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Abstract

Credit risk models should re�ect the observation that the relevant value of collateral is generally not the

average value of the asset over all possible states of nature. In most cases, the relevant value of collateral for

the lender is its secondary market value in bad states of nature, where marginal utilities are high. Although the

negative correlation between recovery rates and default probabilities is well documented, the majority of pricing

models does not allow for correlation between the two. In this paper, we propose a relatively parsimonious

reduced-form continuous time model that estimates expected recovery rates and default probabilities from the

term structure of CDS spreads. The parameters of the model and latent factors driving recovery risk and default

risk are estimated using a Bayesian MCMC algorithm. We �nd that the Bayesian deviance information criterion

(DIC) favors the model with stochastic recovery over constant recovery. We also observe that for companies

with a good rating, implied constant recovery rates do not di�er much from stochastic recovery. However, if a

company is very risky, then forward stochastic recovery rates are signi�cantly lower at longer maturities.
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1 Introduction

In recent years, a number of papers have concentrated on the role of recovery risk in credit risk models. Part of this

literature attempts to extract implied recovery rates from observed prices of bonds or CDS spreads. Most of these

studies are based on the assumption that recovery rates are constant and are independent of the default probabilities.

The assumption of independence is made for tractability. However, this turns out to be a very strong assumption

because we have su�cient empirical evidence to believe that recovery rates are stochastic and negatively correlated

with default rates (Altman, Brady, Resti, and Sironi (2005), Altman (2006), Acharya, Bharath, and Srinivasan

(2007), Bruche and González-Aguado (2010)). In this paper, we address the question of how far this ”independence

assumption” may be justi�ed.

The basic intuition behind this paper is based on the corporate �nance theory of asset �re sales, as described in

the seminal paper by Shleifer and Vishny (2012). Their model was the �rst to make the resale price of collateral

endogenous. First, they make the very plausible assumption that assets are specialized, and their �rst-best use is

only within a particular industry. Obviously, when an asset has many alternative uses, it should always have high

liquidation value. For instance, commercial real estate can be used in many di�erent ways. However, hardly any

asset is so easily redeployable. Most of the assets have no sensible use for �rms outside the industry.

The second important assumption is that shocks a�ecting �rms within the same industry are correlated. That

means that when one �rm has problems meeting its debt obligations, then most probably other �rms in the industry

will face similar problems. Consequently, �rms in times of distress may be forced to sell their assets at signi�cantly

depressed prices to outsiders from other industries. Therefore, defaulting �rms can impose a negative externality

on other �rms in the industry, or even on the economy at large.

The insights of Shleifer and Vishny (2012) have been con�rmed in many empirical studies. Altman et al. (2005),

Altman (2006) shows that the aggregated recovery rates on corporate bonds can be volatile and negatively correlated

with aggregate default rates. That is, recovery rates tend to fall at a time when the number of defaults rises. For

instance, using yearly data between 1982 and 2009, Altman (2006) shows that a simple linear regression of realized

weighted average recovery rates on weighted average default rates gives an R2 = 0.5361 with a signi�cantly negative

coe�cient.

In a related study, Acharya et al. (2007) show that recovery rates depend more on industry speci�c conditions

than on macroeconomic indicators. They claim that results from Altman et al. (2005), appear to be just a mani-

festation of omitted variables. Other studies like Campbell, Giglio, and Pathak (2009) provide evidence of spillover

e�ects, in which home foreclosures reduce the prices of other houses in the neighborhood. Benmelech and Bergman

(2011) identify another channel for spillover e�ects of �rm bankruptcies. They demonstrate that bankrupt �rms

in a particular industry impose a negative externality on their non-bankrupt competitors. That happens because

liquidations depress the value of collateral, and thereby increase the cost of external debt �nancing for the rest of

the industry. This, in turn, increases the default probabilities of all �rms using the same type of asset as collateral.

Altogether, it creates an amplifying mechanism that can propagate industry downturns.

Moreover, recent events in the USA, particularly in the housing market, suggest that the collateral shocks have

crucial importance to the economy at large. More broadly, all of these studies demonstrate that recovery risk

de�nitely exists and has an economically signi�cant magnitude. Despite all the evidence, the common practice,

both in academic circles and in industry, in analysing credit risk models seems to use a constant recovery rate that

is usually �xed at a level between 40% and 50%. In other words, the assumption is that the collateral will be equally
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easy to sell, no matter what the state of the world.

In this paper, we are concerned with the problem of extracting implied recovery rates from observable prices.

The literature on the estimation of implied recovery rates is relatively small and new, especially when compared

with the large literature on default probabilities. One of the �rst attempts to extract implied recovery rates was

in Madan, Bakshi, and Zhang (2006). Their model assumed that both default intensity and the recovery rate are

driven by the same factor that governs the risk-free rate term structure. In this paper, we also assume that default

intensity and recovery rates are driven by a single factor. However, in contrast to Madan et al. (2006), we assume

that CDS spreads are driven by a latent factor that is speci�c to the credit risk of the company rather than to a

risk-free rate.

Pan and Singleton (2008) demonstrate that one can exploit the term structure of CDS spreads to identify the

parameters of the default intensity and the recovery rate. They �nd that long-maturity premia are essential for

identi�cation as the impact of changes in the recovery rate on short-maturity premia is relatively low. In their model,

expected recovery rates are constant. They argue that recovery rates on sovereign bonds are not correlated with

the business cycle in the same way as recovery rates for corporate CDS. Therefore, a constant recovery assumption

is not so unreasonable for a sovereign debt market.

Schneider, Sögner, and Veºa (2011), in a framework similar to Pan and Singleton (2008), simultaneously estimate

jumps in default intensities and �rm-speci�c constant recovery rates from a large cross section of US corporate CDS

spreads. We augment their approach and extract the parameters of the default intensity process and recovery rate

from the term structure of CDS spreads, but also allow the recovery rate to depend on the default intensity.

