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Abstract

We offer a general framework to study procurement auctions when quality matters.

In this environment, sellers compete for a project by bidding a price-quality pair, and

the winning bidder is determined by the score assigned to each bid. In contrast to

the existing study in which only the quasilinear scoring rule is considered, our analysis

allows a broad class of scoring rules including many other realistic ones. We focus on

the analyses of the equilibrium bidding behavior of first-score (FS) and second-score

(SS) auctions. We find that FS or SS auctions can be transformed into equivalent,

single-dimensional score-bid auctions where the bidder’s utility (payoff upon winning)

is non-linear in the score-bid. Our analysis demonstrates that the ranking of the two

auction formats, in terms of expected scores, depends on the scoring rule and that the

equivalence fails unless scoring rules are quasilinear. FS auctions induce less aggressive

bidding than SS auctions if, for example, the scoring rule is price-quality ratio (PQR).

Key words: scoring auctions, non-quasilinear scoring rules, procurement

JEL classification: D44, H57, L13

1 Introduction

Public sector spending amounts, on average, to 15 percent of the GDP in OECD member

countries (OECD (2007)). To meet the needs of the public without increasing government

liability, the call for the efficient and effective use of public funds is greater than ever.
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Accordingly, public procurement mechanisms must play a substantial role in saving public

funds. As a competitive, transparent, and accountable allocation mechanism, low-price

auctions have been widely used. However, because of the growing pressure to seek value for

money, more and more procurement buyers have introduced mechanisms by which relevant

prices and qualities of proposals in the entire procurement cycle are assessed. Scoring

auctions, or equivalently multi-parameter bidding, are actually the prevailing mechanism

that aims at competitiveness in price and value for money at the same time.

In this paper, we offer a general framework to study scoring auctions when quality

matters, where sellers compete for a project by bidding a price-quality pair, and the winning

bidder is determined by the score assigned to each bid. In contrast to existing studies in

which only the quasilinear scoring rule is considered, our analysis allows for a broad class

of scoring rules, for which price is non-linear in the score. We focus on the characterization

and comparisons of equilibrium bidding behavior of first-score (FS) and second-score (SS)

auctions. This study contributes to our understanding of strategic behaviors of bidders

and the resulting performance evaluation for the procurement buyers in scoring auctions

with non-quasilinear scoring rules.

A wide variety of scoring rules that are not quasilinear in price have been adopted in

many countries. For example, many state departments of transportation (DOTs) in the

U.S., including those in Alaska, Michigan, North Carolina, and South Dakota, have adopted

the “adjusted bid,” under which the price bid is adjusted by being divided by the quality

bid (Molenaar and Yakowenko (2007)). In Japan, most public procurement contracts are

allocated to the bidder with the highest price-to-quality bid ratio.1 In Sweden, scoring rules

in public procurement are frequently additively separable but non-linear in price (Bergman

and Lundberg (2011)). To examine the properties of scoring auctions with these scoring

rules, the existing studies in which quasilinear rules are allowed do not apply. It should

be emphasized here that any monotonic function cannot transform such a non-quasilinear

scoring rule into a quasilinear (QL) form.2

We establish a model of scoring auctions in which general independent scoring rules

are accepted. A scoring rule is independent if the score depends only on the associated

bidder’s price and quality.3 Following the literature, we consider ex ante symmetric, risk-

1The department of Health and Aging in Australia also employs a price-quality-ratio awarding rule for
contracts that need to achieve better returns on public investment (The Department of Health and Ageing,
Australia (2011)).

2For instance, taking a logarithm of a price-quality-ratio scoring rule only gives an additively separable
scoring rule with price being non-linear in the score; a necessary condition for quasilinearity is thus violated.

3Our theory does not apply to interdependent scoring rules in which the bidder’s score is determined not
only by his or her bids but also those of other bidders. For instance, the price score is given by the minimum
or average price bid divided by the bidder’s price bid. See Albano et al. (2009) for the classification of
scoring rules. More detailed arguments for the scoring rule are given in Dimitri et al., eds (2006).
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neutral bidders that have a convex cost function which is parameterized via a single-

dimensional private signal.4 We analyze and compare two standard auction formats: FS

and SS auctions. In a FS auction, the bidder with the lowest score wins and follows the

contract as specified in his winning bid. In a SS auction, the bidder with the lowest score

wins and is free to choose the price and quality of the finalized contract as long as the score

value based on the price and quality matches the minimal rival score.5

We approach the scoring auction with a general independent scoring rule by showing

that a multi-dimensional auction can be transformed into an equivalent, single-dimensional

score-bid auction from the following observations. First, instead of taking a price-quality

pair as a bid, we substitute it with the associated score-quality pair. This is without loss of

generality for the scoring rule that is monotonic and thus invertible in price given a quality.

Second, the quality component in the analysis is endogenized given a score based on the

fact that the equilibrium quality is consistent with the winner’s profit maximization. In

a FS auction, the quality component of a bid must be profit maximizing ex post, because

the bidder can adjust the price-quality pair without affecting the score that has solely

determined the probability of winning. In a SS auction, the quality component is re-

selected to attain the second-lowest score. Given the score, the quality component in a

bid is irrelevant to the bidder’s ex post profit and the probability of winning. Hence, in

either auction format, the only relevant component of a bid is the score. We can therefore

suppress the quality component of a bid and focus only on the score for the analysis of

strategic bidding behaviors in FS and SS auctions.

The above observations suggest that the analysis of FS and SS auctions might be

analogous to that of first- and second-price auctions by just replacing price with score.

Nonetheless, there is an important difference between scoring and price-only auctions; in

scoring auctions, each bidder’s utility upon winning cannot be exogenously given but is de-

rived consistently with the scoring rule. More precisely, each bidder’s utility function upon

winning is the function of its cost parameter and the exercised score (that is, the winning

score bid in a FS auction, or the second-lowest score bid in a SS auction) derived from

profit maximization. This fact makes it difficult to analyze strategic bidding because the

induced utility function is generally implicit without specifying functional forms of scoring

rules and cost functions. To maintain the generality of our analysis, we avoid specific func-

tional forms but instead impose a mild restriction on the induced utility, specifically, the

4With some assumptions, our model can relax this restriction and be applied to the multi-dimensional
signal environment.

5There is a difference between the SS auction and the so-called second-preferred score auction, in which
the lowest-scoring bidder wins but must adopt the price and quality of the second-lowest bidder. The
second-preferred score auction generates an ex post loss and is subject to renegotiation.
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log-supermodularity of score and cost parameter. This condition holds for a broad class of

scoring rules, including quasilinear (QL) and price-quality-ratio (PQR) rules.

