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Abstract

The paper proposes a general asymmetric multifactor Wishart stochastic volatility
(AMWSV) diffusion process which accommodates leverage, feedback effects and mul-
tifactor for the covariance process. The paper gives the closed-form solution for the
conditional and unconditional Laplace transform of the AMWSV models. The paper
also suggests estimating the AMWSV model by the generalized method of moments
using information not only of stock prices but also of realized volatilities and co-
volatilities. The empirical results for the bivariate data of the NASDAQ 100 and S&P
500 indices show that the general AMWSV model is preferred among several nested
models.

Keywords: Multivariate Stochastic Volatility; Wishart Process; Leverage Effects; Feedback Ef-
fects; Multifactor Model; Option Pricing.

JEL classifications: C32, C51, G13
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1 Introduction

In the framework of discrete time models, a wide range of multivariate GARCH and stochastic

volatility (SV) models has been developed, analyzed, and applied extensively in recent years to

characterize the volatility that is inherent in high frequency financial time series data. Bauwens,

Laurent and Rombouts (2006) provided a survey of multivariate GARCH models, while Asai,

McAleer and Yu (2006) and Chib, Omori and Asai (2009) evaluated various kinds of multivariate

SV models.

There has been growing interest in the continuous-time multivariate stochastic volatility pro-

cesses, especially in (i) estimating integrated volatility and co-volatility, (ii) deriving the diffu-

sion limit of discrete multivariate volatility models, and (iii) developing option pricing models.

With respect to the first point, several authors, including Hayashi and Yoshida (2005), Voev

and Lunde (2007), Zhang (2008), Malliavin and Mancino (2009), Wang and Zhou (2010) and

Barndorff-Nielsen et al. (2011), have developed volatility matrix estimators in the context of re-

alized volatility and co-volatility. Regarding diffusion limits in the univariate class, Nelson (1990)

derived SV models as the diffusion limit of the GARCH and exponential GARCH (EGARCH)

models. Nelson and Foster (1994), Drost and Werker (1996), Duan (1997) and Fornari and Mele

(1997) examined various GARCH-type diffusions. While Nelson (1996) developed the continuous

record asymptotic theory for several multivariate GARCH models, Hafner, Laurent and Violante

(2010) derived the diffusion limit of the consistent DCC model of Aielli (2006) that modified the

DCC model of Engle (2002) in such a way that the unstandardized conditional correlation matrix

has martingale difference innovations.

For pricing options, Hull and White (1987), Scott (1987), Melino and Turnbull (1990) and

Heston (1993) proposed option pricing SV models, while Duan (1997) suggested the option pricing
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GARCH model. With respect to the multivariate derivative pricing models, Gourieroux (2006)

and Gourieroux and Sufana (2010) extended Wishart Autoregressive (WAR) diffusion processes, as

originally considered by Bru (1991). Recently, Muhle-Karbe, Pfaffel and Stelzer (2012) developed

a multivariate Ornstein-Uhlenbeck-type stochastic volatility model based on a Lévy process.

The first purpose of the paper is to extend the WAR models of Gourieroux (2006) and Gourier-

oux and Sufana (2010) regarding the asymmetric effects and multifactor for the covariance process.

There are two ways to introduce asymmetric effects in continuous SV models: one way is to ac-

commodate feedback effects, while another is to have leverage effects. As Gourieroux and Sufana

(2010) suggested a WAR model with feedback effects in log-price processes, this paper considers

leverage effects in addition to feedback effects. Turning to multifactors, Chernov et al. (2003)

found evidence for the superiority of two-factor specifications over one-factor models for S&P 500

returns, and showed that introducing additional factors contributes to breaking the link between

tail thickness and volatility. In this paper, we develop the new general asymmetric multifactor

WAR stochastic volatility models.

The second purpose of the paper is to present a closed-from expression of the conditional

Laplace transform of the new model as it is the basis for pricing derivatives, as shown in Duffie,

Pan and Singleton (2000). The third purpose of the paper is to suggest estimation of the new

models using generalized method of moments (GMM), based on the information not only of prices

but also of realized volatility and co-volatilities.

The remainder of the paper is organized as follows. Section 2 proposes the new asymmetric

multifactor Wishart stochastic volatility models, and derives the conditional and unconditional

Laplace transforms. Section 2 also explains the method to price derivatives using Laplace trans-

forms and the Fourier inversion technique. Section 3 suggests GMM estimation via the information
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on stock prices and realized covariances, and conducts Monte Carlo simulations to investigate the

finite sample properties of the estimator. Section 4 gives an empirical example for the pair of

NASDAQ 100 and S&P 500 indices, and Section 5 gives the conclusions.

In the following, W (A, p) denotes the Wishart distribution with the scale matrix A and the

degrees-of-freedom parameter p. For any symmetric matrix X, X1/2 is defined by the spectral

decomposition of X so that X1/2X1/2 = X. For any square matrix X, the matrix-exponential

operator is defined by Exp(X) =
∑∞

i=0(1/i!)Xi, with X0 = I.

2 Asymmetric Multifactor Wishart Stochastic Volatility

2.1 The Model

In this section we develop new continuous-time multivariate stochastic volatility (MSV) models,

based on the Wishart Autoregressive (WAR) process, as suggested by Bru (1991) and studied by

Gourieroux (2006). The WAR(ν,Φ,C) process is defined by

dWt = (νC ′C +WtΦ
′ + ΦWt)dt+W

1/2
t dBM

t (C ′C)1/2 + (C ′C)1/2dBM
t W

1/2
t , (1)

where the BM
t are n dimensional and symmetric matrix-variate standard Brownian motions, ν is

a scalar such that ν > n, Φ is an n×n matrix, and C is an n dimensional upper triangular matrix.

