We then derive the inverse

Euler equations based on perturbation argument. We show how our optimal conditions

are related to those of Golosov, Tsyvinski and Werning (2007) and Farhi and Werning

(2010). Then, by following the approach suggested by Kocherlakota (2005), we attempt

to design an explicit tax system that generates constrained efficient allocation.

We also conduct a numerical analysis that shows how the weight attached to the new-

born child by the planner affects allocation and the optimal tax system. The main finding

is that the difference between the capital income tax rates of high- and low-productivity

parents increases with the weight attached to the newborn child by the planner. This

means that the optimal capital income tax becomes more regressive. The capital wedge

also increases with the weight attached to the newborn child. Mean reversion may explain

these results. Not only does the planner’s policy for newborn children reduce intergen-

erational inequality, it also reduces intragenerational inequality. Therefore, the incentive

constraint of high-productivity parents tightens and the planner must provide them with

stronger incentives. This result is troublesome. Policymakers may baulk at introducing a

regressive optimal capital tax because of opposition from the current generation.

3



2 A Three-period Economy

2.1 Preferences

A continuum of parents live in periods t = 0 and t = 1. Each couple produces a single

child who lives in period t = 2. Parents work and consume in each period, whereas their

children only consume. At the beginning of periods t = 0 and t = 1, parents learn their

productivity or skill level, θt, which is private information. They then produce yt units

of the consumption good, which requires yt/θt units of work effort in t = 0, 1. Let the

productivity realization in period 0 be θ0(i) for i = 1, 2, · · · , N0. Let π0(i) denote the

ex ante probability distribution, which, by the law of large numbers, is equivalent to the

ex post distribution in the population. In period 1, productivity becomes θ1(i, j) for

j = 1, 2, · · · , N1(i), where π1(j|i) is the conditional probability distribution for parents of

skill type j, whose skill type in period 0 is given by i. We assume that the probability

distribution of productivity, π, is common knowledge. The lifetime utility of parents with

productivity of θ0(i), θ1(i, j) is given by

V0(θ0(i), θ1(i, j)) ≡ u(c0(θ0(i))) − h(
y0(θ0(i))
θ0(i)

)

+ β[u(c1(θ1(i, j))) − h(
y1(θ1(i, j))
θ1(i, j)

)] + β2V2(θ0(i), θ1(i, j)),

with β < 1. Children’s utility, V2(·), is

V2(θ1(i, j)) ≡ u(c2(θ1(i, j))).

The utility function u(·) is increasing, concave, differentiable and satisfies Inada’s

conditions; the disutility function h(·) is increasing, convex and differentiable. In the rest

of this paper, we write c0(θ0(i)), c1(θ1(i, j)), c2(θ1(i, j)), y0(θ0(i)), y1(θ1(i, j)) as c0(i),

c1(i, j), c2(i, j), y0(i), y1(i, j), respectively.

2.2 Resource Constraints

We assume that production is linear in efficiency units of labor supplied by parents. We

also assume linear savings technology with rate of return R. Then, the resource constraints

are

∑
i

c0(i)π0(i) +K1 ≤
∑

i

y0(i)π0(i) +K0,

∑
i,j

c1(i, j)π1(j|i)π0(i) +K2 ≤
∑
i,j

y1(i, j)π1(j|i)π0(i) +RK1,
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∑
i,j

c2(i, j)π1(j|i)π0(i) ≤ RK2,

where K1 is the capital stock held between t = 0 and t = 1, K2 is capital stock held

between t = 1 and t = 2, and K0 is the endowed level of capital. Solving for K2 and K1

yields the following present-value resource constraint:

∑
i,j

[c0(i) +
1
R
c1(i, j) +

1
R2

c2(i, j)]π1(j|i)π0(i)

≤
∑
i,j

[y0(i) +
1
R
y1(i, j)]π1(j|i)π0(i) +K0. (1)