Our first result shows that there is a weakly dominant strategy equilibrium in a SS

auction, in which each bidder bids the score for which the utility upon winning is equal to

zero. We call such a score the break-even score. The proof is similar to that of a second-

price auction. If the bidder submits a score lower than the break-even score and wins,

there is a possibility that the second-lowest score is below the break-even score, thereby

incurring a loss. The bidder could have avoided this loss by bidding the break-even score.

Analogously, it is suboptimal for the bidder to submit a score higher than the break-

even score. Note that this result requires only that the break-even score be well-defined.

Therefore, the result can be generalized even to multidimensional types.

Our second result characterizes a symmetric Bayesian Nash equilibrium for a FS auction

under the log-supermodularity assumption. In a FS auction, a higher score bid implies a

tradeoff between a higher utility upon winning and a lower probability of winning. Assum-

ing the equilibrium is symmetric and sorting (i.e., a strictly increasing bidding strategy in

cost type), we derive the equilibrium condition dictating that the marginal benefit equals

the marginal loss. Although the existence of a solution to the associated differential equa-

tion is immediate, the characterization is not straightforward. Under log-supermodularity,

we can indeed find a “change of variables for types” that induces the de facto type space for

bidding in the following sense:6 the equilibrium condition of the original auction replicates

that of a hypothetical first-price auction in which each bidder’s procurement cost is drawn

from the de facto type space with the associated distribution. Since solving the latter

equilibrium condition is routine, we can characterize the original equilibrium accordingly.7

It should be noted here that the change of variables generally involves the equilibrium

bidding function, and therefore the equilibrium characterization is implicit.8

We then rank the expected scores to be exercised in FS and SS auctions. We follow the

approach by Maskin and Riley (1984) and show that bidding behavior in a FS auction is

more (respectively, less) aggressive than in the associated SS auction if the bidder’s utility

function exhibits concavity (respectively, convexity) in score, and therefore the expected

exercised score is smaller (respectively, larger) in the FS auction. Intuitively, the curvature

of the induced utility affects the marginal utility upon winning but not the probability of

winning directly, and hence concavity results in a more aggressive, lower score bid in a FS

6We name the de facto type as the effective cost measured by score.
7We follow Maskin and Riley (1984) to adopt this logic.
8For a quasilinear scoring rule, the de facto type is derived without the equilibrium bidding. This

corresponds to the productive potential in Che and the pseudotype in Asker and Cantillon.
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auction.9 By contrast, the equilibrium bidding behavior in a SS auction is qualitatively

unaffected: each bidder bids the break-even score. Our result includes the equivalence

result by Che (1993) and Asker and Cantillon (2008) for the case of QL scoring rules, in

which the induced utility is linear in score.

Two factors determine the curvature of the induced utility function. First, the shape

of the scoring rule in price partly affects the curvature of utility. If the scoring rule is

concave in price, the inverse with respect to price is convex in score, and therefore the

bidder’s utility upon winning is more convex in score. Second and more importantly,

a score change is, generally, associated with a change in the optimal quality provided.

Because of this flexibility in quality, the marginal utility of score tends to increase as the

score increases (becomes more convex). Hence, if the scoring rule is concave in price, the

curvature of the induced utility is definitely convex, whereas if the scoring rule is convex

in price, the curvature depends on the relative effects of the two factors.

To illustrate the above results, we select two important classes of scoring rules: QL

rules (score s = total payment p − quality q) and PQR rules (s = p/q). It is indeed

instructive to think of scoring auctions as auctions of contracts; given a scoring rule, each

bidder submits a particular form of cost reimbursement contract for quality, and a quality

level is chosen upon winning. In a QL-scoring auction, the contract is p = s + q; the

score specifies a fixed payment upon winning, and any additional payment is proportional

to q with the price-per-quality of one. In a PQR-scoring auction, the contract is p = sq;

the score is price per quality. In QL scoring auctions, the optimal quality is determined

regardless of the level of score because the quality price is fixed at one. The induced utility

function is the fixed payment (score) plus constant (maximum of quality value - cost of

quality) and thus is linear in score. In PQR scoring auctions, the optimal quality increases

in score simply because the score is the quality price. The induced utility function thus

increases in score faster than linearly; i.e., it is convex in score.

By our ranking result, the expected exercised score in a FS auction is the same as in

the associated SS auction for QL rules, while it is higher for PQR rules. The ranking result

of PQR rules can also be shown through a simple argument of the complementarity of the

score and the optimal quality. A higher score in FS auctions (i.e., higher quality price)

induces a higher quality level, reaping a higher profit upon winning. By contrast, this

complementarity effect is absent in the SS auction since the optimal quality upon winning

depends only on the second-lowest score, which is why bidders are less aggressive (i.e.,

9Note that our auction is a low-score bid auction while Maskin and Riley’s is a high-price bid auction,
and therefore the implication of the curvature on aggressiveness is opposite. Note also that our result has
nothing to do with the risk attitude of bidders. Bidders are assumed to be risk-neutral in our setup.
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higher bidding) in PQR scoring FS auctions.

We consider an extension to the model with a multi-dimensional type space. Except for

QL rules (e.g., Asker and Cantillon (2008)), it is not easy to apply our analysis to a full-

fledged multi-dimensional type space.10 To proceed, we impose a restriction on the induced

utility so that it is decomposed: the equilibrium score bid depends only on a dimension

in the multi-dimensional type space. This decomposition applies to a PQR scoring rule,

for instance, if cost functions are homothetic among bidders whose signals are identical

in the relevant dimension. Given the restriction, we predict that the contracted price

and quality are scattered in the price-quality space, which would better fit the real-world

scoring auction data. This extension to the multi-dimensional signal environment will be

attractive in the structural econometrics of FS auctions with a non-quasilinear scoring rule.

Related Literature The theoretical study of scoring auctions with quasilinear scoring

rules was pioneered by Che (1993), who found that equilibria of multi-dimensional auctions

can be characterized with the standard methodology to analyze price-only auctions. Branco

(1997) extended the results to the case in which bidders’ signals are correlated. More

recently, a thorough analysis by Asker and Cantillon (2008) showed that these properties

are maintained even if a player’s signal is multi-dimensional.11

For auctions with non-quasilinear scoring rules, theoretical research in economics on

the scoring auction with PQR rules was conducted by Hanazono (2010), who examined

an example in which n risk-neutral bidders receive single-dimensional private signals in-

dependently from a common uniform distribution. Having derived an equilibrium bidding

strategy, he verified that there exists a symmetric Bayesian Nash equilibrium in a FS auc-

tion with a PQR scoring rule. For empirical research, Nakabayashi (2009) constructed

a model of scoring auctions with PQR rules in which he assumes that the bidder’s cost

function is an inverse L shape so that a bidder’s optimal quality choice is uniquely deter-

mined by the bidder’s signal even under PQR scoring rules. Because of the restriction on

either the specific distribution or shape of the cost function, both analyses are silent on

the general properties of scoring auctions examined in this paper.