Das and Hanouna (2009) use data on both CDS spreads and stock price data to infer recovery rates by boot-

strapping over the term structure of CDS using a parametric function to link default probabilities with stochastic

recoveries. Similarly, we assume a parametric relation between the stochastic recovery rate and default probability.

However, we do not calibrate our model to a single time point but perform time series estimation.

Two other papers related to Das and Hanouna (2009) are Le (2007) and Song (2007). Le (2007) infers implied

recovery rates in a two-step procedure. Using option prices, he �nds the risk-neutral default intensity, and then

deduces what should be the corresponding recovery rate from CDS spreads. Song (2007) developed a framework

based on cross-sectional no-arbitrage restrictions between di�erent credit derivatives in order to identify constant

recovery rates.

Finally, two papers that are most closely related to this paper are Christensen (2007) and Doshi (2011). Both

models estimate a stochastic recovery model using CDS data. Christensen (2007) estimates the model for the Ford

Motor Corporation using senior CDS contracts, while Doshi (2011) estimates a discrete time model using CDS

spreads of di�erent seniorities and for 46 �rms.

This paper complements these papers in two ways. First, we estimate a more parsimonious model than either

Christensen (2007) or Doshi (2011), which allows us to model default intensity and recovery rate as being driven

by the same credit risk speci�c latent factor. That is, in our case the correlation between recovery and the default

intensity does not come from the common dependence on interest rate factors. In terms of the asset �re sales

framework, it would be rather di�cult to �nd an economically reasonable mechanism that would link risk-free

interest rates with lower or higher recovery rates on bonds. Therefore, we think that it is economically more

plausible to model the recovery rate as a function of the same latent process that drives default intensity rather

than as a function of the latent process driving the term structure of risk-free interest rates.
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Second, we compare the relative performance of the model with stochastic recovery and constant recovery.

Speci�cally, using MCMC methods and a Bayesian model selection criterion, we compare two parsimonious reduced

form models in continuous time. The �rst model is estimated under the assumption that the recovery rates are

constant and are independent of default intensities. The second model is estimated with a stochastic recovery rate

that is negatively correlated with default intensity of the �rm. We assume that both the default probability and

the expected recovery rate are driven by the same latent process. In other words, they are in a sense entangled,

at least from the perspective of investors choosing defaultable credit instruments. The estimated model uses just

one (Cox, Ingersoll, and Ross, 1985, hereafter: CIR) process as a latent factor. Additionally there are two more

parameters that drive the recovery rate process. In general, this is a very parsimonious model. We �nd that the

parameter estimates are signi�cant and imply sensible recovery rates.

This paper is organized as follows. Section 2, with a simple example, provides the intuition for the relation of

recovery rates under the risk neutral and real world measure. Section 3 presents how the stochastic recovery rate

can be accommodated by an a�ne term structure model. In Section 4 we describe the estimation methodology.

Section 5 presents the estimates and Section 6 concludes the paper.

2 Relation Between Stochastic Recovery and Risk Premia

The following simple example should provide some intuition for the relation between the expected recovery rates

under the empirical P and under the pricing Q measure. From the empirical papers mentioned above, we know that

under the P measure, the higher the number of �rms that are liquidated, the lower is the recovery from defaulted

bonds. A�ne models always assume some sort of market price of risk. In this example, we show that when investors

are risk averse and recoveries decrease under the P measure, then recoveries will decrease under Q.
Assume that there is an investor, two periods and two identical �rms. The �rms �nance themselves by issuing

bonds. At time 2, the bond will pay 1 with probability p and will default with probability 1−p. If the �rm defaults,

the investor recovers an amount equal to φ1. However, if both �rms are liquidated, then the supply of the collateral

from defaulted �rms on the market is so high that it depresses the price. Then the investor can recover only φ2,

which is less than φ1. Assume for simplicity that the investor buys only one bond and u′ (c0) = 1, so that the state

prices have the following form:

ψω =
pωu

′ (c1,ω)

u′ (c0)
= pωu

′ (c1,ω) .

probabilities under P payo�s state prices probabilities under Q

state 1 (p, p) 1 ψ1 = p2u′(c1;1) πQ
1 = ψ1∑

i ψi

state 2 (1− p, p) φ1 ψ2 = (1− p)pu′(c1;2) πQ
2 = ψ2∑

i ψi

state 3 (p, 1− p) 1 ψ3 = p(1− p)u′(c1;3) πQ
3 = ψ3∑

i ψi

state 4 (1− p, 1− p) φ2 ψ4 = (1− p)2u′(c1;4) πQ
4 = ψ4∑

i ψi

In this example, we replicate the empirical observation that under the physical measure P, the probabilities of
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default are negatively correlated with realized recovery rates. The following proposition shows that, in such a case,

investors will demand an additional risk premium in order to be compensated for the recovery risk.

Proposition 2.1. If 1 > φ1 > φ2 and the investor is risk averse, then

EQ (φ|default) < EP (φ|default) .

Proof. See the Appendix.

3 Recovery Rate in an A�ne Term Structure Model

The class of a�ne processes is one of the most popular and widely studied time series models in the empirical

�nance literature. Its popularity can be largely attributed to analytical tractability, which accommodates stochastic

volatility, jumps and correlations among risk factors. As we will show, a�ne processes can also be used to model

recovery rates that are negatively correlated with the probability of default. In this paper, we will make use of the

methods described in Du�e, Pan, and Singleton (2003), and summarized and extended in Filipovic (2009).

Speci�cally, in order to price CDS spreads at di�erent maturities, we will use the transform method derived in

Du�e et al. (2003), which gives a closed-form solution for the following expectation:

Et

[
e−
´ T
t
r(Xs)dseuYT (v0 + v1XT ) 1{βXT<y}

]
where Xt is a state variable that follows an a�ne process, R (X) is a discount rate and an a�ne function of X, and

euXT (v0 + v1XT ) 1{βXT<y} is the terminal payo� at time T .