Instead of specifying Wt as an MSV process, we consider a multifactor specification of WAR

process as follows. Let Ωt be an n dimensional square matrix defined by

Ωt = Θ′

(
K∑
k=1

Vkt

)
Θ, (2)

dVkt = (νkIn + VktΦ
′
k + ΦkVkt)dt+ V

1/2
kt dBM

kt + dBM
kt V

1/2
kt , (3)

where the Bkt’s are symmetric matrix-variate standard Brownian motions, and are mutually

independent. In this specification, each Vkt follows a WAR(νk,Φk,In) process independently. In

the following, we work with the multifactor specification defined by Ωt.
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Let pt be an m dimensional vector of financial log-prices evolving in continuous time. In

addition to MSV, the price process accommodates the feedback and leverage effects as follows.

We consider

dpt = µ∗(Ωt)dt+ dut, (4)

with feedback effect, µ∗(Ωt), defined by

µ∗(Ωt) = (µ1 + tr(M1Ωt), . . . , µn + tr(MnΩt))
′ , (5)

where µi and Mi (i = 1, . . . , n) are scalar parameters and n-dimensional symmetric matrices of

parameters, respectively, and the second term in (4) accommodates leverage effects as

dut =
K∑
k=1

Θ′V
1/2
kt Rkvec(dBM

kt ) +

(
K∑
k=1

Θ′V
1/2
kt (In −RkR′k)V

1/2
kt Θ

)1/2

dBt, (6)

where Bt is an n-vector of standard Brownian motions, and Rk (k = 1, . . . ,K) are n×n2 matrices

of parameters. We assume that (In−RkR′k) are positive definite matrices. It is straightforward to

show that E(dutdu
′
t|Ωt) = Ωt. We impose restrictions on Rk to reduce the number of parameters,

such that Rk = (In⊗ ρ′k), where ρk is an n-vector of parameters. Instead of equation (6), we may

also consider a specification given by

dut = Ω
1/2
t

[
K∑
k=1

Rkvec(dBM
kt ) +

(
In −

K∑
k=1

RkR
′
k

)
dBt

]
.

However, we will work with (6) for the computational convenience in calculating the Laplace

transform. We will refer to the new model in (2)-(6) as the ‘general asymmetric multifactor

Wishart stochastic volatility’ (AMWSV) model.

The new AMWSV model contains seven special cases. If k = 1, Rk = O and Mi = O,

the AMWSV model reduces to a simple Wishart stochastic volatility (WSV) model with no

asymmetric effects. When k = 1 and Rk = O, we have a Wishart stochastic volatility model with
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feedback effects (WSV-F). For the case k = 1 and Mi = O, we obtain a WSV model with leverage

effects (WSV-L). Setting k = 1 yields a general asymmetric WSV (AWSV) model. Similarly, we

have the multifactor WSV model (MWSV), the MWSV model with feedback effects (MWSV-

F), and the MWSV model with leverage effects (MWSV-L). Note that the model suggested by

Gourieroux and Sufana (2010) is essentially the same as the one-factor WSV-F model.

2.2 Laplace Transforms

As explained in Duffie, Pan and Singleton (2000), the risk-neutral Laplace transform is the basis

for derivative pricing because it can be used to obtain explicit or quasi-explicit prices for various

derivatives. In this subsection, we derive the conditional and unconditional Laplace transforms of

pt and Ωt. We discuss their risk-neutral Laplace transforms in the next subsection.

Applying the approach of Gourieroux and Sufana (2010), we can show that the joint process

(pt,Ωt) is an affine process. In order to derive the conditional Laplace transform of pt, we use the

matrix Riccati linearization technique suggested by Fonseca, Grasselli and Tebaldi (2008), instead

the approach of Gourieroux and Sufana (2010). Proposition 1 shows the conditional Laplace

transform of the log-price process, pt.

Proposition 1 The conditional Laplace transform of the affine process (4) with equations (2),

(3), (5) and (6) is

Ψγ,t(h) ≡ Et
[
exp

(
γ′pt+h}

)]
= exp

[
K∑
k=1

tr (Ak(h)Vkt) + b(h)′pt + c(h)

]
(7)

where the symmetric matrices Ak(h), vector b(h) and scalar c(h) satisfy the system of Riccati
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equations:

d

dh
Ak(h) = Ψ′kAk(h) +Ak(h)Ψk + 2[Ak(h)]2 + 2Θ(γρ′k)Ak(h) + Γ∗ (k = 1, . . . , n),

d

dh
b(h) = 0, (8)

d

dh
c(h) =

K∑
k=1

tr (νkAk(h)) + γ′µ,

with Γ∗ = 1
2Θγγ′Θ′+

∑n
i=1 γiΘMiΘ

′, µ = (µ1, . . . , µn)′ and initial conditions Ak(0) = O, b(0) = γ

and c(0) = 0. Their solutions are given by

Ak(h) = [N22,k(h)]−1N21,k(h), (k = 1, . . . ,K),

b(h) = γ, (9)

c(h) = −1

2

K∑
k=1

νk
[
log det(N22,k(h)) + htr(Ψ′k + 2Θγρk)

]
,

where (
N11,k(h) N12,k(h)
N21,k(h) N22,k(h)

)
= Exph

(
Ψk −2In
Γ∗ − (Ψ′k + 2Θγρ′k)

)
,

if [N22,k(h)]−1 exists.

Proof. See Appendix A.1.

Proposition 2 shows the conditional Laplace transform of the multifactor WAR process, Ωt.

Proposition 2 The conditional Laplace transform of the multifactor WAR process (2) with equa-

tion (3) is

Ψ†Ξ,t(h) ≡ Et [exp (tr{ΞΩt+h})]

=
K∏
k=1

exp
(
tr
{

(In − 2ΘΞΘ′Σk(h))−1ΘΞΘ′Pk(h)VktPk(h)′
})

[det(In − 2ΘΞΘ′Σk(h))]νk/2
,

(10)

where Ξ is a square matrix,

Pk(h) = Exp(Φkh),

vec (Σk(h)) = [(In ⊗ Φk) + (Φk ⊗ In)]−1 vec
(
Exp(Φkh)Exp(Φ′kh)− In

)
,

(11)
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if Φ−1
k exists.