2.3 Incentive Constraints

We assume that the planner’s objective function is that of a utilitarian. Because parents’

productivity levels are private information, the allocation that maximizes social welfare is

constrained by informational friction. According to the revelation principle, the best allo-

cation can always be achieved directly if parents report their productivity levels truthfully

to the planner. Parents report productivity levels of ir and jr to the planner in the first

and second periods, respectively. Then, for all alternative feasible reporting strategies ir

and jr(j), the allocation must satisfy the following incentive constraints:

u(c0(i)) − h(
y0(i)
θ0(i)

) + β
∑
j

[u(c1(i, j)) − h(
y1(i, j)
θ1(i, j)

) + βu(c2(i, j))]π1(j|i)

≥ u(c0(ir))−h(
y0(ir)
θ0(i)

)+β
∑
j

[u(c1(ir, jr(j)))−h(
y1(ir, jr(j))
θ1(i, j)

)+βu(c2(ir, jr(j)))]π1(j|i).

(2)

2.4 The Planning Problem

The planner is also constrained by the welfare of the newborn child. Let V2 be the minimal

level of average utility for the newborn child guaranteed by the planner. This constraint

is formalized as follows:

E[V2(θ1(i, j))] ≥ V2. (3)

Thus, the constrained efficient planning problem is

maxE[V0(θ0(i), θ1(i, j))] (4)

subject to (1), (2) and (3).
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If equation (3) is not binding, our planning problem (4) is similar to that of Golosov,

Tsyvinski and Werning (2007). If productivity does not follow a stochastic process (i.e.,

if θ0(i) = θ1(i, j) for all i, j), then the problem described by (4) is similar to that of Farhi

and Werning (2010).

3 The Intertemporal Wedge

Let (c∗0,c
∗
1,c

∗
2,y

∗
0,y

∗
1) be the constrained efficient allocation of the planning problem. We

first define the intertemporal wedges, termed the capital wedge and the implicit estate

tax. We then derive the necessary conditions for the planning problem and characterize

the properties of these wedges.

3.1 The Capital Wedge

The capital wedge τ0,1 is defined as the intertemporal wedge between t = 0 and t = 1, as

follows:

(1 + τ0,1(i))u′(c∗0(i)) ≡ βR
∑
j

u′(c∗1(i, j))π1(j|i)

for all i.

3.2 The Implicit Estate Tax

The implicit estate tax τ1,2 is defined as the intertemporal wedge between t = 1 and t = 2,

as follows:

(1 + τ1,2(i, j))u′(c∗1(i, j)) ≡ βRu′(c∗2(i, j)),

for all i, j.

Note that when τ0.1 and τ0,2 are zero, the standard Euler equations are satisfied.

3.3 Necessary Conditions: The Inverse Euler Equations

We analyze the planning problem given by (4), and derive the necessary conditions for

optimality; i.e., the inverse Euler equations. We assume that the newborn child’s welfare

constraint (3) is binding. Given a constrained efficient allocation, we consider a class of

perturbations that are all incentive compatible. Atkinson and Stiglitz’s (1976) result is

derived by similar means. Hence, we obtain the following proposition.
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Proposition 1 A constrained efficient allocation satisfies the following inverse Euler

equations:
1

u′(c0(i))
=

1
βR

∑
j

1
u′(c1(i, j))

π1(j|i), (5)

for all i, and
1

u′(c1(i, j))
=

1
βRu′(c2(i, j))

− R

β

ν

µ
, (6)

for all i,j.

If consumption is stochastic, equation (5) implies that the standard Euler equations

are not satisfied. This result follows directly from applying Jensen’s inequality to the

reciprocal function 1/x in equation (5). We obtain

u′(c0(i)) < βR
∑
j

u′(c1(i, j))π1(j|i)

for all i. This implies that τ0,1(i) > 0 for all i. This result corresponds to that obtained

by Golosov, Tsyvinski and Werning (2007), who show that it is optimal to introduce a

positive wedge into savings that discourages saving. This means that agents’ marginal

benefits of investing in capital exceed the corresponding marginal costs at the constrained

efficient allocation under imperfect risk sharing.