3.1 CDS Pricing

3.2 Constant recovery

The CDS price (we adapt here formulae from Du�e (2005), sections 5, 6 and 8) is a ratio of the so-called default

leg, Ldefaultt (T ), to the �xed leg, Lfixedt (T ):

cdst (T ) =
Ldefaultt (T )

Lfixedt (T )
, (1)

where Ldefaultt (T ) is equal to the expected payment from the CDS issuer to the protection buyer in case of default:

Ldefaultt (T ) =

ˆ T

t

EQ
t

[
e−
´ v
t
rsds1{τ<T} (1− φv)

]
dv, (2)

τ denotes the doubly-stochastic default time, and φ is a recovery rate. Lfixedt (T ) represents the sum of the

discounted CDS premium payments accounting for the probability that the �rm survives until the payments are

due, plus an accrued premium payment made at default time τ . Let TI(τ) denote the last time when the premium

was paid before the default happened. If default occurs at time τ between premium payments at times Tj and Tj+1,
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and j = I (τ) , then the protection buyer has to pay an accrued premium over the period τ − TI(τ), which yields:

Lfixedt (T ) =
1

4

4T∑
j=1

EQ
t

[
e−
´ 1

4
j

t rsds1{τ>T}

]
dv +

ˆ T

t

EQ
t

[
e−
´ v
t
rsds1{τ<T}

] (
v − TI(v)

)
dv. (3)

Following Du�e (2005) (sections 5 and 6), we can express the above conditional expectations using a default

intensity process, λt, to obtain:

EQ
t

[
e−
´ v
t
rsds1{τ<T} (1− φv)

]
dt = EQ

t

[
e−
´ v
t

(ru+λu)duλv (1− φv)
]
dv (4)

and

EQ
t

[
e−
´ τ
t
rsds1{τ>T}

]
= EQ

t

[
e−
´ T
t

(ru+λu)du
]
. (5)

Equations (4) and (5) allow us to express Ldefaultt (T ) and Lfixedt (T ) as

Ldefaultt (T ) =

ˆ T

t

EQ
t

[
e−
´ v
t

(rs+λs)dsλv (1− φv)
]
dv, (6)

Lfixedt (T ) =
1

4

4T∑
j=1

EQ
t

[
e−
´ 1

4
j

t (rs+λs)ds

]
+

ˆ T

t

EQ
t

[
e−
´ v
t

(rs+λs)dsλv

] (
v − TI(t)

)
dv. (7)

In order to obtain these expressions in closed form, we assume that λt follows a CIR process under the pricing

measure Q:
dλt = κQ

(
θQ − λt

)
+ σ

√
λtdW

Q
t . (8)

3.3 Stochastic recovery

Assume that the recovery rate is stochastic and depends on the default intensity λt. Additionally, assume that there

exists a function φ (λt) that links the default intensity with the expected recovery rate. The function φ (λt) should

ful�ll three necessary properties. First, it should have the domain on R+, because CIR is de�ned on R+. Second,

in order to ensure a negative correlation of default probabilities with recovery rates, we need to use a function that

has a negative or nonpositive �rst derivative. This is a crucial condition. We know that realized recovery rates are

negatively related with aggregate default rates. Therefore, we impose the same condition on implied recovery rates.

Finally, the values of the function φ should be between 0 and 1.

A convenient possibility is an exponential function:

φ (λt) = β2 + β0e
β1λt , (9)

The parameters of the recovery function are constrained as follows:

β0 ∈ (0, 1) , β1 ≤ 0, β2 ∈ (0, 1) .

It is obviously a very special case, but it has one very useful feature. When β1 ≤ 0, the numerator of the CDS

function (1) can be obtained in closed form by means of a Laplace transfrom (see Du�e and Garleanu (2001)).
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Any other functional relation of default intensity with expected recovery rate can be implemented using Fourier

transform methods (see Filipovic (2009)). However, it would be less precise, and given that we have a panel of

1146× 5 data points, it would also be much more computationally time consuming.

3.3.1 Constant risk-free interest rate

We follow Pan and Singleton (2008) and Schneider et al. (2011) and assume that the risk free rate has no impact

on credit risk. Therefore, we assume that

r = const.

The recovery rate is assumed to be a function of the stochastic process φ (λt). Here, L
default
t (T ) is equal to

Ldefaultt (T ) =

ˆ T

t

EQ
t

[
e−
´ v
t
λsdsλv (1− φ (λv))

]
dv (10)

and Lfixedt (T ) is

Lfixedt (T ) =
1

4

4T∑
j=1

EQ
t

[
e−
´ 1

4
j

t λsds

]
+

ˆ T

t

EQ
t

[
e−
´ v
t
λsdsλv

] (
v − TI(v)

)
dv. (11)

For φ (λt) = β2 + β0e
β1λt , the numerator of the CDS spread can expressed as follows:

Ldefaultt (T ) = (1− β2)

ˆ T

t

EQ
t

[
e−
´ v
t
λsdsλv

]
dv − β0

ˆ T

t

EQ
t

[
e−
´ v
t
λsdsλve

β1λt
]
dv

and the two integrands can be expressed in terms of the moment generating functions (as shown in Du�e and

Garleanu (2001)):

EQ
t

[
e−
´ v
t
λsdsλv

]
= eΦ(v−t,0)+Ψ(v−t,0)λ(t) [Φu (v − t, 0) + Ψu (v − t, 0)λ (t)] , (12)

EQ
t

[
e−
´ v
t
λsdsλve

β1λt
]

= eΦ(v−t,β1)+Ψ(v−t,β1)λ(t) [Φu (v − t, β1) + Ψu (v − t, β1)λ (t)] . (13)

The functions Φ (v − t, u), Ψ (v − t, u), Φu (v − t, u) and Ψu (v − t, u) are solutions of certain Riccati equations.