The remainder of this paper is organized as follows. In Section 2, the model of scoring

10This is because the translation of the original type space (multi-dimensional) to the de facto type space
(one-dimensional) requires partitions of types by which the associated equilibrium score bids are classified.
However, finding such partitions that are consistent with equilibrium is not at all straightforward and is
beyond the scope of our current analysis. Note that this remark is only relevant for FS auctions, whereas for
SS auctions, the same analysis applies to the case of a multi-dimensional type space as mentioned earlier.

11Bajari et al. (2006) empirically examines the procurement auction with unit price bids. In this auction,
bidders submit multiple prices and the winner is the bidder whose weighted sum of all multiple bids is the
lowest. The theoretical model is based on Che (1993) and Asker and Cantillon (2008).
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auctions is described. In Section 3, symmetric equilibria in FS and SS auctions are an-

alyzed, and expected winning scores in FS and SS auctions are compared. In Section 4,

the two commonly used scoring functions, QL and PQR, are discussed. In Section 5, an

extension of the analysis to a multi-dimensional signal environment is delivered. The final

section is the conclusion.

2 The model

Consider a procurement buyer who auctions off a project contract to n risk-neutral bidders.

All bidders are ex ante symmetric. At the bid preparation stage, each bidder obtains a

signal θ ∈ [θ, θ̄] ⊂ R distributed following the publicly known cumulative distribution F (θ).

Let q ∈ [q, q̄] ⊂ R+ denote the non-monetary attribute (quality) with which the bidder

performs the contract.12 We shall suppose that the bidder’s cost schedule satisfies the

following conditions

Assumption 1 (Cost function).

1. C(q|θ) ≥ 0,

2. Cq(q|θ) ≥ 0,

3. Cqq(q|θ) > 0,

4. Cθ(q|θ) > 0.

That is, the cost function is increasing and convex in q. The fourth item implies that

the more efficient bidder produces the same q at a lower cost.

In the scoring auction, the bidder submits a price bid p ∈ R+ and quality q. The

publicly known independent scoring rule S(p, q) : R2 → R maps these multi-dimensional

bids into the score, s.

We assume that the scoring rule corresponds to the buyer’s utility function. The buyer

is indifferent to the exchange of any amount of the numeraire p and the quality level q so

long as the score value is unchanged. Although out of the scope of our analysis, procurement

buyers may use a scoring rule that differs from their true preference in practice. In this

case, the quality price is still specified by the slope of the iso-score curve. Che (1993) and

Asker and Cantillon (2010) show that buyers may be better off if setting the quality price

lower than his true MRS to limit information rents obtained by the winning bidder.

We impose the following mild assumption on the scoring function:

12A single-dimensional quality is easily extended to the multi-dimensional quality as far as the quality
component in the score is summarized to a single index. See Appendix A for more details.
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Assumption 2 (Scoring function).

1. Sp(p, q) > 0,

2. Sq(p, q) < 0.

Note that a monotonic transformation of a scoring rule does not affect the bidder’s behavior

in auctions. However, such a transformation certainly changes the buyer’s evaluation of

outcomes in terms of score and may not be valid for a true representation of preferences.

The lowest-scoring bidder wins the contract in both FS and SS auctions. The winner

receives the payment p and fulfills the contract providing the quality level q in a FS auction.

In a SS auction, the winning bidder is free to choose p and q finalized in the contract as

long as S(p, q) is equal to the second-lowest score in the auction. In both auctions, the

winner’s finalized p and q, as well as the associated score value s, satisfy s = S(p, q). In

other words, the winner’s payment p can be rewritten as a function of q and s. Therefore,

there is no loss of generality in considering that each bidder chooses a scoring bid s and a

quality bid q. The winner receives a payment p(s, q), where the payment function satisfies

S(p(s, q), q) ≡ s.
Now, let se denote the exercised score by the winner, i.e., the winning bidder’s scoring

bid s in FS auctions or the rivals’ minimum scoring bid ŝ in SS auctions. The bidder’s

payoff upon winning is then given by

p(se, q)− C(q|θ).

Given the exercised score se, each bidder’s choice of quality q must be consistent with

ex post profit maximization. Otherwise, the bidder can increase profits without changing

the winning probability, which is inconsistent with equilibrium bidding behavior. This

observation suggests that each bidder cares only about the exercised score upon winning.

Therefore, each bidder’s ex post utility function can be written based on the score and

private information only.

The following assumption is imposed on both the score function and the cost function

to ensure the existence of a unique solution q ∈ [q, q̄] for the maximization of payoff upon

winning: p(se, q)− C(q, θ):

Assumption 3. For all q ∈ [q, q̄],

pqq(s, q)− Cqq(q, θ) < 0.
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Let q(se, θ) be the optimal q, which satisfies

q(se, θ) = arg max
q
p(se, q)− C(q, θ),

for any se. For notational convenience, let us also define

u(se, θ) = p(se, q(se, θ))− C(q(se, θ), θ),

as a bidder’s ex post utility upon winning. The optimal quality choice q(se, θ) satisfies

pq(s
e, q(se, θ))− Cq(q(se, θ)|θ) = 0 if the optimal q has an interior solution. An important

observation here is that the contractor in a scoring auction chooses q so that the marginal

revenue matches the marginal cost. In a scoring auction, the winning bidder’s revenue

function is the payment function p(se, q). Therefore, q(se, θ) is an analogue to the profit-

maximizing quantity in producer theory.

An interior solution for the optimal q is not necessary in our analysis. If the optimal

q is a corner solution, then the solution is generically insensitive to s, i.e., qs(s
e, θ) =

0. Therefore, regardless of whether q(se, θ) is an interior or corner solution, we have

[pq(s
e, q)− Cq(q(se, θ)|θ)]qs(se, θ) = 0. Applying the envelope theorem to u(s, θ), we have

the derivatives of u(s, θ) with respect to s and θ as

u1(se, θ) = ps(s
e, q(se, θ)),

u2(se, θ) =−Cθ(q(se, θ)|θ),

respectively. Note that u1(s, θ) ≡ ps(s, q(s, θ)) is strictly positive by Assumption 2-1 and

that u2(·) is strictly negative by Assumption 1-4.

