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Abstract

This paper features the application of a novel and recently developed method of statistical and mathe-
matical analysis to the assessment of financial risk: namely Regular Vine copulas. Dependence modelling
using copulas is a popular tool in financial applications, but is usually applied to pairs of securities. Vine
copulas offer greater flexibility and permit the modelling of complex dependency patterns using the rich
variety of bivariate copulas which can be arranged and analysed in a tree structure to facilitate the anal-
ysis of multiple dependencies. We apply Regular Vine copula analysis to a sample of stocks comprising
the Dow Jones Index to assess their interdependencies and to assess how their correlations change in
different economic circumstances using three different sample periods: pre-GFC (Jan 2005- July 2007),
GFC (July 2007-Sep 2009), and post-GFC periods (Sep 2009 - Dec 2011). The empirical results suggest
that the dependencies change in a complex manner, and there is evidence of greater reliance on the Stu-
dent t copula in the copula choice within the tree structures for the GFC period, which is consistent with
the existence of larger tails in the distributions of returns for this period. One of the attractions of this
approach to risk modelling is the flexibility in the choice of distributions used to model co-dependencies.

Keywords: Regular Vine Copulas, Tree structures, Co-dependence modelling.

JEL Codes: G11, C02.

1. Introduction

In the last decade copula modelling has become a frequently used tool in financial economics. Accounts
of copula theory are available in Joe (1997) and Nelsen (2006). Hierarchical, copula-based structures have
recently been used in some new developments in multivariate modelling; notable among these structures
is the pair-copula construction (PCC). Joe (1996) originally proposed the PCC and further exploration
of its properties has been undertaken by Bedford and Cooke (2001, 2002) and Kurowicka and Cooke
(2006). Aas et al. (2009) provided key inferential insights which have stimulated the use of the PCC
in various applications, (see, for example, Schirmacher and Schirmacher (2008), Chollete et al. (2009),
Heinen and Valdesogo (2009), Berg and Aas (2009), Min and Czado (2010), and Smith et al. (2010).

There have also been some recent applications of copulas in the context of time series models (see
the survey by Patton (2009), and the recently developed COPAR model of Breckmann and Czado
(2012), which provides a vector autoregressive VAR model for analysing the non-linear and asymmetric
co-dependencies between two series). Nevertheless, in this paper we focus on static modelling of depen-
dencies based on R Vines in the context of modelling the co-dependencies of Dow Jone Index constituents
for three different sample periods which include the GFC.

The paper is divided into five sections: the next section provides a review of the background theory
and models applied, section 3 introduces the sample, section 4 presents the results and a brief conclusion
follows in section 5.
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2. Background and models

Sklar (1959) provides the basic theorem describing the role of copulas for describing dependence
in statistics, providing the link between multivariate distribution functions and their univariate mar-
gins. The argument proceeds as follows: let F' be a d- dimensional distribution function with margins

... F,. Then there exists a copula C' such that, for all x = (x1,...... , .I‘d)l € (RU {00, —00})4,
F(z) = C(Fi(z1), ... , Fa(za)). (1)

C is unique if Fi,....., Fy are continuous. Conversely, if C' is a copula and F1,....., F; are distribution

functions, then the function F defined by (1) is a joint distribution with margins Fi, ....., F,;. In particular,

C can be interpreted as the distribution function of a d-dimensional random variable on [0, 1]%.

We can speak generally of the copula of continuous random variables X = (X1,....X4) ~ F. The
problem in practical applications is the identification of the appropriate copula.

Standard multivariate copulas, such as the multivariate Gaussian or Student-t, as well as exchangeable
Archimedean copulas, lack the exibility of accurately modelling the dependence among larger numbers
of variables. Generalizations of these offer some improvement, but typically become rather intricate in
their structure, and hence exhibit other limitations such as parameter restrictions. Vine copulas do not
suffer from any of these problems.

Initially proposed by Joe (1996) and developed in greater detail in Bedford and Cooke (2001, 2002) and
in Kurowicka and Cooke (2006), vines are a flexible graphical model for describing multivariate copulas
built up using a cascade of bivariate copulas, so-called pair-copulas. Their statistical breakthrough was
due to Aas, Czado, Frigessi, and Bakken (2009) who described statistical inference techniques for the two
classes of canonical C-vines and D-vines. These belong to a general class of Regular Vines, or R-vines
which can be depicted in a graphical theoretic model to determine which pairs are included in a pair-
copula decomposition. Therefore a vine is a graphical tool for labelling constraints in high-dimensional
distributions.