These functions for a CIR process are de�ned in the Appendix. Finally, the CDS price with stochastic recovery

rate is equal to

cdst (T ) =

´ T
t
EQ
t

[
e−
´ v
t
λsdsλv

(
1− β2 + β0e

β1λ(v)
)]
dv

1
4

4T∑
j=1

EQ
t

[
e−
´ 1

4
j

t λsds

]
+
´ T
t
EQ
t

[
e−
´ v
t
λsdsλv

] (
v − TI(v)

)
dv

. (14)

4 Estimation Methodology

The model described in this paper assumes that CDS spreads are driven by unobserved state variables. Here

we will use Bayesian simulation methods to estimate the parameters and the latent process λt. This method is

computationally very intensive, but it has several advantages over other estimation methods for models with latent
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processes. MCMC allows us to estimate simultaneously both the parameters of the model and the latent variables,

given the observed data.

Let the vector Θ denote the parameters under Q and P, as well as the parameters in the covariance matrix of

the errors, Σe, de�ned by:

Θ =
(
κP, κQ, θP, θQ, σ, β0, β1, β2, a0, a1, a2

)′
. (15)

The generated CDS premia from the model are y = {yt}1146
t=1 , where

yt = (yt (T = 1) , yt (T = 3) , yt (T = 5) , yt (T = 7) , yt (T = 10))

are expressed in terms of the latent process, λt, and the vector of parameters, Θ. We assume that the panel of CDS

premia, computed from equation (14), is observed with an additive iid observation error, et ∼ N (0,Σe (t)), such

that at each point in time t, we have:

yt = cds (λt,Θ) + et. (16)

The covariance matrix of the error term is a 5× 5 diagonal matrix, with entries given by

(Σe)ii = ea0+a1Ti+a2T
2
i , (17)

where i = 1, ..., 5 and Ti is the i-th component of the vector of CDS maturities, T = (1, 3, 5, 7, 10). Finally, let

λ = {λt}1146
t=1 denote the whole latent process. For time series inference, we discretize equation (6) under the

objective measure P:
λt = λt−1 + κP

(
θP − λt−1

)
∆ + σ

√
λt−1∆ελ (t) (18)

where ∆ is a time step between observations equal to 1/252. The innovations ελ (t) are iid distributed random

variables. The joint posterior density of the parameters and latent state variables are given by the following equation:

p (λ, λ0,Θ|y) ∝ p (y|λ, λ0,Θ) p (λ|Θ) p (Θ) p (λ0) . (19)

The density p (y|λ, λ0,Θ) represents a multivariate normal distribution arising from equation (16) and the transition

density p (λ|Θ) is determined by the latent process from equation (18). Here we use uninformative priors p (Θ)

and p (λ0), with normal priors for parameters with support on the real line and gamma priors for parameters with

support on the positive real line, both with high variances. Speci�cally, for
(
κP, κQ, θP, θQ, σ

)
, we use gamma priors,

for β1 we use gamma prior but multiplied by (−1), for (a0, a1, a2) we use normal priors, and for (β0, β2) we also

use normal priors but truncated to the interval (0, 1). Further details about sampling the parameters and latent

process can be found in the Appendix.
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5 Empirical Results

5.1 Data

The models are estimated for three di�erent �rms: ConocoPhillips, General Motors and Campbell Soup. The data

on CDS come from the Markit Group, and these are daily data that span approximately 4.5 years from 1 January

2004 until 30 May 2008. ConocoPhillips is the �fth largest private sector energy corporation in the world (A1 rating

from Moody's). General Motors is an American multinational automotive corporation. General Motors defaulted

in 2009, which is already outside of the time interval covered by the dataset. In an auction on 12 June 2009, the

recovery rate for the CDS was settled at a level of 12.5 percent. Campbell Soup is a well-known American producer

of canned soups and related products (A2 rating from Moody's).

5.2 ConocoPhillips Case Study

5.2.1 Posterior Parameter Estimates

Table 1 presents the posterior estimates of the parameters both for the model with stochastic and constant recovery

rate. What stands out is a very high standard deviation of the parameters measured under the P measure, that is

κP and θP. The parameters that are estimated under the Q measure are apparently much more precise.

stochastic recovery model constant recovery model

mean std. mean std.

κP 0.0769 0.1545 0.0709 0.1453

κQ 0.0109 0.0005 0.0106 0.0009

θP 0.1988 0.4124 0.4369 0.7989

θQ 0.0943 0.0051 0.0752 0.0057

σ 0.0577 0.0091 0.0600 0.0101

β0 0.3937 0.0410 0.4211 0.0020

β1 -2.7842 0.3765 - -

β2 0.0455 0.0378 - -

a0 -14.7590 0.0090 -13.9329 0.0215

a1 -0.0362 0.0006 0.0032 0.0001

a2 -0.0095 0.0005 -0.0082 0.0002

Table 1

Results of estimation for ConocoPhillips

We are particularly interested in the estimates of the parameters that govern the implied recovery rate. For the

model with stochastic recovery, these are β0, β1 and β2, while for the model with constant recovery, it is just β0.

Figure 1 shows the trace plots and histograms for the beta parameters estimated for ConocoPhillips for the model

with stochastic recovery, while Figure 2 presents the estimates for the model with constant recovery.

9



Figure 1: Estimated β parameters for the stochastic model
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Using the MCMC output, we �nd that the β parameters for both models with a 95% con�dence will fall into

the intervals presented in Table 2.

stochastic recovery model constant recovery model

β0 ∈ (0.2974, 0.4469) β0 ∈ (0.4170, 0.4251)

β1 ∈ (−3.3665,−2.0520) -

β2 ∈ (0.0013, 0.1348) -

Table 2

95% con�dence interval for β derived from the MCMC output

For the model where the recovery is assumed to be constant, we have just one parameter β0 to estimate. It

turns out that, in this case, β0 can be estimated with very high precision. The posterior constant recovery estimate

is

φconstant = β0 = 0.4210

and with a 95% con�dence it falls into a very narrow interval, as can be seen in Table 2 and Figure 2. On the other

hand, the β parameters in the stochastic model are much less precise. However, one important observation is that

the β1 estimate is signi�cantly less than zero. In fact, the posterior distribution of β1 is everywhere below zero.