Proof. See Appendix A.2.

Applying the same arguments to the original WAR process, we have a similar result.

Corollary 1 The conditional Laplace transform of the WAR(ν,Φ,C) process (1) is

Ψ∗Ξ,t(h) ≡ Et [exp (tr{ΞWt+h})] =
exp

(
tr
{

(In − 2ΞΣ(h))−1ΞP (h)WtP (h)′
})

[det(In − 2Σ(h)Ξ)]ν/2
, (12)

where Ξ is a square matrix,

P (h) = Exp(Ψh),

vec (Σ(h)) = [(In ⊗ Φ) + (Φ⊗ In)]−1 vec
(
Exp(Φh)C ′CExp(Φ′h)− C ′C

)
,

(13)

if Φ−1 exists. Furthermore, an alternative form of Σ(h) is given by

Σ(h) =

∫ h

0
Exp(Φks)C

′CExp(Φ′ks)ds (14)

Proof. See Appendix A.3.

With respect to Corollary 1, Proposition 5 of Gourieroux (2006) also showed the conditional

Laplace transform (12) based on (14), using a different approach. However, Corollary 1 shows

that we can obtain Σ(h) without any numerical integration.

By setting h → ∞, we have the unconditional Laplace transform of the WAR process, as in

the following corollary.

Corollary 2 The unconditional Laplace transform of the WAR(ν,Φ,C) process (1) is

E [exp (tr{ΞWt+h})] = lim
h→∞

Ψ∗Ξ,t(h) = [det(In − 2Σ(∞)Ξ)]−ν/2 , (15)

where Ξ is a square matrix and

vec (Σ(∞)) = − [(In ⊗ Φ) + (Φ⊗ In)]−1 vec
(
C ′C

)
, (16)
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if all eigenvalues of Φ are negative. In other words, if Wt ∼WAR(ν,Φ,C), the invariant distri-

bution of Wt is the Wishart distribution with the scale matrix Σ(∞) and the degrees-of-freedom

parameter ν.

Proof. If all the eigenvalues of Φ are negative, P (h) = Exp(Ψh)→ O as h→∞, by the spectral

decomposition shown in Appendix A.3. The invariant distribution, which is characterized by the

moment generating function (16), is the Wishart distribution. �

Define the vector of asset returns as yt+h = pt+h − pt. The next corollary shows the moment

generating functions of yt+h and Ωt+h, which will be used for estimating the AMWSV models.

Corollary 3 For the AMWSV process (2)-(6), the moment generating functions of yt+h and Ωt+h

are given by

E
[
exp(γ′yt+h)

]
= exp(c(h))

K∏
k=1

[In − 2Ak(h)Σk(∞)]νk/2 (17)

E [exp(tr{ΞΩt+h})] =
K∏
k=1

[
In − 2ΘΞΘ′Σk(∞)

]νk/2 , (18)

where Ak(h) and c(h) are defined by Proposition 1, and

vec (Σk(∞)) = − [(In ⊗ Φk) + (Φk ⊗ In)]−1 vec (In) .

Proof. By a simple application of Corollary 2 to equation (10), we have equation (18). For each

Vkt, we also have E [exp(tr{ΞVk,t+h})] = [In − 2ΞΣk(∞)]νk/2 from Corollary 2. Then we obtain

E
[
exp(γ′(pt+h − pt))

]
= EEt

[
exp(γ′(pt+h − pt))

]
= E exp(−γ′pt)Ψγ,t(h)

= exp(c(h)) exp

[
K∑
k=1

tr(Ak(h)Vkt)

]

= exp(c(h))
K∏
k=1

[In − 2Ak(h)Σk(∞)]νk/2 .�
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2.3 Option Pricing

Using the result of Duffie, Pan and Singleton (2000), we can use the risk-neutral Laplace transform

to solve various option pricing problems. Under the risk-neutral measure Q, we want to determine

the price EQ(e−rT f(pT )) of a European option with payoff f(pT ) at maturity T , where r is an

instantaneous interest rate and f is a measurable function such that f : <n → <+.

In order to obtain the risk-neutral Laplace transform, we can apply the results of Proposition

6 derived by Gourieroux and Sufana (2010) to our case. We need to adjust the drift terms of

(pt,Ωt) under the risk-neutral distribution, such that

EQt (dpt) = rι− 1

2
(e′1Ωte1, . . . , e

′
nΩten)′dt

EQt (dΩt) = Et(dΩt) + Cov[tr(CtdΩt), dΩt]

= Et(dΩt) + 2(ΩtΞtΘ
′Θ + Θ′ΘΞ′tΩt)dt,

where EQt denotes the conditional expectation under the risk-neutral measure Q, ι is an n-vector

of ones, and ei is the canonical vector with zero components, except for the ith element which

is equal to one. The risk premium on the Brownian motion of the return equation is fixed by

the martingale condition, whereas the risk premia corresponding to the covariance can be fixed

arbitrarily. As in Gourieroux and Sufana (2010), we consider the case that the volatility risk

premia are constant, such that Ξt = Ξ̄. Then we may have the alternative form the above

equations:

EQt (dpt) =
(
µ̄1 + tr(M̄1Ωt), . . . , µ̄n + tr(M̄nΩt)

)′
dt

EQt (dΩt) = Et(dΩt) + Cov[tr(CtdΩt), dΩt]

=
K∑
k=1

Θ′(νkIn + VktΦ̄
′
k + Φ̄kVkt)Θdt,
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where µ̄i = r, M̄i = −1
2eie

′
i and Φ̄k = Φ + 2ΘΞ̄Θ′. We can obtain the risk-neutral conditional

Laplace transform by replacing Et with EQt in Propositions 1 and 2. We can also have the

risk-neutral conditional Laplace transform of the pair (pt,Ωt) by applying the same approach.

Compared with the MWSV-F model, the option pricing AMWSV model can accommodate the

asymmetric effects flexibly through the leverage effects.