When q(se, θ) is an interior solution, the marginal cost of providing an additional quality

unit matches the buyer’s marginal rate of substitution (MRS), or equivalently, the marginal

revenue to the winning bidder.13 In short, the choice of quality is taken as endogenous,

and the scoring bid s is a sufficient statistic to examine the bidder’s problem in scoring

auctions. Thus, we henceforth restrict our attention to the reduced auction game in which

bidders choose their scoring bids. The bidder’s problem in the reduced auction game is

given by

max
s
u(se, θ) Pr(win|s). (1)

13In fact, the derivative of C(q|θ) with respect to q is the marginal rate of technical substitution (MRTS)
between the numeraire and quality. Hence, as seen in a general equilibrium model, the buyer’s MRS equals
the producer’s MRTS in scoring auctions.
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3 Equilibrium analysis

The equilibrium bidding strategy in SS auctions is straightforward. In a SS auction, the

bidder’s payoff upon winning:

u(ŝ, θ),

is independent of his own scoring bid. Furthermore, the winning bidder has a non-negative

payoff. Therefore, as in a second-price auction, where bidders submit their willingness to

pay, bidding the break-even score is a dominant strategy in a SS auction.

Define k−(θ) as the minimum possible score the bidder with type θ makes with a

non-negative utility. That is, for all θ, k−(θ) satisfies

u(k−(θ), θ) ≡ 0.

Since u1(s, θ) is strictly positive, there is a unique value of k−(θ) for all θ. Furthermore,

the bidder has a strictly positive payoff upon winning for any s > k−(θ). In addition,

k−(θ) is strictly increasing in θ.14

The following theorem summarizes this result.

Theorem 1. In a SS auction, there exists a dominant strategy equilibrium, sSS(θ) = k−(θ),

in which bidders report their break-even score as their optimal scoring bids, i.e.,

u(sSS(θ), θ) = 0.

Proof. Let G(ŝ) be an arbitrary distribution of the lowest rival’s scoring bid for the bidder

with G(s̄) = 1. Then, the bidder’s optimization problem is given by

max
s

∫ s̄

s
u(τ, θ)dG(τ).

The first-order condition gives

−u(s, θ) = 0.

Since u1(s, θ) is strictly positive, the objective function is maximized at {s : u(s, θ) =

0}.

Note that the dominant strategy equilibrium of a SS auction exists in a fairly general

environment. For instance, the type space is extended to be generally multi-dimensional.

14Taking the derivative of u(k−(θ), θ) ≡ 0 on both sides with respect to θ gives u1(·)(k−)′(θ) +u2(·) = 0.
By Assumption 1-4 and Assumption 2-1, u1(·) > 0 and u2(·) < 0.
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Furthermore, the signals across bidders can be correlated. As long as every bidder finds a

unique, efficient scale quality level, the equilibrium is characterized in a SS auction.

We now characterize the equilibrium bidding strategy in FS scoring auctions. The fol-

lowing condition guarantees the existence of a symmetric increasing Bayesian Nash equi-

librium in the FS auction.

Assumption 4 (Single-crossing condition).

d2

dsdθ
log u(s, θ) > 0.

The log-supermodularity of the bidder’s utility function is sufficient to guarantee the

existence of a Bayesian Nash equilibrium shown by Athey (2001). Let s(θ) be the strictly

increasing equilibrium bidding function in a FS auction. The equilibrium scoring bid in a

FS auction is then characterized as follows:

Theorem 2. The equilibrium strategy in a FS auction is given by

p(s(θ), q(s(θ), θ)) = C(q(s(θ), θ)|θ) +

∫ θ̄

θ
Cθ(q(s(τ), τ)|τ)

[
1− F (τ)

1− F (θ)

]n−1

dτ. (2)

Proof. The bidder’s problem (1) is rewritten by

max
s
u(s, θ)

[
1− F (s−1(s))

]
in equilibrium. By imposing the symmetric condition, the first-order condition is given by

u1(s(θ), θ)s′(θ)[1− F (θ)]n−1 = u(s(θ), θ)(n− 1)f(θ) [1− F (θ)]n−2.

It follows that

[
u1(s(θ), θ))s′(θ) + u2(s(θ), θ)

]
[1− F (θ)]n−1

−u(s(θ), θ))(n− 1)f(θ) [1− F (θ)]n−2 = u2(s(θ), θ)[1− F (θ)]n−1.

Taking the integral on both sides from θ through θ̄ yields

u(s(θ), θ) [1− F (θ)]n−1 =

∫ θ̄

θ
−u2(s(τ), τ)[1− F (τ)]n−1dτ. (3)

11



Therefore, the equilibrium strategy in a FS auction, s(θ), is characterized by

p(s(θ), q(s(θ), θ)) = C(q(s(θ), θ)|θ) +

∫ θ̄

θ
Cθ(q(s(τ), τ)|τ)

[
1− F (τ)

1− F (θ)

]n−1

dτ.

Several observations can be made. First, as shown in Maskin and Riley (1984), the

first-order condition is sufficient for optimality as well when the bidder’s objective function

satisfies the single-crossing condition.15 Second, (2) is an extension of the bidding function

in a FS auction presented by Che (1993) to the non-quasilinear scoring function environ-

ment. Unlike the case of a QL scoring rule, the choice of q is endogenous in s under the

general scoring function. Thus, the explicit solution for the equilibrium strategy s(θ) is

not obtained.

Finally, just as in the first-price auction, the equilibrium score bid can be expressed by

the conditional expectation of the the second-lowest bidder’s cost-related variable. To see

this, we define a bidder’s effective cost measured by score as

k(s(θ), θ) = s(θ)− u(s(θ), θ)

u1(s(θ), θ)
.

This definition can be interpreted as a cost in terms of score since u/u1 represents the

“utility” in terms of score (evaluated at the marginal utility of score) while the score itself

can be interpreted as the “gross utility.”Then, the increasing strategy s(θ) is characterized

by the order statistic of k(·), as shown in the following corollary.

Corollary 1. In a FS auction, the equilibrium scoring bid is the conditional expectation

15Suppose the bidder with type θ reports an arbitrary value θ̃ and his payment is given by p(s(θ̃), q(s(θ̃), θ).
Then, the bidder’s expected profit is given by

u(s(θ̃), θ)[1− F (θ̃)]n−1.