This implies that the stochastic recovery model is strongly supported by the data, even if it turns out that it is

di�cult to pinpoint β1 exactly. Moreover, the estimate of β0 for the stochastic model is signi�cantly di�erent from

zero.

5.2.2 Forward Recovery Rates and Default Probabilities

Table 3 presents the mean recovery rates and mean default probabilities at di�erent maturities for both models.

Forward default probabilities are obtained from the following formula:

PDT
t = EQ

t

[
e−
´ T
t
λsds

]
(20)

= eΦ(T−t,0)+Ψ(T−t,0)λt (21)

and forward recovery rates in the stochastic model are equal to:

φTt = β2 + β0E
Q
t

[
eβ1λT

]
(22)

= β2 + β0e
Φ̃(T−t,β1)+Ψ̃(T−t,β1)λt , (23)

where Φ̃ (T − t, β1) and Ψ̃ (T − t, β1) are solutions to the Riccati equation de�ned in the Appendix.
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Figure 2: Trace and histogram of β0 for the model with constant recovery
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Figure 3: Risk neutral default probabilities and implied forward recovery rates at maturity T = 10

ConocoPhillips

stochastic recovery constant recovery

T forward PDT forward φT forward PDT φ

1 0.0022 0.4361 0.0025 0.4207

3 0.0099 0.4312 0.0101 0.4207

5 0.0211 0.4250 0.0221 0.4207

7 0.0355 0.4177 0.0348 0.4207

10 0.0624 0.4051 0.0603 0.4207

Table 3

Mean of PDT and φT across all time points

In Table 3 we can see that forward stochastic and constant recovery rates for ConocoPhillips are, in fact, very

similar for longer maturities. We have the same impression from Figure 3, where we can see the time series of

forward recovery rates at a �xed maturity of T = 10. It seems that for ConocoPhillips the implied stochastic

recovery rates do not change much over time, so that qualitatively the two models are indistinguishable.

As was pointed out in Johannes and Polson (2003), the MCMC algorithm allows us to quantify estimation risk.
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Figure 4: Term structure of forward recovery rates and their 95% con�dence interval for the stochastic recovery
rate model - ConocoPhillips

In our case, we would be particularly interested in estimation risk of the recovery rate. Therefore, we use the MCMC

output to calculate the 95% con�dence intervals for the recovery rate. For the model with constant recovery, it is

straightforward because it depends on only one parameter, β0. As can be seen in Table 2, β0 ∈ (0.4170, 0.4251)

with 95% con�dence.

For the model with stochastic recovery, φT depends on all the parameters and on the realizations of the latent

process λ. Altogether, our output of the MCMC algorithm consists of 50000 iterations, but the �rst 5000 are

discarded, so we use information contained in the other 45000 iterations of MCMC to evaluate estimation risk.

Speci�cally, for each iteration step g in the output of MCMC for given Θ(g) and λ(g), we compute the corresponding

φT from equation (21) at di�erent maturities T . That gives us 1146 di�erent forward recovery rates for each each

T and each g. We summarize these data by taking an average over all time points from 1 to 1146, and then �nding

the mean and the 0.025th and 0.975th quantiles of φT . In this way, we obtain an averaged term structure of recovery

rates, together with its 95% con�dence interval. Figure 4 plots the results of this procedure.

As can be seen from Figure 4, the 95% con�dence interval is relatively narrow. The di�erence between the

0.975th and 0.025th quantiles of φT is not wider than 0.03. So, despite the fact that parameters β are di�cult to

pinpoint exactly, we can see that, on average, forward stochastic rates can be estimated with some precision.
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5.2.3 Pricing errors

The fact that we use only one factor to explain the term structure of CDS spreads should not be controversial,

given that the �rst principal component accounts for 94% of the variation in all spreads. However, the model does

not price all maturities equally well. In Table 4, we can see the pricing errors for di�erent maturities.

1 year 3 year 5 year 7 year 10 year

stochastic recovery 3.87 2.38 1.45 1.73 2.49

constant recovery 5.74 3.26 0.97 1.34 2.61

mean value of spread 9.17 17.04 25.11 30.64 37.62

Table 4

RMSE at di�erent maturities

The highest root mean square error is for the shortest 1-year maturity and the lowest is for the 5-year maturity,

which is also the most liquid one. We observe in Figure 5 that the pricing errors on the 1-year contract are negatively

correlated with the 5- and 10-year maturity contract spreads. This may suggest that there is some di�culty in

�tting the 1-year spread. The same problem with matching the 1-year spread has also been reported in Pan and

Singleton (2008) and Schneider et al. (2011). Schneider et al. (2011) solve this problem by adding a second latent

factor and allowing for jumps. We choose the same approach as in Pan and Singleton (2008), and assume only

one latent factor. This assumption is made for two reasons. First, in order to identify additional parameters of

the recovery rate function, it is necessary to keep the model parsimonious in other dimensions. Second, following

the asset �re sales theory, we believe that recovery rates and default probabilities are manifestations of the same

economic mechanism. That is, when industry conditions deteriorate and the default probability is increasing, the

risk of asset �re sales also increases signi�cantly. The reduced form method to capture the simultaneous worsening

of default probability and expected recovery rate is the assumption of one latent factor behind both phenomena.

With alternative models proposed, it is important to compare their relative performance. One can use informa-

tion criteria. As we have two nested models, it might be possible to use standard information criteria like AIC or

BIC. However, these two criteria do not use additional information that the MCMC algorithm provides.