For purposes of calculating option prices, we can explain the approach based on the Fourier

inversion technique introduced by Carr and Madan (1999) and extended by Eberlein, Glau and

Papapantoleon (2010) to the multivariate case. Let f̂ be the Fourier transform of f . Eberlein,

Glau and Papapantoleon (2010) showed that

EQ(e−rT f(pT )) =
e−z

′p0−rT

(2π)n

∫
<n

e−iu
′p0Ψiz−u,0(T )f̂(iz − u)du, (19)

where Ψγ,t(h) is the conditional Laplace transform of pt+h, and the vector z has to lie in the

intersection of the domain of Ψ and f̂ .

Muhle-Karbe, Pfaffel and Stelzer (2012) give the following formulae for basket and spread

options. The payoff function of a basket put option is defined by f(p) = (K−
∑n

j=1 e
pj )+, K > 0,

and its Fourier transform is given by

f̂(u) = K1+i
∑n

j=1 uj

∏n
j=1 Γ(iuj)

Γ(2 + i
∑n

j=1 uj)
,

for all u ∈ Cn with Im(uj) < 0 (j = 1, . . . , n). We can derive the price of the corresponding call

option using put-call-parity (K − x)+ = (x−K)+ − x+K. With respect to a spread call option,

the payoff function is defined by f(p) = (ep1 − ep2 − K)+, K > 0, and its Fourier transform is

given by

f̂(u) =
K1+iu1+iu2

iz1(1 + iz1)

Γ(iz2)Γ(−iz1 − iz2 − 1)

Γ(−iz1 − 1)
,
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for all u ∈ C2, with Im(u1) > 1, Im(u2) < 0 and Im(u1 + u2) > 1. We can use Fast Fourier

Transform (FFT) methods to compute these prices.

3 Estimation

For estimating the AMWSV models, we use a generalized method of moments (GMM) based on

the moment generating function of yt+h and Ωt+h. With respect to the one factor WSV-F model

with Θ = θIn, Gourieroux and Sufana (2010) also use GMM, and their Monte Carlo simulation

results indicate that it is hard to estimate θ, even for T = 5000. In order to cope with the

problem, we suggest estimation using realized volatilities and co-volatilities. By the methods of

Voev and Lunde (2007), Malliavin and Mancino (2009), Wang and Zhou (2010), Barndorff-Nielsen

et al. (2011), and Zhang (2011), we can obtain a consistent estimator of Ωt (without assuming its

structure).

We may call the difference between a consistent estimator of Ωt and Ωt itself as the ‘realized

covariance error’. In univariate realized volatility models, Barndorff-Nielsen and Shephard (2002),

Bollerslev and Zhou (2002), and Asai, McAleer, and Medeiros (2012a,b) showed it is useful to use

an ad hoc approach that accommodates an error term with constant variance. Here, we consider

a Wishart-like disturbance.

Consider a Wishart distribution, W ∗t ∼ W ((1/ν∗)Ωt, ν∗), with the mean and variance of

vec(W ∗t ) given by E(vec(Ωt)) and E((1/ν∗)(In + P )(Ωt ⊗ Ωt)), respectively, where P is a ma-

trix which satisfies vec(A′) = Pvec(A) for any square matrix A. Let Xt be a consistent estimator

of Ωt. We assume that the first two moments of xt = vec(Xt) correspond to the moments of

vec(W ∗t ). Although this specification is ad hoc, this structure can create disturbances of Ωt with

a single nuisance parameter, ν∗. By construction, we need to guarantee the consistency and

positive semi-definiteness of Xt. We will use the moments of xij,t (1 ≤ i ≤ j ≤ n) and xij,txkl,t
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(1 ≤ i ≤ j ≤ n) (1 ≤ k ≤ l ≤ n), resulting in n∗(n∗+3)/2 conditions for xt, where n∗ = n(n+1)/2.

Following Gourieroux and Sufana (2010), we work with the moments of exp(u′2yt+2h+u′1yt+h)

for yt. For the case n = 2, we consider 23 moment conditions of (u′2, u
′
1): (0, 0, 1, 0), (0, 0, 0, 1),

(0, 0, 2, 0), (0, 0, 0, 2), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0), (1, 0, 2, 0), (0, 1, 0, 2),

(1, 0, 0, 2), (0, 1, 2, 0), (2, 0, 2, 0), (0, 2, 0, 2), (2, 0, 0, 2), (0, 2, 2, 0), (0, 0, 3, 0), (0, 0, 0, 3), (0, 0, 3, 3),

(0, 0, 4, 0), (0, 0, 0, 4), (0, 0, 4, 4).

For n = 2, we use GMM with these 32 moment conditions to estimate 26 parameters of the

AMWSV model. We estimate the weighting matrix according to Newey and West (1987), with a

lag length of 50.

We present the results of a Monte Carlo study to investigate the finite sample performance of

GMM estimation for n = 2. We generate R simulated time series of {yt, xt}Tt=1 for the AMWSV

model in equations (2)–(6), and for some given “true” parameter vector. Subsequently, we treat

the parameter vector as unknown and estimate it for each series using GMM. We compute the

sample mean, standard deviation, and root mean squared error (RMSE), and compare these with

the true parameter value. In order to obtain the simulated path of Vkt, we use the following

approach. Noting that dVkt = V
1/2
kt dV

1/2
kt + (dV

1/2
kt )V

1/2
kt , we have

vec(dV
1/2
kt ) = [(V

1/2
kt ⊗ In) + (In ⊗ V 1/2

kt )]−1vec(νIn + VktΦ
′
k + ΦkVkt)dt+ vec(dBM

kt ),

where BM
kt is the same symmetric matrix-variate Brownian motion process used in equation (3).

Then we can apply the local linearization technique of Shoji and Ozaki (1998) to generate V
1/2
kt

(Vkt and Ωt) efficiently.