Because of our assumption that the newborn child’s welfare constraint is binding,

the Lagrange multiplier ν is positive. Thus, the implicit estate tax τ1,2(i, j) must be

negative for all i, j. This result corresponds to that of Farhi and Werning (2010), who

show that constrained efficient allocation generates a negative wedge in bequests, and this

wedge implicitly encourages agents to leave bequests. This is consistent with a negative

estate tax, or simply, a subsidy on bequests. Moreover, equation (6) implies that c1(i, j)

and c2(i, j) are positively correlated at the constrained efficient allocation. The incentive

constraint implies that c1(i, j) and c2(i, j) are both nondecreasing in θ1(i, j). Hence,

τ1,2(i, j) is strictly negative and increasing in θ1(i, j) for all i. This property is referred to

by Farhi and Werning (2010) as the progressivity of the implicit estate tax. The following

proposition summarizes these properties.

Proposition 2 Suppose that the optimal allocation has a strictly positive consumption

plan and that the consumption plan is stochastic. Suppose also that the Lagrange multiplier

ν is strictly positive. Then, the capital wedge τ0,1(i) is positive for all i. Moreover, the

implicit estate tax τ1,2(i, j) is strictly negative and takes the following form:

τ1,2(i, j) = −R2 ν

µ
u′(c2(i, j)), (7)

for all i, j.
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4 Implementation

4.1 Important Assumptions

In this section, we follow Kocherlakota (2005) to design the optimal tax system, which

generates constrained efficient allocation for the planning problem (4). We show that a

nonlinear tax system incorporating labor income tax, capital income tax and an estate

tax can deliver constrained efficient allocation.

Before we design an explicit tax system, we introduce some definitions and assump-

tions. Let DOM0 be a subset of R defined as follows: y0 is in DOM0 if and only if there

exists a θ0(i) such that

y0 = y∗0(θ0(i)).

Similarly, let DOM1 be a subset of R2 defined as follows: (y0, y1) is in DOM1 if and only

if a θ0(i) and θ1(i, j) exist such that

(y0, y1) = (y∗0(θ0(i)), y
∗
1(θ1(i.j))).

Given this definition, implementation of the tax system does not to require direct reporting

of agents’ productivity levels but merely requires information on levels of production; i.e.,

(y0, y1).

We also make the following assumption.

Assumption 1 There exists a sequence of functions ĉ∗ = (ĉ∗0, ĉ
∗
1, ĉ

∗
2), where ĉ∗t : DOMt →

R+,

ĉ∗0(y
∗
0(θ0(i))) = c∗0(i),

ĉ∗1(y
∗
0(θ0(i)), y

∗
1(θ1(i, j))) = c∗1(i, j),

ĉ∗2(y
∗
0(θ0(i)), y

∗
1(θ1(i, j))) = c∗2(i, j),

for all i, j, where c∗0, c
∗
1 and c∗2 represent the constrained efficient allocation for the planning

problem given by (4).

In this model, it is possible for two agents whose levels of productivity differ over time

to have the same sequence of production levels. The role of Assumption 1 is to prevent

this inconvenient case (for our tax system) from arising. This case also invalidates the

estate tax system designed by Farhi and Werning (2010), which is affected by the size of

bequests. This is because agents with different levels of production over time can bequeath

the same amounts. Therefore, our estate tax system is quite different. We design estate

tax rates that depend on the evolution of production levels over time.
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4.2 The Optimal Tax System

An allocation is generated through nonlinear labor income taxes ψ0(y0),ψ1(y0, y1), a capi-

tal income tax τ1(y0, y1) and an estate tax τ2(y0, y1) if, for all i, (c∗0(i),c
∗
1(i, j),c

∗
2(i, j),y

∗
0(i),y

∗
1(i, j))

solves

max
∑
j

[
u(c0) − h(

y0

θ0(i)
) +

{
β

(
u(c1) − h(

y1

θ1(i, j)
)
)

+ β2u(c2)
}]

π1(j|i),

subject to

c0 + k1 ≤ Rk0 + y0 − ψ0(y0),

c1 + k2 ≤ R(1 − τ1(y0, y1))k1 + y1

−ψ1(y0, y1) − τ2(y0, y1)k2,

c2 ≤ Rk2.