A regular vine is a special case for which all constraints are two-dimensional or conditional two-
dimensional. Regular vines generalize trees, and are themselves specializations of Cantor trees. Combined
with copulas, regular vines have proven to be a flexible tool in high-dimensional dependence modelling.
Copulas are multivariate distributions with uniform univariate margins. Representing a joint distribu-
tion as univariate margins plus copulas allows the separation of the problems of estimating univariate
distributions from problems of estimating dependence.

Figure 1 provides an example of two different vine structures, with a regular vine on the left and a
non-regular vine on the right, both for four variables.

Figure 1: Vines

A vine V on n variables is a nested set of connected trees V- = {T1, ....,T;,_1} , where the edges of tree
j are the nodes of tree j+1, j=1,.....,n—2 . A regular vine on n variables is a vine in which two edges
in tree j are joined by an edge in tree j = 1 only if these edges share a common node, j =1,......,n — 2.

Kurowicka and Cook (2003) provide the following definition of a Regular vine.
Definition 1. (Regular vine)

V is a regular vine on n elements with E(V) = E; U .....U E,_; denoting the set of edges of V' if

L V={Ty,...Ty1},

2. Tyis a connected tree with nodes Ny = {1, ....,n}, plus edges Ey; for i = 2,....,n — 1,T}is a tree with
nodes N; = E;_1,
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3. (proximity) for i = 2,.....,n—1, {a,b} € E;#(aAb = 20, where A denotes the symmetric difference
operator and # denotes the cardinality of a set.

An edge in a tree T} is an unordered pair of nodes of 7} or equivalently, an unordered pair of edges of
T;_1. By definition, the order of an edge in tree T is j — 1, j = 1,...,n — 1. The degree of a node is
determined by the number of edges attached to that node. A regular vine is called a canonical vine, or
C—vine, if each tree T; has a unique node of degree n — 1 and therefore, has the maximum degree. A
regular vine is termed a D—vine if all the nodes in 77 have degrees no higher than 2.

Definition 2. (The following definition is taken from Cook et al. (2011)). For e € E;,;i < n —1,
the constraint set associated with e is the complete union of U* of e, which is the subset of {1,.....;n}
reachable from e by the membership relation.
Fori=1,...,n—1,e € E;, if e = {4, k}, then the conditioning set associated with e is
D.=U;NUy;
and the conditioned set associated with e is

{Cej,Cer} = {UJ’.k \ D¢, Ui \ D, } .

Figure 2 below shows a D-Vine with 5 dimensions.

Figure 2: D-Vine 5 Dimensions

X1, X2 X2, X3 X3 Xy X Xs

Xg, Xs[Xy

Xy, Xa|Xq Xo, Xy Xq

Figure 3 shows an R-Vine on 4 variables, and is sourced from Dissman (2010). The node names
appear in the circles in the trees and the edge names appear below the edges in the trees. Given that an
edge is a set of two nodes, an edge in the third tree is a set of a set. The proximity condition can be seen
in tree Ty, where the first edge connects the nodes {1,2}and {2,3}, and both share node 2 in tree T7.

2.1. Modelling Vines

Vine structures are developed from pair-copula constructions, in which d(d — 1)/2 pair-copulas are
arranged in d — 1 trees (in the form of connected acyclic graphs with nodes and edges). At the start of
the first C-vine tree, the first root node models the dependence with respect to one particular variable,
using bivariate copulas for each pair. Conditioned on this variable, pairwise dependencies with respect
to a second variable are modelled, the second root node. The tree is thus expanded in this manner; a
root node is chosen for each tree and all pairwise dependencies with respect to this node are modelled
conditioned on all previous root nodes. It follows that C-vine trees have a star structure. Brechmann
and Schepsmeier (2012) use the following decomposition in their account of the routines incorporated in
the R Library CDVine, which was used for the empirical work in this paper. The multivariate density,
the C'Vine density w.l.o.g.rootnodes 1, .....,d,
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d d—1d—1
flz) = H fr(zr) x H H Ciitjl1:(i—1) (F (@i | 21, oy im1), F(Tigg | 21, s miz1) | 05 4 j11:6—1)) (2)

k=1 i=1j=1
where fi, k = 1,.....,d, denote the marginal densities and c; ;4 j1.(;—1)bivariate copula densities with
parameter(s)6; ;1 jj1.;i—1) (in general, g : i,, meansig, ....,i,). The outer product runs over the d — 1
trees and root nodes i, while the inner product refers to the d — i pair copulas in each treei = 1,....,d—1.