The true parameter values for generating Monte Carlo samples are given in the first column of

Table 1, which is obtained from our empirical analysis in Section 4. The results given in Table 1

are for sample size T = 2500, with the number of iterations set to R = 2000. Table 1 shows that
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most values of the standard deviations are close to their RMSE counterparts, indicating that the

biases in finite samples are negligible.

4 Empirical Analysis

The empirical analysis focuses on the pair of indexes given by NASDAQ 100 and S&P 500. In

calculating daily realized volatilities and co-volatilities, we use the averaging realized volatility

matrix estimator suggested by Wang and Zou (2010). We clean the data for outliers and discard

transactions outside trading hours, considering transactions between 9.30 A.M. and 4.00 P.M.

Following Tao et al. (2011), we use grids selected in accord with 5 minute returns to take averages.

The sample period is July 1, 1996 to September 28, 2012, giving T= 3961 observations for the

return vector, yt, and realized covariance, Xt.

We estimate one-factor and two-factor WSV models including the simple WSV, WSV-F, WSV-

L and general AWSV models. For purposes of a diagnostic statistic, we use the conventional

GMM J-test of Hansen (1982). Under standard regularity conditions, the minimized value of

the objective function multiplied by the sample size is asymptotically distributed as chi-square,

which allows for an omnibus test of the overidentifying restrictions. We also examine the es-

timates of E(tr(MiΩt)) and E(dωii,tdu1t) + E(dωii,tdu2t) (i = 1, 2) to check the feedback and

leverage effects, respectively. Note that E[vec(dΩt)du
′
t|V1t, V2t] = (Θ′ ⊗ Θ′)

∑2
k=1[(In ⊗ V 1/2

kt ) +

(V
1/2
kt ⊗ In)]R′kV

1/2
kt Θdt. We expect E(tr(MiΩt)) > 0 for the feedback effect, while we expect

E(dωii,tdu1t) + E(dωii,tdu2t) < 0 for the leverage effect.

Table 2 shows the estimates of the one-factor WSV models. For estimating the one factor

models, we excluded the last 6 moment conditions for yt. With respect to the simple one-factor

WSV model, the estimate of ν1 is 17.0, which is significant at the 5% level. The estimates of

φ11,1 and φ22,1 are negative and significant, while those of φ12,1 and φ21,1 are insignificant. The
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eigenvalues of the estimate of Φ1 are negative, indicating that the invariant distribution of V1t

exists by Corollary 2. The estimate of ν∗ is 0.17 and is significant. We can interpret the variance

of xt conditional on Ωt,that is, (1/ν∗)(In + P )(Ωt ⊗ Ωt), such that, as ν decreases, the variance

of xt increases. The GMM omnibus test for the overidentifying restrictions rejects the simple

one-factor WSV model.

Table 2 also shows the estimates of the one-factor WSV-F, WSV-L and Asymmetric WSV

models. Compared with the simple WSV model, the estimates of ν1 became smaller and are

close to 2.1 for all three models. The estimates of φ11,1 and φ22,1 are negative and significant,

while those of φ12,1 and φ21,1 are insignificant. The estimate of ν∗ is close to 0.3, which is greater

than the value for the simple WSV model. With respect to asymmetry, Table 3 summarizes the

estimated asymmetric effects. For the WSV-F model, the feedback effect to NASDAQ returns is

positive, while the effect to S&P returns is negative. Hence, the specification (especially for the

second variable) has room to improve.

Regarding the WSV-L model, the leverage effects can be examined by the estimates of E(dωii,tdu1t)+

E(dωii,tdu2t), as noted above. The leverage effects to the NASDAQ returns volatility is negative,

while the effect to the S&P returns volatility is positive. Again, the sign conditions are not sat-

isfied. For the general AWSV model, the feedback effects are positive, while the leverage effects

are negative for NASDAQ and S&P. This time the conditions for asymmetric effects are satisfied.

However, the GMM omnibus tests for the overidentifying restrictions reject the WSV-F, WSV-L

and AWSV models.

Table 4 reports the estimates of the two-factor WSV models. With respect to the simple

two-factor WSV model without asymmetric effects, all the estimated parameters are significant.

The estimate of ν1 is 5.8, while the estimate of ν2 is 5.8. The estimates of φ11,i and φ22,i are
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negative for i = 1, 2, while those of φ12,i and φ21,i are positive. The estimate of ν∗ is 1.5, which

is greater than the values given in Table 2. This result suggests that the unexplained component

of xt has become smaller than those of the one-factor models. The GMM omnibus test for the

overidentifying restrictions does not reject the simple two-factor WSV model. Except for the

parameters of asymmetric effects, all the estimates are significant for the two-factor WSV-F,

WSV-L and AWSV models. Compared to the estimates of the simple two-factor WSV model, the

WSV-F model has similar results. The WSV-L and AWSV models have smaller ν∗ values compared

with the simple WSV model. The GMM omnibus tests for the overidentifying restrictions do not

reject these three asymmetric two-factor WSV models.

Table 5 presents the estimated asymmetric effects. For the WSV-F model, the feedback

effects to NASDAQ and S&P returns are positive, indicating that the sign condition is satisfied.

Regarding the WSV-L model, the leverage effects to the NASDAQ and S&P returns volatilities

are negative. For the general AWSV model, the feedback effects are positive, while the leverage

effects are negative for NASDAQ and S&P. The results also show that the conditions are satisfied.

These empirical results show that the data favor the two-factor WSV models. Among the

two-factor WSV models, the general asymmetric specification is preferred by the t tests. The

two-factor AWSV model has another merit in that its option pricing variation can accommodate

asymmetric effects flexibly via the leverage effect.