Taking the derivative with respect to θ̃ gives

u1(s(θ̃), θ)s′(θ̃)[1− F (θ̃)]n−1 − (n− 1)f(θ̃)u(s(θ̃), θ)[1− F (θ̃)]n−2

= u1(s(θ̃), θ)

{
s′(θ̃)− (n− 1)

f(θ̃)

1− F (θ̃)

u(s(θ̃), θ)

u1(s(θ̃), θ)

}

Note that u(·)/u1(·) is decreasing in θ (log-supermodular). Therefore, if s′(θ̃)− (n− 1) f(θ̃)

1−F (θ̃)

u(s(θ̃),θ)

u1(s(θ̃),θ)
= 0,

and s(θ̄) = k−(θ̄), then

d

dθ̃
u(s(θ̃), θ)[1− F (θ̃)]n−1


> 0 if θ̃ < θ,

= 0 if θ̃ = θ,

< 0 if θ̃ > θ.
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of the second lowest bidder’s effective cost k:

s(θ) =

∫ θ̄

θ

(n− 1)f(τ) [1− F (τ)]n−2

[1− F (θ)]n−1 k(s(τ), τ)dτ. (4)

Proof. The first-order condition of the bidder’s maximization problem regarding s was

u1(s(θ), θ)[1− F (θ)]n−1 + u(s(θ), θ)(n− 1)f(θ)[1− F (θ)]n−2 1

s′(θ)
= 0.

Since u1 > 0, dividing both sides by u1 yields

[1− F (θ)]n−1 + (s(θ)− k(s(θ), θ))(n− 1)f(θ)[1− F (θ)]n−2 1

s′(θ)
= 0.

Solving the differential equation gives (4).

Literature has shown that, when a scoring auction uses QL scoring functions, each bid-

der’s private information can be rewritten as productive potential (in Che (1993)) orpseudo-

type (in Asker and Cantillon (2008)). The effective cost defined above is a generalization

of this concept. With the QL scoring function S(p, q) = p− q, k(s(θ), θ) is given by

k(s(θ), θ) = C(q(s(θ), θ)|θ))− q(s(θ), θ),

which is the break-even score for quality q(s(θ), θ). Note that the optimal quality q(s(θ), θ)

maximizes the ex post profit upon a given winning score, i.e.,

p(s, q)− C(q|θ) = s+ q − C(q|θ),

and thus only depends on θ for a QL scoring function. Hence, k(s(θ), θ) equals minq{q −
C(q|θ)} = k−(θ), which in turn equals (−1)×the productive potential.16 With a general

scoring function, however, k hinges on s and is, hence, endogenous in the equilibrium

strategy in a FS auction. Thus, k(s(θ), θ) is generally not a sufficient statistic to summarize

the bidder’s effective type in a FS auction.

An advantage of characterizing k in a scoring auction may lie in the structural estima-

tion of scoring auctions. Since s(θ) is the conditional second-lowest order statistic of k(·) in

a FS auction or the minimum effective cost k−(θ) in a SS auction, applying the structural

estimation technique of price-only auctions (e.g., Guerre et al. (2000)) allows us to identify

16The negative sign in our model is an artifact of our modeling in which the lowest score bidder wins,
whereas in Che or Asker-Cantillon, the highest score bidder wins.
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the latent variable k(·) from both an observable s and its distribution. Note that, given θ,

k(s(θ), θ) is monotone in the bidder’s effective production cost C(q(s(θ), θ)|θ). Hence, the

bidder’s equilibrium C(q(s(θ), θ)|θ) is identified.

Now, we proceed to analyze the revenue ranking in scoring auctions with a generalized

scoring function. The revenue equivalence theorem (Myerson (1981); Riley and Samuelson

(1981)) has been extended to multi-dimensional auction games by Che (1993), showing

that if a QL scoring rule is used, the expected exercised scores in both FS and SS auctions

are equivalent. Furthermore, Asker and Cantillon (2008) extend Che (1993)’s result to

the multidimensional private information environment. We show, however, that QL is a

special case in which the equivalence holds.

The following theorem illustrates that when the scoring function is a general form, the

expected score ranking between FS and SS auctions depends on the scoring function.

Theorem 3 (expected scores). The expected exercised score in a FS auction is greater

(smaller) than that in a SS auction if u11(s, θ) is positive (negative), i.e.,

E[sFS(θ(1))] > E[sSS(θ(2))] if u11(s, θ) > 0,

E[sFS(θ(1))] = E[sSS(θ(2))] if u11(s, θ) = 0,

E[sFS(θ(1))] < E[sSS(θ(2))] if u11(s, θ) < 0.

Proof. Let sSQ(θ) be the conditional expectation of the second-lowest bidder’s break-even

score such that

sSQ(θ) =E[k−(θ(2))|θ(2) > θ],

=

∫ θ̄

θ

(n− 1) [1− F (τ)]n−2 f(τ)

[1− F (θ)]n−1 k−(τ)dτ,

where sSQ(θ̄) = k−(θ̄). Taking the derivative with respect to θ gives

sSQθ (θ) =
[
sSQ(θ)− k−(θ)

] (n− 1)f(θ)

1− F (θ)
.

On the other hand, the derivative of the equilibrium bidding function of a FS auction

is

sFSθ (θ) =
u(sFS(θ), θ)

u1(sFS(θ), θ)

(n− 1)f(θ)

1− F (θ)
. (5)

We know that u(k−(θ), θ) = 0 and that u11(s, θ) ≥ 0 for all s ≥ k−(θ). Thus, we have
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u1(s, θ) · [s− k−(θ)] ≥ u(s, θ). Given the fact that u1(s, θ) > 0, it follows that

s− k−(θ) ≥ u(s, θ)

u1(s, θ)
,

for all s ≥ k−(θ). Therefore, (5) becomes

sFSθ (θ) =
u(sFS(θ), θ)

u1(sFS(θ), θ)

(n− 1)f(θ)

1− F (θ)
≤
[
sFS(θ)− k−(θ)

] (n− 1)f(θ)

1− F (θ)
. (6)

If sFS(θ) < sSQ(θ), then [sFS(θ)− k−(θ)] (n−1)f(θ)
1−F (θ) <

[
sSQ(θ)− k−(θ)

] (n−1)f(θ)
1−F (θ) . There-

fore, by (6), sFSθ (θ) < sSQθ (θ). In addition, sFS(θ̄) = sSQ(θ̄) = k−(θ̄). Hence, for any θ < θ̄,

sFS(θ) > sSQ(θ).