Spiegelhalter, Best, Carlin, and Van Der Linde (2002) have developed a Bayesian alternative to both AIC and

BIC. In the Bayesian context, this criterion is more satisfactory than the two former alternatives because it takes

into account the prior information, and also provides a natural penalty factor to the log-likelihood function. In a

model with latent factors, the parameter space is somewhat arbitrary. Let (Θ, λ) denote the vector of augmented

parameters and p be a likelihood function, a multivariate normal distribution arising from the observation equation

(16). Then the deviance information criterion (DIC) consists of two parts:

DIC = D + pD

15



Figure 5: Pricing errors for the model with stochastic recovery rate.
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where

D = E(Θ,λ)|y [−2 ln p (y|λ,Θ)]

and

pD = D −D
(
Θ
)

= E(Θ,λ)|y [−2 ln p (y|λ,Θ)] + 2 ln p
(
y|λ,Θ

)
.

Here D is a Bayesian equivalent of a model �t, and is de�ned as the posterior expectation of the deviance. More

precisely, it is −2 times the log-likelihood value, and it attains smaller values for models with a better �t. In the

above, pD is a measure of complexity, also called the e�ective number of parameters.

For ConocoPhillips, we �nd that DICstochastic = −84713 and DICconstant = −84249, so that

DICstochastic < DICconstant.

Hence, the stochastic recovery model, despite its higher number of parameters and larger uncertainty of the beta

parameters, fares better. Therefore, we conclude that a stochastic recovery model is supported by the data for the

Bayesian estimates.

5.3 Campbell Soup and General Motors

Table 5 presents the posterior estimates of the parameters for Campbell Soup and General Motors. For these two

�rms we see that the parameters κP and θP are much more di�cult to estimate precisely than the other parameters

under the Q measure.
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Campbell Soup General Motors

stochastic constant stochastic constant

mean std. mean std. mean std. mean std.

κP 0.1408 0.2289 0.1544 0.2263 0.1580 0.1157 0.1515 0.1129

κQ 0.0117 0.0009 0.0098 0.0020 0.0176 0.0002 0.0135 0.0003

θP 0.0699 0.1410 0.0731 0.1181 0.5960 0.3958 0.5277 0.3979

θQ 0.0901 0.0065 0.0962 0.0173 0.4858 0.0144 0.6338 0.0092

σ 0.0504 0.0029 0.0652 0.0058 0.1231 0.0027 0.1209 0.0029

β0 0.4094 0.0132 0.4408 0.0040 0.4191 0.0470 0.5151 0.0005

β1 -4.7822 0.3586 - - -1.0881 0.1468 - -

β2 0.0143 0.0122 - - 0.1896 0.0464 - -

a0 -14.9779 0.0048 -14.5412 0.0741 -8.3262 0.0003 -8.1397 0.0011

a1 -0.0070 0.0002 -0.0077 0.0008 -0.0496 0.0001 -0.3865 0.0001

a2 -0.0091 0.0009 -0.0098 0.0005 -0.0503 0.0001 -0.0009 0.0001

DIC -81608 -8.0806 -55713 -53824

Table 5

Estimates for Campbell Soup and General Motors

Once again, we see that it is more di�cult to estimate precisely the β parameters for the model with stochastic

recovery. Table 6 presents the 95% con�dence intervals for the estimated β parameters for both models. The

Deviance Information Criterion in each case favors the model with the stochastic recovery rate.

Campbell Soup General Motors

stochastic φ constant φ stochastic φ constant φ

β0 ∈ (0.37, 0.42) β0 ∈ (0.43, 0.44) β0 ∈ (0.34, 0.52) β0 ∈ (0.51, 0.52)

β1 ∈ (−5.60,−4.24) - β1 ∈ (−1.37,−0.85) -

β2 ∈ (0.00, 0.04) - β2 ∈ (0.09, 0.26) -

Table 6

95% con�dence interval for β

We also observe that the β1 parameter estimate is again signi�cantly negative for both companies, which may

be interpreted as supporting the negative relation between the implied recovery rates and risk-neutral default

intensities.
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Campbell Soup General Motors

stochastic constant stochastic constant

PDT φT PDT φ PDT φT PDT φ

1 0.0020 0.4201 0.0025 0.4408 0.1145 0.5158 0.1040 0.5151

3 0.0086 0.4136 0.0100 0.4408 0.3046 0.4466 0.2822 0.5151

5 0.0191 0.4060 0.0209 0.4408 0.4497 0.3940 0.4235 0.5151

7 0.0331 0.3973 0.0348 0.4408 0.5598 0.3539 0.5346 0.5151

10 0.0596 0.3827 0.0604 0.4408 0.6790 0.3101 0.6587 0.5151

Table 7

Mean of PDT and φT across all time points

In Table 7, we can see for Campbell Soup that forward recovery rates for the stochastic model are very close

to the estimates of constant recovery. The same is not the case for General Motors. In the right panel of Table

7, we can see that the implied recovery rates for General Motors are very close to each other only for a 1-year

maturity. However, the forward recovery rates decline much faster for General Motors than for either Campbell

Soup or ConocoPhillips.

We observe in Figure 6 that the 95% con�dence interval for General Motors is much broader at longer maturities.

The di�erence between the 0.975th and 0.025th quantiles of the forward recovery rate φT is only 0.0203 at maturity

T = 1, but increases to 0.1173 for T = 10, while the lower 0.025th quantile is equal to φ10
0.025 quantile = 0.2465 and

the higher is φ10
0.975 quantile = 0.3638.

Figure 7 presents the time series of forward recovery rates and forward default probabilities at maturity T = 10.

We see that risk-neutral default probabilities have a larger variance than the implied recovery rates. Contrasting

the time series of implied recovery rates φT=10 for General Motors with the same plot of φT=10 for ConocoPhillips

in Figure 3, we see the qualitative di�erence between the two. While the time series of φT for ConocoPhillips seems

to be almost �at and is always very close to 0.4, for General Motors it varies between 0.2 and 0.45. This observation

strengthens our assertion that a stochastic recovery model is more important for companies that are very risky.