5 Concluding Remarks

In this paper, we suggested a general asymmetric multifactor Wishart stochastic volatility (AMWSV)

model which accommodates leverage and feedback effects and multifactor for the covariance pro-

cess. We also derived the closed-form expression of the conditional and unconditional Laplace

transform of the AMWSV models, the results of which can be used for pricing derivatives. Fur-
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thermore, we proposed to estimate the AMWSV model using GMM based on information not only

of stock prices but also of realized volatilities and co-volatilities. The empirical results for the pair

of NASDAQ 100 and S&P 500 indices show the usefulness of the new specification compared with

other specifications.
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Appendix

A.1 Proof of Proposition 1

By applying the Feynman-Kac argument, we have

d

dh
Ψγ,t(h) = Lp,V1,...,VkΨγ,t(h), Ψγ,t(0) = exp(γ′pt).

with the infinitesimal generator for (pt, V1t, . . . , Vkt). By equation (5.12) of Bru (1991), we can

obtain the infinitesimal generator for the WAR process, Vkt, as follows:

LVk = tr
[
(νkIn + VkΦ

′
k + ΦkVk)Dk + 2VkD

2
k

]
,

where Dk is a matrix differential operator with elements Dij,k = (∂/∂Vij,k). We define δ =

(δ1, . . . , δn)′ with δi = (∂/∂pi). Then the infinitesimal generator for (pt, V1t, . . . , Vkt) is given by

Lp,V1,...,Vk = δ′µ+
n∑
i=1

δitr

[
MiΘ

′

(
K∑
k=1

Vk

)
Θ

]
+

1

2
tr

[
Θ′

(
K∑
k=1

Vk

)
Θδδ′

]

+

K∑
k=1

tr
[
(νkIn + VkΦ

′
k + ΦkVk)Dk + 2VkD

2
k

]
+ 2

K∑
k=1

tr [VkΘγρkDk] .

Thus, we obtain

0 = −
K∑
k=1

tr

[
d

dh
Ak(h)Vk

]
− d

dh
b(h)′p− d

dh
c(h)

+
K∑
k=1

tr
[
(νkIn + VkΦ

′
k + ΦkVk)Ak(h) + 2VkA

2
k(h) + VkΘγρkAk(h)

]
+ µ′b(h) +

n∑
i=1

bi(h)tr

[
ΘMiΘ

′
K∑
k=1

Vk

]
+

1

2

K∑
k=1

tr
[
VkΘb(h)b(h)′Θ′

]
,

with boundary conditions Ak(0) = O for all k, b(0) = γ and c(0) = 0. By identifying the

coefficients of (p, V1, . . . , Vk), we have the ordinary differential equations for b(h) and Ak(h) given

by equation (8). As usual, the function c(h) can be obtained by direct integration.
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Following Fonseca, Grasselli and Tebaldi (2008), we linearize the Matrix Riccati equation for

Ak(h) by doubling the dimension of the problem. Consider a decomposition which satisfies

Ak(h) = [Fk(h)]−1Gk(h).

Then we have

d

dh
[Fk(h)Ak(h)]− d

dh
[Fk(h)]Ak(h) = Fk(h)

d

dh
[Ak(h)].

Substituting the Matrix Riccati equation for Ak(h) in equation (8) into the above equation, we

obtain

d

dh
Gk(h)− d

dh
[Fk(h)]Ak(h) = Gk(h)ΦkFk(h)Γ∗ +

[
Fk(h)(Φ′k + 2Θγρ′k) + 2Gk(h)

]
Ak(h).

Hence, we can construct a system of (2n) linear equations given by

d

dh
Gk(h) = Fk(h)Γ∗ +Gk(h)Φk,

d

dh
Fk(h) = −Fk(h)(Φ′k + 2Θγρ′k)− 2Gk(h),

with initial conditions Gk(0) = O and Fk(0) = In. The above equations can be written as follows:

d

dh
(Gk(h) Fk(h)) = (Gk(h) Fk(h))

(
Φk −2In
Γ∗ −(Φ′k + 2Θγρ′k)

)
.

Hence, we obtain the solution by matrix-exponentiation:

(Gk(h) Fk(h)) = (O In) Exph

(
Φk −2In
Γ∗ −(Φ′k + 2Θγρ′k)

)
.

Using the definition ofNij,k(h) i, j = 1, 2 in equation (9), we have (Gk(h) Fk(h)) = (N21,k(h) N22,k(h)),

and Ak(h) = [N22,k(h)]−1N21,k(h). Now we turn to the ordinary differential equation for c(h).

Multiplying Fk(h) before d
dhFk(h) above, we have

[Fk(h)]−1 d

dh
Fk(h) = −(Φ′k + 2Θγρ′k)− 2Ak(h).
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We can remove Ak(h) from the ODE of c(h), in order to give

d

dh
c(h) = −1

2

K∑
k=1

νktr

(
[Fk(h)]−1 d

dh
Fk(h) + Φ′k + 2Θγρ′k

)
+ γ′µ.

Now we can integrate the last equation and obtain the solution of c(h) given by equation (9).

A.2 Proof of Proposition 2

We can handle the conditional Laplace transform of the covariance process:

Ψ†Ξ,t(h) = Et [exp (tr{ΞΩt+h})] = exp

[
K∑
k=1

tr
(
A†k(h)Vkt

)
+ b†(h)′pt + c†(h)

]
,

by replacing the corresponding boundary conditions and repeating the procedure in Appendix

A.1. Hence, we have

A†k(h) = [ΘΞΘ′N12(h) +N22,k(h)]−1ΘΞΘ′N11,k(h), (k = 1, . . . ,K)

b†(h) = 0,

c†(h) = −1

2

K∑
k=1

νk
[
log det(N22,k(h)) + htr(Ψ′k + 2Θγρk)

]
,

where (
N11,k(h) N12,k(h)
N21,k(h) N22,k(h)

)
= Exph

(
Ψk −2In
O −Ψ′k

)
.

It is straightforward to show that N11,k(h) = Exp(Ψkh), N22,k(h) = Exp(−Ψ′kh), N21,k(h) = O

and N12,k(h) = −2Σ(h)Exp(−Ψ′kh), where Σ(h) is defined by (11). By a property of matrix-

exponential transformation (for instance, see Chiu, Leonard and Tsui (1996)), we have

log det(N22,k(h)) = log det(Exp(−Ψ′kh)) = tr(−Ψ′kh). Thus, we obtain

A†k(h) = Exp(Ψ′kh)
[
In − 2ΘΞΘ′Σ(h)

]−1
ΘΞΘ′Exp(Ψkh),

c†(h) = −1

2

K∑
k=1

νk log det
(
In − 2ΘΞΘ′Σ(h)

)
.