D-Vines follow a similar process of construction by choosing a specific order for the variables. The
first tree models the dependence of the first and second variables, of the second and third, and so on,...
using pair copulas. If we assume the order is 1, ..., d, then first the pairs (1,2), (2,3), (3,4) are modelled.
In the second tree, the co-dependence analysis can proceed by modelling the conditional dependence of
the first and the third variables, given the second variable; the pair (2,4 | 3), and so forth. This process
can then be continued in the next tree, in which variables can be conditioned on those lying between
entries a and b in the first tree, for example, the pair (1,5 | 2,3,4). The D-Vine tree has a path structure
which leads to the construction of the D — vine density, which can be constructed as follows:

d d—1d—1
F@) =TT @) [T TT cisien:Grion F@i [ @ity o @irio1), F@jp | 25401500 254i1) |05 44 (G41):G4i-1))
k=1 i=1j=1

3)

The outer product runs over d — 1 trees, while the pairs in each tree are determined according to the

inner product. The conditional distribution functions F(z | v) can be obtained for an m — dimensional

vector v. This can be done in a pair copula term in tree m — 1, by using the pair-copulas of the previous
trees 1, ...., m, and by sequentially applying the following relationship:

acrvj\v_j(F(x | V*j)7 F(Vj | V*j) | 9)
OF (v | v—j) @

where v; is an arbitrary component of v, and v_; denotes the (m—1)- dimensional vector v excluding
v;. The bivariate copula function is specified by C,,,v—; with parameters ¢ specified in tree m.

The model of dependency can be constructed in a very flexible way because a variety of pair copula
terms can be fitted between the various pairs of variables. In this manner, asymmetric dependence or
strong tail behaviour can be accommodated. Figure 3 shows the various copulae available in the CDVine
library in R.

hz|v, 8):=F(x|v)=

Figure 3: Notation and Properties of Bivariate Elliptical and Archimedean Copula Families included in CDVine

No. Elliptical distribution Parameter range Kendall's 7 Tail dependence

1 Gaussian pe(—1,1) %arcsiu{p) 0
= ) 2 srrcind : T /1=

2 Student-t peE(—1L,1), ¥>2 Zarcsin(p) 2,44 (—w’v + l.v.- %

No. Name Generator Parameter Kendall's + Tail dependence
function range (lower, upper)
a Clayton  2(t7% —1) 80 s (2= )
4 Gumbel  (—logt)? #=1 1— F (0. 2— .21_.-'5:]
5 Frank®  —log[sy—=1] BeR {0} R L (0, 0)
& Joe Clogll—(1—-1)"]  6>1 1+ & [ tlog(t)(1 — t)7—dt (0, 2—2'/%)
7 BE1 (t7% —1)% 8>0,§=1 (271188 g _ gl/8)
8 BB6 (—log[l—(1—)"])* B=1,82=1 —log(—(1— )% +1) (0,2 — 21/(24))
n::'—a:l—n-";-Jd:

9  BB? L-(1-t""-1 #2160 1— gy + g B(3F2,0+2) (2714, 221/

i0  BBES

#=1,0<d<1 (0,0%)
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2.2. Regular vines

Until recently, the focus had been on modelling using C and D vines. However, Dissmann (2010) has
pointed the direction for constructing regular vines using graph theoretical algorithms. This interest in
pair-copula constructions/regular vines is doubtlessly linked to their high flexibility as they can model a
wide range of complex dependencies.

Figure 4 shows an R-Vine on 4 variables, and is sourced from Dissman (2010). The node names
appear in the circles in the trees and the edge names appear below the edges in the trees. Given that
an edge is a set of two nodes, an edge in the third tree is a set of a set. The proximity condition can be
seen in tree Ty, where the first edge connects the nodes {1,2}and {2, 3}, plus both share the node 2 in
tree T7.