Several points are worth noting here. First, as seen in (1), a multi-dimensional auction

is, in general, reduced into a one-dimensional auction in which bidders with a non-linear

utility function submit scores. Bidders with a convex (concave) utility function bid less

(more) aggressively in a FS auction than in a SS auction. This is analogous to the compar-

ison of the bidding behavior between first- and second-price auctions with non-risk-neutral

bidders. Consequently, the proof of Theorem 3 directly follows from the standard proof of

the revenue ranking between first- and second-price auctions, as demonstrated by Maskin

and Riley (1984).

Second, two factors affect the expected score ranking between FS and SS auctions: i)

the degree of cross effect of score and quality and ii) the convexity or concavity of the score

function in price. Specifically, we have

u11(s, θ) = psq(s, q(s, θ))qs(s, θ) + pss(s, q(s, θ)).

Factors i) and ii) are associated with the first and the second terms on the right-hand side

of the equation, respectively. Regarding factor i), it is easily seen that the cross effect

psq(s, q(s, θ))qs(s, θ) is always non-negative and is strictly positive if qs is non-zero.17 The

intuition behind this is straightforward: the awarded bidder has the freedom to choose the

17We have
u11(s, θ) = pss(s, θ) + psq(s, θ)qs(s, θ).

On the other hand, for all s, q(s, θ) satisfies

pq(s, q(s, θ)) ≡ Cq(q(s, θ)|θ).

Taking the derivative on both sides with respect to s yields

psq(s, q(s, θ)) ≡ [Cqq(q(s, θ)|θ)− pqq(s, q(s, θ))] qs(s, θ).

By Assumption 3, Cqq − pqq is strictly positive. Hence, psq(s, q(s, θ))qs(s, θ) is non-negative.

15



profit-maximizing quality level. A higher s raises the bidder’s payment upon winning no

slower than linearly. As this effect increases ceteris paribus, the bidder’s ex post utility

function becomes more convex in score, which induces bidders to bid less aggressively in

a FS auction. Notice that under a QL scoring function, the bidder’s profit-maximizing

quality is independent of s; thereby, psqqs = 0. Combining the fact that pss = 0, we can

see that a scoring auction with a QL scoring function is an analogy to a risk-neutral bidder

in a price-only auction.

The effect of varying non-price attributes on a bidder’s aggressiveness is analyzed analo-

gously by Hansen (1988) in a different context. He analyzes a homogeneous multiple-object

procurement auction in which risk-neutral bidders submit a unit price of the item, and it is

the auctioneer who chooses the quantity purchased ex post. The non-price attribute thus

represents quantity instead of quality. Given that the auctioneer chooses a quantity from

a downward sloping demand, a higher unit price raises the winning bidder’s payment no

faster than linearly. As a result, risk-neutral bidders bid more aggressively in a first-price

multi-unit auction with homogeneous items.

Regarding factor ii), suppose a scoring function is weakly concave in p for any q, i.e., Spp

is non-positive, or equivalently, pss is non-negative. Then u11 is necessarily non-negative,

and therefore the bidders bid less aggressively in a FS auction than in the associated SS

auction. In particular, if the score function is either quasilinear or price-quality-ratio in the

form of p/V (q), the score function is linear in price. Later we will see that u11 is strictly

positive in a PQR case. In order to make u11 strictly negative, pss needs to be sufficiently

negative. Only in such a case do the bidders bid more aggressively in a FS auction, and

thus a lower expected score results than in a SS auction.

Finally, the non-linearity of the bidder’s utility function partially hinges on the smooth-

ness of the cost function around the optimal quality level. Suppose, as an extreme counter-

example, that the cost function is an inverse L shape such that C(q|θ) = C(θ) if q ≤ q(θ)

and C(q|θ) = ∞ if q > q(θ). Then, the optimal q is constant for all s ≥ k−(θ) such that

q(k−(θ), θ) = q(θ). The payoff upon winning is thus given by

u(s, θ) = u1(s, θ)[s− k−(θ)],

with u1(s, θ) = ps(s, q(k(θ), θ)). If, in addition, pss(·) = 0, u1(s, θ) is constant for all s and

thus u is linear in s. As happens under a QL scoring rule, the expected score equivalence

holds between FS and SS auctions even with a general scoring function.
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4 Comparing QL and PQR scoring functions

In this section, we restrict our attention to QL and PQR scoring functions, the most

commonly used awarding rules in real-world procurement auctions.

Definition 1 (QL and PQR).

1. S(p, q) = p/q: Price-quality-ratio (PQR)

2. S(p, q) = p− q: Quasi-linear (QL).

The reduced scoring auction game can be interpreted as the following supplier’s com-

petition. Bidders are asked to bid s, which is the price of quality under the PQR or the

amount of a lump-sum subsidy under the QL scoring function. The lowest bidder wins.

The payment rule is linear under the PQR and non-linear under the QL scoring function.

Under the PQR scoring function, a unit of quality is reimbursed at the price equal to

either the lowest scoring bid in FS or the second-lowest scoring bid in SS auctions. Under

the QL function, a unit of quality is reimbursed linearly at the quality price equal to one,

and a lump-sum subsidy is made which is equal to the lowest scoring bid in a FS or the

second-lowest scoring bid in a SS auction.

Given these two different competitive environments, the bidder’s optimal quality choices

in PQR and QL functions are given, respectively, as

1. Cq(q(s
e, θ)|θ) = se (PQR),

2. Cq(q(s
e, θ)|θ) = 1 (QL).

The optimal quality q(s, θ) is the one at which the marginal cost equals the quality

price. Under the QL rule, the quality price is given as a constant. Therefore, bidders

are “price takers” under the QL rule. Hence, the bidder’s quality choice is q(k−(θ), θ),

independent of s.

With (4), we showed that the bidder’s equilibrium scoring bid in a FS auction is the

expected value of k(s(θ(2))|θ(2)), i.e., the expectation of the second-order statistic of the

bidder’s effective cost measured by score. With the QL and PQR scoring functions, k(s, θ)

is given by

1. k(s, θ) ≡ C(q(s, θ)|θ)/q(s, θ) (PQR),

2. k(s, θ) ≡ k−(θ) ≡ C(q(k−(θ), θ)|θ)− q(k−(θ), θ) (QL).
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That is, k(·) is i) the average cost (AC) curve under the PQR and ii) the bidder’s

net cost, i.e., the gross production cost C subtracted by the cost reimbursement of the

increased quality level under the QL function.