Proposition 3 Under Assumption 1, there exist nonlinear labor income taxes ψ0(y0),ψ1(y0, y1),

a capital tax τ1(y0, y1) and an estate tax τ2(y0, y1) that generate constrained efficient al-

location (c∗0(i),c
∗
1(i, j),c

∗
2(i, j),y

∗
0(i),y

∗
1(i, j)) for all i, j.

The proof is in the Appendix. If the optimal allocation has a strictly positive con-

sumption plan, we can derive the following first-order conditions:(
1 +

βR
∑

j τ1(y0, y1)u′(c1)π1(j|i)
u′(c0)

)
u′(c0) = βR

∑
j

u′(c1)π1(j|i),

(1 + τ2(y0, y1))u′(c1) = βRu′(c2).

Given Propositions 1 and 2, to generate the constrained efficient allocation, the capital

and estate tax rates must satisfy:

τ0,1(i) =
βR

∑
j τ1(y0, y1)u′(c1)π1(j|i)

u′(c0)
> 0,

τ1,2(i, j) = τ2(y0, y1) = −R2 ν

µ
u′(c2) < 0,

where τ0.1(i) is the capital wedge and τ1,2(i, j) is the implicit estate tax defined in Sections

3.1 and 3.2, respectively. In this scheme, the implicit estate tax is the same as the estate

tax rate.
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5 Numerical Analysis

How does the level of the newborn child’s welfare under the constraint V2 affect the

optimal tax system? We consider an example similar to those used by Kocherlakota

(2005) and Kocherlakota (2010). Despite the simplicity of our model, as is the case with

all models under the heading “New Dynamic Public Finance,” it is difficult to determine

the constrained efficient allocation analytically. Moreover, our model includes complex

nonlinear equations. Hence, we solve the following example numerically.

Let u(c) = ln(c), h(l) = l1+1/η

1+1/η , β = 1, R = 1 and k0 = 0. The parameter η is the

Frisch elasticity of labor supply. We suppose that η = 0.5. Suppose also that Θ0 = {1},

Θ1 = {0, 1} and Pr(θ1 = 1) = 1/2. Note that l1 = 0 if θ1 is 0. Then, we rewrite the

planner’s problem as follows:

max
c,y

ln(c0) −
y

1+1/η
0

1 + 1/η
+

ln(c1h)
2

−
y

1+1/η
1h

2(1 + 1/η)
+

ln(c1l)
2

+
ln(c2h)

2
+

ln(c2l)
2

,

subject to

c0 +
1
2
(c1h + c1l + c2h + c2l) ≤ k0 + y0 +

y1h

2
,

ln(c0) −
y

1+1/η
0

1 + 1/η
+

ln(c1h)
2

−
y

1+1/η
1h

2(1 + 1/η)
+

ln(c2h)
2

≥ ln(c0) −
y

1+1/η
0

1 + 1/η
+

ln(c1l)
2

+
ln(c2l)

2
,

1
2
(ln(c2h) + ln(c2l)) ≥ V2

for some V2.