Figure 4: Example of R-Vine on 4 Variables. (Source Dissman (2010))

o (M (Ty)
® {1,2} S {2,3) o {3.4) ® |

TR GO

{{2.3}.{3.4}}

EDs
@ 23} 34} @ T}

The drawback is the curse of dimensionality: the computational effort required to estimate all pa-

rameters grows exponentially with the dimension. Morales-Ndpoles et al (2009) demonstrate that there
n—2

are 2 x2 2

s possible R-Vines on n nodes. The key to the problem is whether the regular vine
can be either truncated or simplified. Brechmann et al, (p2, 2012) discuss such simplification methods.
They explain that: “by a pairwisely truncated regular vine at level K, we mean a regular vine where
all pair-copulas with conditioning set equal to or larger than K are replaced by independence copulas”.
They pairwise simplify a regular vine at level K by replacing the same pair-copulas with Gaussian cop-
ulas. Gaussian copulas mean a simplification since they are easier to specify than other copulas, easy to
interpret in terms of the correlation parameter, and quicker to estimate.

They identify the most appropriate truncation/simplification level by means of statistical model
selection methods; specifically, the AIC, BIC and the likelihood-ratio based test proposed by Vuong
(1989). For R-vines, in general, there are no expressions like equations (2) and (3). This means that
an efficient method for storing the indices of the pair copulas required in the joint density function, as
depicted in equation (5), is required; (5) is a more general case of (2) and (3).

d a-1
flzi, ..., za) = [H fm(xk):| x [H 11 ciormeipey F@je) | Xp(e))s F(@ree) | Xp(e))) (5)
k=1

i=1e€E;

Kurowicka (2011) and Dissman (2010) have recently suggested a method of proceeding which involves
specifying a lower triangular matrix M = (m;; | 4, j = 1,....,d) € {0, ...,d}dXd, with m;; =d—i+ 1.
This means that the diagonal entries of M are the numbers 1, ....,d in descending order. In this matrix,
each row proceeding from the bottom represents a tree, the diagonal entry represents the conditioned
set and by the corresponding column entry of the row under consideration. The conditioning set is given
by the column entries below this row. The corresponding parameters and types of copula can be stored
in matrices relating to M. The following example in Figure 5 is taken from Dissman (2010).
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Figure 5: Matrix Mapping of vine copulas (source Dissman (2010))
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The first section of Figure 5 provides a key to indicate the 5 different types of copulas used in
this example, ranging from Gaussian (1) to Frank (5). The second lower triangular matrix 77 shows the
application of particular types of copulas in the trees, Pjshows the parameters estimated, and P?provides
the extra parameters needed when we apply the ¢ copula.

Figure 6: Use of Matrices to Store R-vine Information (source: Dissman (2010))

M, = T = Pl =

D

@

T8 1 0.0

6 71 5 5 -13 09

rd\ 67 (7) (i 44 CLE 13 46

1|16 2 6 3 33 3 L5 05 02 13

2033 3 22 2 22 2 2 —03 09 02 04 02
|3/22(6333 1 111311 001 06 (037 0.9 0.3

: The edge ey with C,;; = {4,5} and D,, = {1,2,3} has a copula of type £41 = 4
= Gumbel and the parameter pj; = 1.5. The edge ey with ., = {7,6} and
D, = {} has a copula of type tz; = 1 = Gauss and the parameter p!, = 0.3.

In Figure 6 the bottom row of M;jcorresponds to 77, the second row to 75, and so on. In order to
determine the edges in 77, we combine the numbers in the bottom row with the diagonal elements in the
corresponding columuns, for example the edges are (4,3), (5,2), (1,2) and so on. In order to determine
the edges in T3, we combine the numbers in the second row from the bottom with the diagonal elements
in the corresponding columns and condition on the elements in the bottom row. This would give edges
(4,2 3), (5,3 12), (1,3 ] 2), and so on The final entry is given by the upper entries to the left of the
matrix (4,7 | 65123).
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2.3. Prior work with R-Vines

The literature was initially mainly concerned with illustrative examples, (see, for example, Aas et al.
(2009), Berg and Aas (2009), Min and Czado (2010) and Czado et al. (2011)). Mendes et al. (2010)
use a D-Vine copula model to a six-dimensional data set and consider its use for portfolio management.
Dissman (2010) uses R-Vines to analyse dependencies between 16 financial indices covering different
European regions and different asset classes, including five equity, nine fixed income (bonds), and two
commodity indices. He assesses the relative effectiveness of the use of copulas, based on mixed distribu-
tions, t distributions and Gaussian distributions, and explores the loss of information from truncating
the R-Vine at earlier stages of the analysis and the substitution of independence copula. He also analyses
exchange rates and windspeed data sets with fewer variables.