Therefore, we have the results in (10).
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A.3 Proof of Corollary 1

In order to prove Corollary 1, we need to show that equation (13) is equivalent to the result

obtained by Proposition 5 of Gourieroux (2006). We also need to show some properties of the

matrix-exponential operator. Note that for any n×n matrix A, the spectral decomposition is given

by A = ULU−1, where L is the diagonal matrix of eigenvalues such that L = diag{λ1, . . . , λm},

and U is the matrix of corresponding eigenvectors. Hence, we have Ai = ULiU−1, and we have

the decomposition:

Exp(A) = U

 exp(λ1) O
. . .

O exp(λm)

U−1.

(see Bellman (1970) and Chiu, Leonard and Tsui (1996)).

Lemma 1 For any square matrix A (m×m),

d

ds
Exp(As) = A Exp(As).

Proof. It is straightforward to show this from the definition as:

d

ds
Exp(As) =

d

ds

{
I + lim

n→∞

n∑
i=1

1

i!
Aisi

}
= lim

n→∞

d

ds

n∑
i=1

1

i!
Aisi

= lim
n→∞

A
n∑
i=1

1

(i− 1)!
Ai−1si−1 = A Exp(As). �

DenoteG(h) = Exp(Φh)CC ′[Exp(Phih)]′. Then, Ω(h) =
∫ h

0 G(s)ds. Noting that dG(s)
ds = ΦG(s)+

G(s)Φ′ by Lemma 1, we have

vec(Ω(h)) = [(Im ⊗ Φ) + (Φ⊗ Im)]−1 vec(Exp(Φh)CC ′[Exp(Φh)]′ − CC ′),

if Φ−1 exists.
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Table 1: Monte Carlo Results for the GMM Estimator for Two-Factor Asymmetric WSV Model
with Noise

Para. True Mean Std.Dev. RMSE

µ1 −0.0047 −0.0212 0.00315 0.0169
µ2 −0.0013 −0.0066 0.00130 0.0055
m11,1 0.8448 0.8432 0.00544 0.0057
m21,1 −0.1867 −0.1839 0.00586 0.0065
m22,1 0.1646 0.1710 0.00574 0.0085
m11,2 0.1805 0.1803 0.00389 0.0039
m21,2 −0.0778 −0.0774 0.00437 0.0044
m22,2 0.2429 0.2482 0.00618 0.0081
θ11 0.0394 0.0388 0.00532 0.0054
θ12 0.0070 −0.0008 0.00549 0.0095
θ22 0.0051 −0.0073 0.00234 0.0126
ν1 7.7153 7.7161 0.00375 0.0038
φ11,1 −7.1421 −7.1417 0.00313 0.0032
φ21,1 −0.1148 −0.1151 0.00299 0.0030
φ12,1 −0.0394 −0.0395 0.00420 0.0042
φ22,1 −4.7369 −4.7365 0.00650 0.0065
ρ1,1 −0.3159 −0.3158 0.00409 0.0041
ρ2,1 −0.2855 −0.2857 0.00415 0.0042
ν2 2.8146 2.8151 0.01215 0.0122
φ11,2 −1.2305 −1.2371 0.01705 0.0183
φ21,2 0.8658 0.8648 0.00657 0.0066
φ12,2 −0.0967 −0.1138 0.00975 0.0197
φ22,2 −0.0076 −0.0269 0.01123 0.0223
ρ1,2 −0.1095 −0.1108 0.00612 0.0063
ρ2,2 0.1587 0.1604 0.00907 0.0092
ν∗ 0.6882 2.4928 0.01888 0.0202
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Table 2: GMM Estimates for One-Factor WSV Processes

Para. WSV WSV-F WSV-L Asym. WSV

µ1 −0.0005 (0.0002) −0.0005 (0.0001) −0.0004 (0.0002) −0.0006 (0.0112)
µ2 6.17×10−5 (5.06×10−5) 0.0004 (0.0001) 7.14×10−5 (0.0001) −3.68×10−5 (0.0019)
m11,1 0.0186 (0.0039) 0.2307 (0.0495)
m21,1 0.0694 (0.0064) −0.0270 (0.0283)
m22,1 0.1131 (0.0372) −0.0975 (0.0140)
m11,2 −0.1258 (0.0524) −0.0277 (0.0168)
m21,2 −0.1646 (0.0039) 0.2807 (0.0275)
m22,2 −0.2862 (0.0097) 0.1422 (0.0765)
θ11 0.0234 (0.0044) 0.0341 (0.0057) 0.0324 (0.0053) 0.0415 (0.0070)
θ12 0.0013 (0.0006) −0.0025 (0.0054) 6.57×10−5 (0.0010) 0.0022 (0.0071)
θ22 −0.0114 (0.0021) −0.0312 (0.0052) −0.0303 (0.0051) −0.0297 (0.0050)
ν1 17.004 (5.9687) 2.0619 (0.3323) 2.1981 (0.3206) 2.1327 (0.3540)
φ11,1 −3.0189 (1.1218) −0.8373 (0.2688) −0.7917 (0.2565) −1.2414 (0.4102)
φ21,1 −0.1031 (0.2372) −0.3504 (0.5046) −0.1273 (0.3385) −0.0218 (0.6447)
φ12,1 −0.0726 (0.0648) −0.2729 (0.9217) −0.2422 (0.9407) −0.0869 (1.0963)
φ22,1 −2.5587 (0.9563) −2.1070 (0.7059) −2.1170 (0.7084) −1.9826 (0.6713)
ρ1,1 −0.4711 (0.2250) −0.5232 (0.1502)
ρ2,1 −0.0461 (0.5941) −0.0114 (0.0813)
ν∗ 0.1712 (0.0123) 0.3139 (0.0354) 0.2974 (0.0274) 0.3052 (0.0329)