Let (c∗0, c
∗
1h, c

∗
1l, c

∗
2h, c

∗
2l, y

∗
0, y

∗
1) be the constrained efficient allocation. Define (τ1h

k , τ1l
k , τ

2h
k , τ2l

k , ψ
1h
y , ψ2l

y )

as

(1 − τ1h
k )

c∗1h

=
1
c∗0
,

(1 − τ1l
k )

c∗1l

=
1
c∗0
,

τ2h
k = −W

c∗1h

, τ2l
k = −W

c∗1l

,

ψ1h
y = (1 − τ1h

k )k∗1 + y∗1h − c∗1h − (1 + τ2h
k )k∗2h,

ψ1l
y = (1 − τ1l

k )k∗1 − c∗1l − (1 + τ2l
k )k∗2l

, respectively, where W ≡ ν/µ, k∗1 ≡ k0 + y∗0 − c∗0, k
∗
2h ≡ c∗2h, and k∗2l ≡ c∗2l.

Note that W is determined by the guaranteed level of average utility for the newborn

child, V2. Indeed, in our model, how much the planner cares for children can be measured

either by V2 or by W . To examine how the constrained efficient allocation and the

corresponding optimal tax system are affected by how much weight the planner attaches

to the newborn child, it is convenient to examine how the planner reacts to a change in W
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rather than to a change in V2. Thus, the following figures illustrate how the constrained

efficient allocation and the optimal tax system are related to W ∈ [0, 1].

Note that W = 0 corresponds to the case in which the planner does not care about

the newborn child, in which case our model reduces to the single-generation model of

Golosov, Tsyvinski and Werning (2007). The higher the value of W , the more weight the

planner attaches to the welfare of the newborn child.

5.1 The Optimal Allocation

First, we consider the features of the optimal allocation. Figure 1 illustrates the con-

strained efficient allocation. Higher values of W generate lower consumption levels and

higher production levels at t = 0 and t = 1. This means that the planner designs a tax

system to deliver a guaranteed welfare level for the newborn child, V2, and this system

gives parents a greater incentive to work and increase their savings.
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Figure 1: The Constrained Efficient Allocation
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5.2 Insurance versus Incentives

Figure 2 plots the behavior of the optimal taxes and the capital wedge. Our central

concern is how the capital tax rates τ1h
k and τ1l

k are related to the weight attached to

the newborn child by the planner. It is clear than an increase in W makes capital tax

rates more regressive. That is, the ex post rate of return on savings increases for high-

productivity agents and decreases for low-productivity agents. Note that there is no effect

on the ex ante rate of return on savings. This implies that the weight attached to children

by the planner does not explain Kocherlakota’s (2005) so-called zero-expected-wealth-

taxes result. The interpretation of the increasing capital wedge τ0,1 is that at period

t = 0, parents have an incentive to discourage saving.
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Figure 2: Optimal Taxes and the Capital Wedge

Why does an increase in the weight attached to the newborn child by the planner

raise the capital wedge? Two types of processes explain this: the production effect and
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the mean reversion effect.1 Both of these effects are related to the incentive constraint.

Because the incentive constraint is binding at the optimum, we obtain

u(c1h) − u(c1l) = h(y1h/θ1h) − (u(c2h) − u(c2l)). (8)

It is clear why the production effect arises: we have already shown that production

levels are increasing in W . Hence, an increase in W causes the right-hand side of equation

(8) to increase.

The mean reversion effect is important because it can be interpreted as the result of a

trade-off between parents’ incentives and insurance for the newborn child. This is related

to the behavior of the estate tax rate. The estate tax rate behaves in such a way that an

increase in W gives parents higher subsidies for their bequests. This happens because the

planner requires parents to bequeath large amounts to their newborn child. Moreover,

the estate tax rate is progressive. Specifically, low-productivity agents get a high rate

of return on their bequests. This progressivity serves to reduce inequality faced by the

newborn child.

Because the mean reversion effect reduces the inequality of the newborn child, the

right-hand side of equation (8) increases. The production effect and the mean reversion

effect combine to cause an increase in W to tighten the incentive constraint. Thus, the

planner must offer greater incentives to high-productivity parents to induce them to work

more.