Since k− is unique for any θ, a unique quality level exists at which either AC is mini-

mized (efficient scale) under the PQR or the net cost is minimized under the QL scoring

function. A SS auction with the PQR scoring function is the competition with respect

to the minimum AC. The lowest minimum AC bidder wins and freely chooses the quality

level given the quality price equal to the second-lowest bidder’s minimum AC.

Notice that the winning bidder provides an excessive quality level (above the efficient

scale) under the PQR rule. Because of the winning bidder’s informational rents, the quality

price is above the minimum AC. Hence, just as a profit-maximizing firm produces beyond

the efficient scale in a short run if the market price is above the break-even price, the

winning bidder chooses a larger quality level than the efficient scale. Under the QL scoring

rule, the quality price is exogenous. Hence, the contracted quality may be greater or smaller

than the efficient scale depending on MRS of the procurement buyer’s utility function.

In a FS auction, bidders commit the ex post optimal quality level when submitting

the scoring bid s. Under the PQR scoring rule, informational rents accrue to bidders by

submitting s strictly greater than their minimum AC, and thus, the lowest losing bidder’s

AC, k(s, θ), is above his or her minimum AC. Recall that the equilibrium bid in a FS is

the average k of the lowest losing bid. In this sense, the winning bidder takes advantage

of the losing bidder’s informational rents to obtain a larger payoff upon winning in a FS

auction. This is another explanation of a higher expected exercised score in a FS than in

a SS auction with the PQR scoring function.

5 Extension to multiple-dimensional type space

Our theoretical model has so far assumed that the bidder’s type space is one-dimensional.

In this section, we relax this assumption. As mentioned before, the equilibrium analysis

in a SS auction is possible under the general multi-dimensional type space without any

change. We now demonstrate that the equilibrium characterization in a FS auction is also

possible under the multi-dimensional type space if the bidder’s cost function satisfies an

assumption.

To simplify the analysis, we suppose that the bidder’s signal θ is two-dimensional

such that θ = (θ0, θ1), where θ0 ∈ [θ0, θ̄0] and θ1 ∈ [θ1, θ̄1]. Let u(s, θ0) be the bidder’s

payoff upon winning such that u(s, θ0) = u(s, θ0, θ1). Then, we assume that there exists a
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monotonic function h(θ) ≥ 1 such that, for all θ0, dh(θ)/dθ1 > 0 and for all s and θ0,

u(s, θ) = h(θ)u(s, θ0). (7)

For example, suppose the scoring function is PQR such that S(p, q) = p/q. Then u can

be decomposed as above if and only if C(q|θ) is a homothetic function of C(q|θ0, θ1). The

monotonic function h(θ) = h(θ1) is a multiplier such that C(q|θ) = h(θ1)·C(q ·h(θ1)|θ0, θ1).

With this assumption, we show that the equilibrium bidding strategy s(θ) is indepen-

dent of θ1. Suppose that there are two bidders whose private signals are (θ0, θ1) and

(θ0, θ̃1). That is, two bidders have the same θ0 but different θ1 signals.

The equilibrium bid strategy s(θ) maximizes the bidder’s expected payoff. The bidders’

objective functions are given by

max
s
h(θ0, θ1)u(s, θ0) Pr{win|s},

max
s
h(θ0, θ̃1)u(s, θ0) Pr{win|s}.

Since the two maximization problems are monotonic transformations of each other, the two

objective functions are maximized at the same s. This fact implies that the equilibrium

bid strategy s(θ) is dependent only on θ0 and is independent of θ1.

Taking the derivative of (7) with respect to s gives

u1(s, θ) = h(θ)u1(s, θ0).

Therefore,
u(s, θ)

u1(s, θ)
=

h(θ)u(s, θ0)

h(θ)u1(s, θ0)
= s− k(s, θ0, θ1).

This result suggests that k(s, θ) is independent of θ1 for all s. Thus, taking u(s, θ0) as

u(s, θ) in the model discussed in the previous sections, the multi-dimensional signal case

can be analyzed in our framework so that there are n risk-neutral bidders whose utility

function is h(θ)u(s, θ0). The log-supermodularity of u(s, θ0) is a sufficient condition for

the existence of an increasing equilibrium in a FS auction. Due to the assumption on the

utility function, the winning bidder is unchanged in FS and SS auctions.

By classifying the bidders with an identical θ0 as in a group, a single dimension of θ,

such as θ0, ends up governing the differentiation of a bidder’s equilibrium behavior with

respect to s, yet the bidders in the same group choose different q according to the other

dimensions of θ. It follows that the equilibrium-exercised score and quality can be scattered

in the price quality space.
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6 Concluding remarks

In this paper, we have established a model of scoring auctions in which the assumption

that scoring rules are QL is relaxed. We have demonstrated the existence of equilibria and

characterized the equilibrium bidding strategies in FS and SS auctions. We have further

found that equivalence fails between FS and SS mechanisms under general scoring rules.

The complexity associated with a general scoring function lies in the fact that the

bidder’s optimal quality depends on the score, whereas it does not with QL scoring func-

tions. Hence, our equilibrium characterization must rely on the summary statistic that

incorporates varying quality choice. In a SS auction, the winning bidder chooses ex post

an optimal quality for the second-lowest score. Therefore, as in the case of second-price

auctions, it is weakly dominant that each bidder truthfully reports the break-even score,

which gives zero ex post profit for the optimal quality.

In a FS auction, the winning bidder chooses an optimal quality for his or her own score.

Plugging the optimal quality for the score bid, we can transform the multi-dimensional

auction into an auction of single-dimensional scores. Since a higher score is associated

with a higher payment, each bidder faces a tradeoff between a higher profit upon winning

and a lower probability of winning, which is analogous to the tradeoff observed in a first-

price auction (FPA).

Our analysis departs from the standard price-only auctions because the bidder’s ex post

utility function is derived by optimal quality choice and may not be an explicit function. We

have shown that, if the bidder’s ex post utility function satisfies the log-supermodularity

between score and private cost information, the existence and characterization of a sym-

metric equilibrium in a FS auction are guaranteed. Moreover, the ranking of the expected

exercised score between FS and SS auctions depends on the second-order derivative of ex

post utility with respect to score, which is reminiscent of the analysis of auctions with

risk-averse bidders.

Our model has assumed that the buyer’s preference is represented by the given scoring

rule. In practice, however, a procurement buyer may use a scoring rule which differs from

his or her true utility. As Che (1993) argues, buyers can benefit from not using the scoring

rule that represents the true utility. Our theorem suggests that if the procurement buyer’s

true preference is PQR, a FS auction never implements the optimal mechanism since a SS

auction always dominates the FS counterpart in terms of the expected exercised scores.