There have been other studies on European stock return series: Heinen and Valdesogo (2009) con-
structed a CAPM extension using their Canonical Vine Autoregressive (CAVA) model using marginal
GARCH models and a canonical vine copula structure. Breckmann and Czado (2011) develop a regular
vine market sector factor model for asset returns that uses GARCH models for margins, and which is
similarly developed in a CAPM framework. They explore systematic and unsystematic risk for individual
stocks, and consider how vine copula models can be used for active and passive portfolio management
and VaR forecasting.

3. Sample

We use a data set of daily returns, which runs from 1 January 2005 to 31 January 2011 for the DOW
Jones Index and its component 30 stocks. We divide our sample into returns for the pre-GFC (Jan 2005-
July 2007), GFC (July 2007-Sep 2009) and post-GFC (Sep 2009 - Dec 2011) periods. The sample for
the three periods is shown in Table 1. We analyse the behaviour of the stocks that remain constituents
of the DOW Jones index throughout the three periods. Not all Dow Jones stocks are included in each
period.



Table 1: Dow Jones Stocks used in Each Period

Pre-GFC GFC Post-GFC

Vi 3M 3M 3M

V2 ALCOA ALCOA ALCOA

V3 ALTRIA GRP AMERICAN EXPRESS AMERICAN EXPRESS

V4 AMERICAN EXPRESS AT&T AT&T

V5 AMERICAN INTL GRP BOEING BANK OF AMERICA

Ve AT&T CATERPILLAR BOEING

v7 BOEING E I DU PONT DE NEMOURS CATERPILLAR

V8 CATERPILLAR EXXON MOBIL CHEVRON

V9 CITIBANK GENERAL ELECTRIC CISCO SYSTEMS

V1o E I DU PONT DE NEMOURS HEWLETT-PACKARD E I DU PONT DE NEMOURS

V11 EXXON MOBIL HOME DEPOT EXXON MOBIL

V12 GENERAL ELECTRIC INTEL GENERAL ELECTRIC

V13 HEWLETT-PACKARD INTERNATIONAL HEWLETT-PACKARD

BUS.MCHS.

V14 HOME DEPOT JOHNSON & JOHNSON HOME DEPOT

V15 HONEYWELL JP MORGAN CHASE & CO. INTEL

Vi1eée INTEL MCDONALDS INTERNATIONAL

BUS.MCHS.

V17 INTERNATIONAL MERCK & CO. JOHNSON & JOHNSON
BUS.MCHS.

V18 JOHNSON & JOHNSON MICROSOFT JP MORGAN CHASE & CO.

V19 JP MORGAN CHASE & CO. PFIZER KRAFT FOODS

V20 MCDONALDS PROCTER & GAMBLE MCDONALDS

V21 MERCK & CO. COCA COLA MERCK & CO.

V22 MICROSOFT UNITED TECHNOLOGIES MICROSOFT

V23 PFIZER VERIZON PFIZER

COMMUNICATIONS

V24 PROCTER & GAMBLE WAL MART STORES PROCTER & GAMBLE

V25 COCA COLA WALT DISNEY COCA COLA

V26 UNITED TECHNOLOGIES DOW JONES TRAVELERS COS.

va27 VERIZON UNITED TECHNOLOGIES
COMMUNICATIONS

V28 WAL MART STORES VERIZON

COMMUNICATIONS

V29 WALT DISNEY WAL MART STORES

V30 DOW JONES WALT DISNEY

V31 DOW JONES

4. Results

We divide the data into three time periods covering the pre-GFC (Jan 2005- July 2007), GFC (July
2007-Sep 2009), and post-GFC periods (Sep 2009 - Dec 2011) to run the C-Vine and R-Vine dependence
analysis in the stocks of Dow Jones Index. Before we can do this we require appropriately standardised
marginal distributions for the basic company return series. Appropriate marginal time series models
for the Dow Jones data have to be found in the first step of our two step estimation approach. The
following time series models are selected in a stepwise procedure: GARCH (1,1), ARMA (1,1), AR(1),
GARCH(1,1), MA(1)-GARCH(1,1). These are applied to the return data series and we select the model
with the highest p-value, so that the residuals can be taken to be i.i.d. The residuals are standardized and
the marginals are obtained from the standardized residuals using the Ranks method. These marginals
are then used as inputs to the Copula selection routine. The copula are selected using the AIC criterion.
We first discuss the results obtained from the pre-GFC period data followed by the GFC and post-GFC

periods.