5.3.1 Model implied φT and realized recovery rate for General Motors

Our dataset covers daily CDS spreads between 1 January 2004 and 30 May 2008, and the estimates of implied

recoveries in Table 7 and in the right panel of Figure 5 present averages over this period. We know that after

General Motors �led for Chapter 11 reorganization, in an auction on 12 June 2009 the recovery rate for the CDSs

was settled at 12.5 percent. The forward recovery rates for General Motors implied by the models are above 12.5

percent, but at longer maturities the lower bound of the implied stochastic recovery is very close to the realized

recovery rate for General Motors.

Summarizing, the model that allows for stochastic recovery turns out to be more realistic. In the model with

constant recovery, we found that φ = 0.5151, and additionally this parameter has been estimated with very high
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Figure 6: Term structure of forward recovery rates and their 95% con�dence interval for the stochastic recovery
rate model. Left panel - Campbell Soup (CPB), and right panel - General Motors (GM).
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Figure 7: Risk neutral default probabilities and implied forward recovery rates at maturity T = 10
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precision. On the contrary, the model with stochastic recovery indicates lower forward recovery rates, especially for

longer horizons, as can be seen in Figure 6.

6 Conclusion

We augmented the work of Pan and Singleton (2008) and showed how one could extract implied recovery rates under

the assumption that they are negatively correlated with risk-neutral default probabilities. We used the framework

developed in ? to derive closed-form solutions for CDS prices with stochastic recovery. The parameters of the model

and latent factors driving recovery risk and default risk were estimated using a Bayesian MCMC algorithm.

In summary, a model with stochastic recovery received stronger empirical support. First, the parameter driving

stochastic recovery, which describes the strength of the negative relation between default intensities and expected

recovery rates, is strongly negative. Second, a Bayesian model comparison criterion, namely DIC, which penalizes a

larger number of parameters, also supports the model with stochastic recovery rate. Moreover, there is a qualitative

reason that favors the stochastic recovery model as it predicted much more realistic recovery rates for General

Motors than did the constant recovery model.

In future research we will estimate both models for a larger number of �rms and compare these estimates

against other determinants of recovery rates in cross-sectional regressions. More speci�cally, it will be necessary to

see whether the variables that the literature has identi�ed as explaining realized recovery rates, can also explain

implied recovery rates extracted from CDS spreads. Most importantly, we need to check the �rms for which the

assumption of stochastic recovery is more important. On the one hand, we expect that the implied stochastic

recovery will not di�er too much from the implied constant recovery for �rms with very good credit ratings. On the

other hand, we expect that for risky �rms, the implied stochastic recovery will diverge from the implied constant

recovery rate.

If this is true, then we may claim that the constant recovery assumption for companies with good credit rating is

fairly innocuous. However, for risky companies, the constant recovery assumption may result in serious mispricing.
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A Appendix

A.1 Proof of Proposition 1

Expected payo�s conditional on default are equal to:

EP (φ|default) = pφ1 + (1− p)φ2

EQ
t (φ|default) =

πQ
2 φ1 + πQ

4 φ2

πQ
2 + πQ

4

so what we want to show is that:

EQ (φ|default)− EP (φ|default) < 0

and

EQ (φ|default) =
pu′ (φ1)φ1 + (1− p)u′ (φ2)φ2

pu′ (φ1) + (1− p)u′ (φ2)

=
pu′ (φ1)φ1 + (1− p)u′ (φ2)φ2 + (1− p)u′ (φ1)φ2 − (1− p)u′ (φ1)φ2

pu′ (φ1) + (1− p)u′ (φ2)

=
pu′ (φ1)φ1 − pu′ (φ1)φ2

pu′ (φ1) + (1− p)u′ (φ2)
+
u′ (φ1)φ2 + (1− p)u′ (φ2)φ2 − (1− p)u′ (φ1)φ2

pu′ (φ1) + (1− p)u′ (φ2)

=
pu′ (φ1)φ1 − pu′ (φ1)φ2

pu′ (φ1) + (1− p)u′ (φ2)
+

(1− p)u′ (φ2)φ2 + pu′ (φ1)φ2

pu′ (φ1) + (1− p)u′ (φ2)

=
pφ1 − pφ2

p+ (1− p) u
′(φ2)
u′(φ1)

+ φ2.

It follows that:

EQ (φ|default)− EP (φ|default) =

 1

p+ (1− p) u
′(φ2)
u′(φ1)

− 1


︸ ︷︷ ︸

<0

(pφ1 − pφ2)

and for the risk averse investor, we have u′ (φ2) > u′ (φ1) and

1

p+ (1− p) u
′(φ2)
u′(φ1)

< 1.

It follows that:

EQ (φ|default) < EP (φ|default) .

Therefore, the inequality is true if the investor is risk averse and when φ1 > φ2 under the P measure.
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A.2 Solution to the Riccati Equation for CIR

A.2.1 Functions Φ (t, u), Ψ (t, u), Φu (t, u) and Ψu (t, u)

The following expectation can be solved by means of the so-called extended a�ne transform, which follows from

Du�e and Garleanu (2001):

E
[
e
´ t
0
qλ(s)dsλte

uλt
]

= eΦ(t,u)+Ψ(t,u)λt [Φu (t, u) + Ψu (t, u)λt]

and the solutions for the functions Φ (t, u), Ψ (t, u), Φu (t, u) and Ψu (t, u) are:

Φ (t, u) =
m (a1c1 − d1)

b1c1d1
log

(
c1 + d1e

b1t

c1 + d1

)
+
m

c1
t (24)

Ψ (t, u) =
1 + a1e

b1t

c1 + d1eb1t
(25)

Φu (t, u) =
∂

∂u
Φ (t, u) (26)

Ψu (t, u) =
∂

∂u
Ψ (t, u) (27)

where

c1 =
−n+

√
n2 − 2pq

2q

d1 = (1− c1u)
n+ pu+

√
(n+ pu)

2 − p (pu2 + 2nu+ 2q)

2nu+ pu2 + 2q

a1 = (d1 + c1)u− 1

b1 =
d1 (n+ 2qc1) + a1 (nc1 + p)

a1c1 − d1
.