The issue of the awarding procedure between PQR and QL has also been discussed in

the context of cost-benefit analysis (see, for instance, Stiglitz (2000)), with the conclusion

that the advantage of either procedure depends exlusively on the buyer’s preference. Our
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results, however, suggest that when the scoring rule is PQR, a FS auction tends to leave

more rents to bidders. Thus, if the preference of a risk-neutral procurement buyer is based

on PQR, the buyer should use a SS auction.

In this study, we have restricted our attention to independent scoring rules by which

each bidder’s score depends only on his or her price and quality. In practice, interdependent

scoring rules are also used. For instance, the quality measurement is an index based on the

highest, lowest, or average quality bid submitted. Another example is that the lowest price

bidder receives 100 points and a higher price bidder receives a scaled point accordingly.

That is, the score depends not only on the bidder’s own price and quality bid, but also

on some or all competitors’ price and quality bids. An important extension would make a

theoretical consideration of the scoring auction with such a interdependent scoring rule.

Appendix A Multi-dimensional quality

Consider the cost function C(q|θ) where the quality bid is multi-dimensional such that

q ∈ RL+ with L > 1. Let V (q) be a quality index where Vq(q) > 0 and Vqq(q) is negative

semi-definite. Suppose that the scoring rule S(p, q) is given by S(p, q) = p/V (q) for PQR

and S(p, q) = p − V (q) for QL scoring rules. Then, without loss of generality, V can be

substituted with v ∈ RL+ as follows: Define

C (v, θ) = minC(q|θ) s.t. V (q) = v,

for v ∈Range of V (q). If FOC is necessary for the minimization problem, we have

C(v, θ) = C (q(v|θ), θ)

where (q(v|θ), λ(v|θ)) is a solution to{
Cq(q|θ)− λVq (q) = 0 ∈ RL

V (q)− v = 0 ∈ R.

Suppose C is strictly convex in q and V (q) is weakly concave. Then

Cv = λ (v|θ) > 0

Cvv = λv (v|θ) > 0.

To see the first condition, note that from the second equation for optimality,

Vq (q(v|θ)) qv(v|θ) = 1
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which implies, by the first equation,

Cq (q(v|θ), θ) qv(v|θ) = λ.

This shows Cv = λ (v|θ) . For the second condition, note that from the implicit function

theorem (
Cqq − λVqq −V T

q

Vq 0

)(
qv

λv

)
=

(
0

1

)
This implies

V T
q λv = (Cqq − λVqq) qv

⇒ qTv V
T
q︸ ︷︷ ︸

1

λv = qTv (Cqq − λV qq)︸ ︷︷ ︸
positive definite

qv

⇒ λv > 0

This shows that there is no loss of generality to restrict attention to one-dimensional

quality as long as V (q) and C satisfy certain regularity conditions.

References

Albano, Gian Luigi, Federico Dini, and Roberto Zampino, “Bidding for Complex

Projects: Evidence from the Acquisitions of IT Services,” Lecture Notes in Computer

Science, 2009, 5693, 353–363.

Asker, John and Estelle Cantillon, “Properties of Scoring Auctions,” RAND Journal

of Economics, 2008, 39 (1), 69–85.

and , “Procurement when Price and Quality Matter,” RAND Journal of Economics,

2010, 41 (1), 1–34.

Athey, Susan, “Single Crossing Properties and the Existence of Pure Strategy Equilibria

in Games of Incomplete Information,” Econometrica, July 2001, 69 (4), 861–889.

Bajari, Patrick, Stephanie Houghton, and Steve Tadelis, “Bidding for Incomplete

Contracts: An Empirical Analysis,” NBER Working Papers 12051, National Bureau of

Economic Research, Inc February 2006.

22



Bergman, Mats and Sofia Lundberg, “Tender Evaluation and Award Methodologies

in Public Procurement,” Umea Economic Studies 821, Umea University, Department of

Economics March 2011.

Branco, Fernando, “The Design of Multidimensional Auctions,” RAND Journal of Eco-

nomics, 1997, 28 (1), 63–81.

Che, Yeon-Koo, “Design Competition through Multidimensional Auctions,” RAND

Journal of Economics, Winter 1993, 24 (4), 668–680.

Dimitri, Nicola, Gustavo Piga, and Giancarlo Spagnolo, eds, Handbook of Pro-

curement, Cambridge University Press, 2006.

Guerre, Emmanuel, Isabelle Perrigne, and Quang Vuong, “Optimal Nonparamet-

ric Estimation of First-Price Auctions,” Econometrica, 2000, 68 (3), 525–574.

Hanazono, Makoto, “An Equilibrium Bidding Strategy in Scoring Auctions with a Price-

quality Ratio Scoring Rule,” The Economic Science, 2010, 57 (4), 149–157. (Nagoya

University), in Japanese.

Hansen, Robert G., “Auctions with Endogenous Quantity,” RAND Journal of Eco-

nomics, Spring 1988, 19 (1), 44–58.

Maskin, Eric and John Riley, “Optimal Auctions with Risk Averse Buyers,” Econo-

metrica, 1984, 52 (6), pp. 1473–1518.

Molenaar, Keith R. and Gerald Yakowenko, Alternative Project Delivery, Procure-

ment, and Contracting Methods for Highways, American Society of Civil Engineers, 2007.

Myerson, Roger B., “Optimal Auction Design,” Mathematics of Operations Research,

1981, 6 (1), 58–73.

Nakabayashi, Jun, “Small Business Set-asides in Procurement Auctions: An Empirical

Analysis,” Tsukuba Economics Working Papers 2009-005, Economics, Graduate School

of Humanities and Social Sciences, University of Tsukuba March 2009.

OECD, “Bribery in Public Procurement: Methods, Actors and Counter-Measures,” 2007,

p. 103.

Riley, John G. and William F. Samuelson, “Optimal Auctions,” American Economic

Review, June 1981, 71 (3), 381–92.

23



Stiglitz, Joseph E., Economics of the public sector, 3 ed., New York, NY [u.a.]: Norton,

2000.

The Department of Health and Ageing, Australia, “Tender Evaluation

Plan,” 2011. http://www.health.gov.au/internet/main/publishing.nsf/Content/

205B1A69101B75C3CA257909000720F1/$File/FOI%20264_1011%20doc%2013.pdf.

24


	表紙（差替-英）DP845.pdf
	scoring4.0151.pdf