The following figure presents the structure of the C-Vines.




Figure 7: Results-C-Vine Tree-1 Pre-GFC
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For this C Vine selection, we choose as root node the node that maximizes the sum of pairwise
dependencies to this node.We commence by linking all the stocks to the DowJones 30 index which is at
the centre of this diagram. We use a range of Copulas from which it is selected, the range being (1:6).
We apply AIC as the selection criterion to select from the following menu of copulae: 1 = Gaussian
copula, 2 = Student t copula (t-copula), 3 = Clayton copula, 4 = Gumbel copula, 5 = Frank copula, 6
= Joe copula.

We then compute transformed observations from the estimated pair copulas and these are used as
input parameters for the next trees, which are obtained similarly by constructing a graph according to
the above C-Vine construction principles (proximity conditions), and finding a maximum dependence
tree. The C-Vine tree for period 2 is shown below.

Figure 8: C-Vine Tree 2 Pre-GFC
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The pre-GFC C-Vine copula specification matrix is displayed in Table 2 below.
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Table 2: Pre-GFC C-Vine Copula Specification Matrix

23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 29 11

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 29 7

T 71 7 7T 7 7 v 7 ¥ v v ¥ 7 7 7 7 ¢ 7 7 v 7 7 7 7 71 299

9 9 9 9 9 9 ¢ 9 9 ¢ 9 9 ¢ 9 9 9 9 9 9 9 9 9 9 9 9 9 29 §

8 8 8 8 8 8 8 8 8 8 8 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 20 3
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 29 29

From Table 2, it can be seen that the strongest individual correlations in the pre-GFC period, are
with the Dow Jones Index, security 30 in the final row, and the individual diagonal entries starting with
security 24 at the top of the first column, representing Proctor and Gamble, which define the edges.
Proctor and Gamble (security 24) is correlated with Caterpillar (security 8), then conditioned by its
relationship with Citibank (security 9), then Boeing (security 7), Exxon mobil (security 11), and so on.
It can also be seen in Table 2 that C Vines are less flexible in that the same security number can always
be seen to appear across the rows. This means that it is always appearing in the nodes at that level in
the tree. R Vines are more flexible and do not have this requirement. Henceforth, we will concentrate
on the results of the R Vine analysis.

Figure 9: R Vine, Trees 1 and 2 , Pre-GFC Period.
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Table 3: R Vine Pre-GFC Copula Specification Matrix

14 26 19 26

2 1420 19 14
I U R L R
A 46 140 10 M

0 8 1 2r 6 20110

B 11161277 41 B17 1618 1
010211 157 4 11 2817168
6 5 2424 16157 101 28171
7 B3 M7 176 LS 0087
I 2 281715 2817 16135 1011 28 28

4 B 1108 3 1128 L2 135 0116157 4 11
TN BN BBL B DI BIBTO4N
15125 10125 10 11 2322 135 2823 251574

16

e -]

o
-1
s

2152 13132 135 18122322 1018122325157 4

186 18 12 10 12 21 2 20 15 18 2135 131812278 515 %7

12
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It can be seen in Figure 9 and in Table 2 above that the R Vine structure is more flexible. The same
company numbers no longer appear across the rows. By and large, the greatest dependency is between
the individual constituents of the Dow Jones Index and the Dow Jones itself. This is evident in the fact
that the majority of the entries in the last row are for security number 30 which represents Dow Jones
in the Pre-GFC period. However, at the bottom of the second column security 19, representing J.P.
Morgan Chase appears, while at the top of this column sits security number 9, Citibank. Hence, the
greatest dependency for this pair of financial securities was between themselves, and this out-weighed
their dependency on the index. Similarly, in column 8, headed by security 21, Merck and Co, the entry
at the bottom of the column is for security 23 Pfizer, so, in the Pre-GFC period, this pair of securities
showed relatively high joint dependency. At the top of column 11 sits security 6, AT&T, while at the
bottom is security 26, Verizon communications.