In our model, it is possible to control high-productivity parents’ willingness to work

by changing the capital income tax rates τ1h
k and τ1l

k . By setting a high regressive capital

income tax, the planner makes saving in period t = 0 more risky. Parents then reduce

their savings in period t = 0 and increase their consumption. This fall in savings raises

parents’ marginal utility of consumption in period t = 1, to which high-productivity

parents respond by working more. Reduced savings in period t = 0 also generate a high

capital wedge. This is why a higher regressive capital income tax is optimal.

Figure 2 illustrates labor income taxes. Both agents face negative labor income taxes

when W = 0. The extent to which labor income taxes rise more quickly for high-

productivity agents than for low-productivity agents increases with the weight attached

to the newborn child by the planner.

1The result obtained by Farhi and Werning (2007) is explained by the mean reversion effect. The mean

reversion effect is that an increase in the weight attached to the newborn child by the planner reduces intra-

generational inequality suffered by the newborn child.
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6 Conclusion

In this paper, we provided a brief intuitive explanation of the optimal mechanism to

implement by a planner who is considering reducing intergenerational inequality for the

“current generation”. Our finding of the increased regressivity of the optimal capital

tax is closely related to the trade-off between incentives for parents and insurance for

the newborn child. This trade-off arises because of not only the production effect but

also the mean reversion effect. This raises a dilemma for the policymaker because the

current generation must accept greater intragenerational inequality to provide insurance

for newborn children.
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A Appendix

A.1 Proof of Proposition 1

The Lagrangian of the planning problem without incentive constraints is

L =
∑
i,j

[u(c0(i)) − h(
y0(i)
θ0(i)

) + β[u(c1(i, j)) − h(
y1(i, j)
θ1(i, j)

)] + β2u(c2(i, j))]π1(j|i)π0(i)

+ µ[K0 +
∑
i,j

[y0(i) +
1
R
y1(i, j) − c0(i) −

1
R
c1(i, j) −

1
R2

c2(i, j)]π1(j|i)π0(i)]

+ ν[
∑
i,j

u(c2(i, j))π1(j|i)π0(i) − V2].

We fix the value of any first-period realization i. We then increase utility in period

t = 1, u(c1(i, j)), by the same amount across all second-period realizations j. That is, we

define u(cε1(i, j; ε)) ≡ u(c1(i, j)) + ε for some small ε. To compensate, we decrease utility

in period t = 0 by βε. That is, we define u(cε0(i, ε)) ≡ u(c0(i)) − βε. The key point is

that such variations affect neither the objective function nor the incentive constraints in

the planning problem. A first-order necessary condition is that, when evaluated at the

constrained efficient allocation, the derivative of L with respect to ε is zero. Based on this

perturbation from t = 0 to t = 1, the following Lagrangian can be defined for all i:

L0,1 =
∑
i,j

[u(cε0(i)) − h(
y0(i)
θ0(i)

) + β[u(cε1(i, j)) − h(
y1(i, j)
θ1(i, j)

)] + β2u(c2(i, j))]π1(j|i)π0(i)

+ µ[K0 +
∑
i,j

[y0(i) +
1
R
y1(i, j) − cε0(i) −

1
R
cε1(i, j) −

1
R2

c2(i, j)]π1(j|i)π0(i)]

+ ν[
∑
i,j

u(c2(i, j))π1(j|i)π0(i) − V2].

Differentiating L0,1 with respect to ε, and evaluating the result at ε = 0, yields

1
u′(c0(i))

=
1
βR

∑
j

1
u′(c1(i, j))

π1(j|i)

for all i.

Similarly, we can fix any first- and second-period (i, j), We then define u(cε2(i, j; ε)) ≡

u(c2(i, j)) + ε for some small ε. To compensate, we define u(cε1(i, j, ε)) ≡ u(c1(i, j)) − βε.