J-test 25.015 24.578 24.378 24.294
d.o.f. (15) (9) (13) (7)
p-value 0.0497 0.0035 0.0278 0.0010

Note: Standard errors are in parentheses. ‘J-test’ is the GMM test of overidentifying restrictions.
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Table 3: Estimated Asymmetric Effects for One-Factor WSV Models

Para. WSV WSV-F WSV-L Asym. WSV

E(ω11,t) 0.001537 0.001506 0.001489 0.001485
E(ω21,t) 0.000117 0.000105 0.000107 0.000104
E(ω22,t) 0.000443 0.000486 0.000483 0.000481

Feedback Effect
E(tr(M1Ωt)) 0 9.746×10−5 0 0.00029003
E(tr(M2Ωt)) 0 −0.000363 0 8.575×10−5

Leverage Effects from u1t

E(dω11,tdu1t) 0 0 −4.529×10−5 −6.453×10−5

E(dω21,tdu1t) 0 0 −0.039×10−5 −0.712×10−5

E(dω22,tdu1t) 0 0 0.016×10−5 −0.019×10−5

Leverage Effects from u2t

E(dω11,tdu2t) 0 0 −0.266×10−5 −0.429×10−5

E(dω21,tdu2t) 0 0 −1.918×10−5 −2.378×10−5

E(dω22,tdu2t) 0 0 0.078×10−5 −0.106×10−5

Note: We omitted dt for leverage effects.

29



Table 4: GMM Estimates for Two-Factor WSV Processes

Para. WSV WSV-F WSV-L Asym. WSV

µ1 −0.0007 (0.0002) −0.0013 (0.0002) −0.0022 (0.0002) −0.0047 (0.0006)
µ2 0.0012 (0.0005) 0.0005 (0.0001) −0.0006 (0.0001) −0.0013 (0.0003)
m11,1 0.0749 (0.0256) 0.8448 (0.1870)
m21,1 −0.1373 (0.0464) −0.1867 (0.0734)
m22,1 0.0333 (0.0273) 0.1646 (0.0470)
m11,2 0.0951 (0.0532) 0.1805 (0.0503)
m21,2 −0.0998 (0.0270) −0.0778 (0.0066)
m22,2 0.0462 (0.0263) 0.2429 (0.2668)
θ11 0.0125 (0.0013) 0.0123 (0.0005) 0.0173 (0.0004) 0.0394 (0.0011)
θ12 0.0091 (0.0007) 0.0087 (0.0003) 0.0089 (0.0004) 0.0070 (0.0004)
θ22 −0.0131 (0.0008) −0.0128 (0.0004) −0.0118 (0.0003) 0.0051 (0.0002)
ν1 5.7615 (1.7031) 5.7753 (1.2572) 5.6577 (2.4992) 7.7153 (1.2193)
φ11,1 −5.2620 (0.6143) −5.2497 (0.7034) −5.3224 (1.1645) −7.1421 (0.6422)
φ21,1 0.0428 (0.0034) 0.0360 (0.0111) −0.0686 (0.0111) −0.1148 (0.0231)
φ12,1 0.0437 (0.0234) 0.0365 (0.0069) −0.0718 (0.0093) −0.0394 (0.0073)
φ22,1 −5.0030 (0.7916) −4.9987 (0.4301) −5.0214 (1.2123) −4.7369 (0.3698)
ρ1,1 −0.2293 (0.0209) −0.3159 (0.0236)
ρ2,1 −0.2591 (0.0622) −0.2855 (0.0207)
ν2 4.4075 (0.3416) 4.4533 (0.3251) 3.9378 (0.3432) 2.8146 (0.2341)
φ11,2 −0.7955 (0.0425) −0.7348 (0.0137) −0.5003 (0.0141) −1.2305 (0.0741)
φ21,2 0.7869 (0.0630) 0.7314 (0.0203) 0.1403 (0.0179) 0.8658 (0.1434)
φ12,2 0.9960 (0.0609) 0.9404 (0.0197) 0.4003 (0.0135) −0.0967 (0.0067)
φ22,2 −1.2469 (0.0927) −1.2034 (0.0308) −0.3147 (0.0188) −0.0076 (0.0050)
ρ1,2 −0.4146 (0.0264) −0.1095 (0.0166)
ρ2,2 0.1919 (0.0137) 0.1587 (0.0767)
ν∗ 1.5227 (0.0161) 1.5359 (0.0162) 0.6993 (0.0123) 0.6882 (0.0124)

J-test 9.8073 9.8073 9.8071 9.8062
d.o.f. (16) (10) (12) (6)
p-value 0.8765 0.4576 0.6328 0.1331

Note: Standard errors are in parentheses. ‘J-test’ is the GMM test of overidentifying restrictions.
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Table 5: Estimated Asymmetric Effects for Two-Factor WSV Models

Para. WSV WSV-F WSV-L Asym. WSV

E(ω11,t) 0.002332 0.002338 0.002718 0.002776
E(ω21,t) 0.000182 0.000185 0.000208 0.000218
E(ω22,t) 0.000434 0.000426 0.000815 0.000763

Feedback Effect
E(tr(M1Ωt)) 0 0.000138 0 0.002389
E(tr(M2Ωt)) 0 0.000205 0 0.000653
Leverage Effects from u1t

E(dω11,tdu1t) 0 0 −0.845×10−5 −3.9434×10−5

E(dω21,tdu1t) 0 0 −2.712×10−5 −0.614×10−5

E(dω22,tdu1t) 0 0 −0.344×10−5 −0.025×10−5

Leverage Effects from u2t

E(dω11,tdu2t) 0 0 −0.008×10−5 −0.557×10−5

E(dω21,tdu2t) 0 0 −0.537×10−5 −0.556×10−5

E(dω22,tdu2t) 0 0 −0.944×10−5 0.029×10−5

Note: We omitted dt for leverage effects.
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