Once these initial nodes and edges have been taken into acount, the second row is conditioned on
their dependency relationship, and is the next branch in the tree. In the first entry at the top of the first
column, we have security 29, Walt Disney, but when its relationship with the Dow Jones is taken into
account, the penultimate entry in that column is security 11, Exxon Mobil, indicating, quite surprisingly,
that there is a co-dependency relationship between these two pairs of securities, after conditioning on
the Index. Thus, an intricate picture of co-dependencies can be created.

Table 4 shows the types of copulas fitted in the empirical analysis.
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Table 4: Pre-GFC Period Types of Copulas Fitted
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The advantage of the use of R Vines is apparent in Table 4. Complex patterns of dependency can
be readily captured. It can be seen that at different dependencies conditioned across the same node six
different copulas are used. For example, in column 1 the first copula used is the Student t copula (no 2),
followed by the Frank copula (no 5) for a couple of levels, then the Gaussian (no 1), Clayton (no 3), Joe
(no 6) and further down the column the Gumbel (no 4) makes one appearance. This variety of usage is
apparent across Table 4 at various levels in the Tree structures used to capture dependencies.

The actual parameters estimated for the Pre-GFC period are shown in Table 5.
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If we return to a consideration of the banks in column 2 of Table 5, the strong positive dependencies
can be seen in the values of the entries at the very top and bottom three coefficients in the rows of
column 2.

The key issue for the current analysis is whether these dependencies changed during the GFC and
this is the focus of the next stage of our analysis. Figure 10 shows Trees 1 and 2 for the GFC period.
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Figure 10: GFC Period R Vines Trees 1 and 2
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There is a change in the groupings in the tree structures produced by the impact of the GFC. Citibank
is absent from the list because it had to be rescued by the US Government under plans agreed for Citi-
Group, following large losses in the value of its subprime mortgage assets. The remaining major financial
services companies are grouped together, J.P. Morgan and American Express, together with the aviation
and defence sector companies United Technologies and Boeing. Similarly, the IT companies, Intel, Mi-
crosoft, Hewlett Packard and IBM, are grouped together, as are the main-stream consumer products and
industrial groupings, Coca-Cola, Proctor and Gamble, Johnson and Johnson. Drug companies Merck
and Pfizer, and communications giants Verizon and AT&T are linked. A final chain is provided by
General Electric, 3M and Alcoa.

The details of the linkages in the tree structures and the nature of the dependencies in the GFC
period are provided in Table 6.

Table 6: R Vine GFC Copula Specification Matrix

22
9 21
1 9 23

12 1 9 20

18 12 1 9 14

25 18 121 9 4

10 25 18 12 1 O 9

21 10 25 18 12 1 &5 1

23 5 10 25 18 12 25 5 12

203 5 10 25 18 3 25 5 1B

14 15 3 5 10 25 1% 3 25 5 25

17 11 8 15 3 5 1 8 15 3 10 &5 17
13 16 11 & 15 3 16 11 & 15 17 3 &5 13
19 24 16 11 8 15 17 16 11 8 13 15 3 &5 19

6 23 24 1 11 &8 24 17 1 11 19 &8 15 3 5 &6

s 7 7 24 16 11 12 24 17 16 &6 11 8 1% 3 5 16

3 2 2 7 24 16 18 12 24 17 3 16 11 8 15 3 5 3

¥ 13 13 2 7 24 10 18 ¥ 24 15 17 16 11 & 15 3 &5 7

2 4 20 13 2 7 13 10 2 7 16 24 24 16 11 & 15 7 & 2
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11 17 17 6 4 13 6 19 19 6 8 2 2 7 24 16 11 24 8 15 24 15

g 19 19 1v & 17y 7 & 13 1 2 6 13 2 7 24 7 11 11 & 11 24 8
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5 20 26 14 19 & 1 2 18 10 24 13 26 19 6 2 2 15 2 24 15 & 11 24 26
260 26 4 26 26 26 26 26 26 26 26 26 190 26 26 26 26 26 26 26 26 26 26 26 24 24