A first-order necessary condition is that the derivative of L with respect to ε is zero. A

perturbation from t = 1 to t = 2 changes the Lagrangian into the following form:

L1,2 =
∑
i,j

[u(c0(i)) − h(
y0(i)
θ0(i)

) + β[u(cε1(i, j)) − h(
y1(i, j)
θ1(i, j)

)] + β2u(cε2(i, j)]π1(j|i)π0(i)

+ µ[K0 +
∑
i,j

[y0(i) +
1
R
y1(i, j) − c0(i) −

1
R
cε1(i, j) −

1
R2

cε2(i, j)]π1(j|i)π0(i)]

+ ν[
∑
i,j

u(cε2(i, j))π1(j|i)π0(i) − V2]
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for all i, j. Differentiating L1,2 with respect to ε and evaluating the result at ε = 0 yields

1
u′(c1(i, j))

=
1

βRu′(c2(i, j))
− R

β

ν

µ

for all i, j.

A.2 Proof of Proposition 2

We have already shown that τ0,1(i) is positive. The other part of Proposition 2 can be

straightforwardly derived from equation (6).

A.3 Proof of Proposition 3

Given Assumption 1, there is a function ĉ∗2 : DOM1 → R+ such that ĉ∗2(y
∗
0(i), y

∗
1(i, j)) =

c∗2(i, j). Let the estate tax τ∗2 be defined so that it satisfies

τ∗2 (y∗0(i), y
∗
1(i, j)) = −R2µ

ν
u′(c∗2(i, j)),

for all i, j, if (y0, y1) in DOM1. Otherwise, τ∗2 = 0. Next, let the capital tax τ∗1 be defined

so that it satisfies the ex post optimal condition that

βR(1 − τ∗1 (y∗0(i), y
∗
1(i, j)))u

′(c∗1(i, j)) = u′(c∗0(i))

for all i, j, if (y0, y1) in DOM1. Otherwise, τ∗1 = 1. Let the first-period labor income tax

ψ∗
0 be defined such that

c∗0(i) + k∗1(i) = Rk0 + y∗0(i) − ψ∗
0(y

∗
0(i))

for all i, if y0 in DOM0. Otherwise, ψ∗
0 = Rk0 + y0. Similarly, let the second-period labor

income tax ψ∗
1 be defined such that

c∗1(i, j) + k∗2(i, j) = R(1 − τ∗1 (y∗0(i), y
∗
1(i, j)))k

∗
1(i) + y∗1(i, j)

−ψ∗
1(y

∗
0(i), y

∗
1(i, j)) − τ∗2 (y∗0(i), y

∗
1(i, j))k

∗
2(i, j)

for all i, j, if (y0, y1) in DOM1. Otherwise, ψ∗
1 = y1

We now show that the tax system represented by ψ∗
0, ψ

∗
1, τ

∗
1 , τ

∗
2 generates the optimal

allocation. When (y0, y1) = (y∗0(i), y
∗
1(i, j)) ∈ DOM1 for each agent, optimality requires

c0 = ĉ∗0(y0), c1 = ĉ∗1(y0, y1), c2 = ĉ∗2(y0, y1). This is because this configuration satisfies both

the standard Euler equations under the tax system and the resource constraint. If there

exists another reporting strategy, σt, such that (y′0, y
′
1) = (y∗0(σ0(θ0(i))), y∗1(σ1(θ1(i, j)))) ∈

16



DOM1, then optimality requires c′0 = ĉ∗0(y
′
0), c

′
1 = ĉ∗1(y

′
0, y

′
1), c

′
2 = ĉ∗2(y

′
0, y

′
1), for the same

reason. However, the incentive constraint implies that the utility derived by each agent

from the allocation (y′0, y
′
1, c

′
0, c

′
1, c

′
2) cannot exceed that derived from (y0, y1, c0, c1, c2).

Because (y0, y1) /∈ DOM1 are never selected by agents because of the heavy punishments

they attract from the planner, the allocation (y0, y1, c0, c1, c2) is the optimal allocation.
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