The picture and tree structures are changed dramatically by the GFC. At the top of the first column
sits United Technologies (no 22 in the GFC set), paired with the Dow Jones (no 26). The next link in the
tree is with Boeing (no 5) sitting next to the bottom of the column, followed by J.P. Morgan Chase (no
15). This segment of Tree 2 can be seen in the bottom right of Figure 10. Column 3 is dominated by the
links between Verizon (no 23) and AT&T (no 4). The other column in which the strongest dependency is
not on the index is column 13, in which Merck (no 17) sits at the top with Pfizer (no 19) at the bottom.
This linkage is shown in the middle of the right-hand side of the diagram for Tree 2 in Figure 10. All
the other remaining dominating dependencies are with the Dow Jones Index.

The specification of the copula types fitted during the GFC are presented in Table 7.
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Table 7: GFC Period Types of Copulas Fitted
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What is apparent in Table 7 is the much greater application of Copula type 2, the Student t copula,
and a much lower usage of the Gaussian copula. This is not surprising, as we would expect the tails of
the distributions to increase during periods of financial distress. The parameters fitted to the copulas
are shown in Table 8.

Table 8: GFC Period Copula Parameter Estimates
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The final analysis undertaken is for the post-GFC period, September 2009 to December 2011.
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Figure 11: Post-GFC Period R Vines Trees 1 and 2
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The industry groupings are apparent in Tree 2, shown in Figure 11. There is an IT cluster featuring
Microsoft, Intel, Cisco and Hewlett Packard, and a financial services cluster which includes Bank of
America, American Express, Travellers Co and J.P. Morgan. The drug companies group together in
the dependencies shown between Pfizer, Merck and Johnson and Johnson. Oil, retail companies and
manufacturing companies are spread about.

Table 9 shows the copulas specification matrix for the Post-GFC period.

Table 9: Post-GFC R Vine Copula Specification Matrix
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If we look first at the cases of strong dependencies that are not initially partnered with the Dow
Jones Index at the top of column one in Table 9, we have Exxon Mobil (no 11) at the top and Chevron
(no 8) at the bottom, revealing strong co-dependencies between these two major oil companies. Bank of
America (no 5) is at the top of column six and J.P. Morgan Chase (no 18), is at the bottom. Verizon (no
28) is at the top of column eleven and AT&T (no 4), is at the bottom, revealing the linkages between
these two communications companies. All the other companies are linked via their relationship with the
Dow Jones Index (no 31), which appears as the bottom entry in most of the columns.

The copulas fitted in the Post-GFC period are shown in Table 10.
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Table 10: Post-GFC Period Types of Copulas Fitted
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Table 10 shows that the reliance on Student t copulas, which was apparent in the GFC period, is
reduced in the post-GFC period. As in the other two periods considered, the bottom row in Table 10
consists of Student t (no 2) copulas. Thus, the predominant modelling of dependencies in all three periods
(the first steps in the tree), uses a distribution with fat tails. However, once this primary dependency is
taken into account, subsequent links in the tree make less use of the Student t copula than in the GFC
period. The Gaussian copula features more prominently in the contingent dependencies than in the GFC
period.

The parameters fitted to the copulas in the post-GFC period are shown in Table 11.

Table 11: Post-GFC Period Copula Parameter Estimates
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5. Conclusion

In this paper we have used the recently developed R Vine copula methods (see Aas et al. (2009),
Berg and Aas (2009), Min and Czado (2010) and Czado et al. (2011)) to analyse the changes in the
co-dependencies of Dow Jones constituent stocks for three periods spanning the GFC: pre-GFC (Jan
2005- July 2007), GFC (July 2007-Sep 2009) and post-GFC periods (Sep 2009 - Dec 2011). The results
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suggest that the dependencies change in a complex manner and there is evidence of greater reliance
on the Student t copula in the copula choice within the tree structures for the GFC period which is
consistent with the existence of larger tails to the distributions of returns. One of the attractions of
this approach to risk-modelling is the flexibility available in the choice of distributions used to model
co-dependencies.

The main limitation is the static nature of the approach and dynamic applications are in the process
of development. Breckmann and Czado (2012) have recently proposed a COPAR model which provides a
vector autoregressive VAR model for analysing the non-linear and asymmetric co-dependencies between
two series. A more dynamic approach will be the subject of future work.
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