We �nd closed-form solutions for Φu (t, u) and Ψu (t, u) with the symbolic toolbox from Matlab.

A.2.2 Functions Φ̃ (t, u), Ψ̃ (t, u)

The following solutions are based on Lemma 2 from Filipovic (2009), for CIR process λt:

dλt = (b+ βλt) dt+ σ
√
λtdWt

which yields

Φ (t, u) =
2b

σ2
log

(
2θe

(θ−β)t
2

L3 (t)− L4 (t)u

)
(28)

Ψ (t, u) = −L1 (t)− L2 (t)u

L3 (t)− L4 (t)u
(29)
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where θ =
√
β2 + 2σ2 and

L1 (t) = 2
(
eθt − 1

)
L2 (t) = θ

(
eθt + 1

)
+ β

(
eθt − 1

)
L3 (t) = θ

(
eθt + 1

)
− β

(
eθt − 1

)
L4 (t) = σ2

(
eθt − 1

)
.

A.3 Description of the MCMC Estimation Method

We sample a path of λt and the model parameters with 50000 MCMC steps, where the �rst 5000 samples are

discarded as burn-in steps. The major blocks are given by:

Step A: sample Θfrom p (Θ|y, λ, λ0)

Step B: sample λfrom p (λ|y,Θ, λ0)

A.3.1 Step A: Drawing the Parameter Vector Θ

The Bayesian MCMC solution of the estimation problem is based on the joint posterior distribution p (λ, λ0,Θ, |y).

The joint posterior is given by equation (19), and we may derive from it the marginal distribution p (Θ|y) to infer the

model parameter vector Θ. The parameters β0 and β2 can be obtained by means of a Gibbs sampler. All the other

parameters from the vector Θ are sampled by means of the Metropolis-Hastings algorithm. Denote ΘA = {β0, β2},
ΘB =

{
κP, κQ, θP, θQ, σ, β1, a0, a1, a2

}
and Θ = {ΘA,ΘB}.

A1. Gibbs sampler for ΘA We observe that equation (16) can be expressed as a linear function of β0 and β1

and

yt = (1− β2)×

´ T
t
EQ
t

[
e−
´ v
t
λsdsλv

]
dv

1
4

4T∑
j=1

EQ
t

[
e−
´ 1

4
j

t λsds

]
+
´ T
t
EQ
t

[
e−
´ v
t
λsdsλv

] (
v − TI(v)

)
dv︸ ︷︷ ︸

=A(t,T,ΘB ,λt)

+β0 ×

´ T
t
EQ
t

[
e−
´ v
t
λsdsλvβ0e

β1λ(v)
]
dv

1
4

4T∑
j=1

EQ
t

[
e−
´ 1

4
j

t λsds

]
+
´ T
t
EQ
t

[
e−
´ v
t
λsdsλv

] (
v − TI(v)

)
dv︸ ︷︷ ︸

=B(t,T,ΘB ,λt)

+ et

= (1− β2)×A (t, T,ΘB , λt) + β0 ×B (t, T,ΘB , λt) + et.

Hence, (1− β2) and β0 are coe�cients in a panel regression conditional on the other parameters, state variables and

the data. We assume a truncated normal prior with 1{ΘA∈(0,1)} as a truncation function. Speci�cally, we regress

A (t, T,ΘB , λt) and B (t, T,ΘB , λt) on the observed CDS spreads y at each point in time t and for all maturities T .

We construct the standard Gibbs sampler as follows. y is a panel of 1146×5 CDS data-points, and A (t, T,ΘB , λt)

and B (t, T,ΘB , λt) for all t ∈ (1, ..., 1146) and T = (1, 3, 5, 7, 10) form two panels of regressors of the same size as

27



y. Therefore, in order to sample (1− β2) and β0, we perform a Bayesian panel regression. We weight A (·, T,ΘB , λ)

and B (·, T,ΘB , λ) separately for each maturity T corresponding to the particular maturity error term from the

matrix (Σe)ii de�ned in equation (17). Then we stack di�erent maturities on to each other to obtain:
yT=1

yT=3

yT=5

yT=7

yT=10


︸ ︷︷ ︸

=Y

= (1− β2)×


A (·, T = 1,ΘB , λ) / (Σe)11

A (·, T = 3,ΘB , λ) / (Σe)22

A (·, T = 5,ΘB , λ) / (Σe)33

A (·, T = 7,ΘB , λ) / (Σe)44

A (·, T = 10,ΘB , λ) / (Σe)55


︸ ︷︷ ︸

=Ã

+ β0 ×


B (·, T = 1,ΘB , λ) / (Σe)11

B (·, T = 3,ΘB , λ) / (Σe)22

B (·, T = 5,ΘB , λ) / (Σe)33

B (·, T = 7,ΘB , λ) / (Σe)44

B (·, T = 10,ΘB , λ) / (Σe)55


︸ ︷︷ ︸

=B̃

+


eT=1

eT=3

eT=5

eT=7

eT=10

 .
︸ ︷︷ ︸

=e

(30)

For brevity, denote b = [(1− β2) , β0]
′
and X =

[
Ã, B̃

]
. Then the panel regression (28) can be rewritten as Y =

b×X + e. With conjugate priors, b ∼ N
(
b̂ (0),Σb̂ (0)

)
, b can sampled from a normal distribution, b|Σe, λ,ΘB , y ∼

N
(
b̂,Σb̂

)
, where

b̂ = Σb̂

((
Σb̂ (0)

)−1
b̂ (0) +X ′Y

)
Σb̂ =

((
Σb̂ (0)

)−1
+X ′X

)−1

.

The conjugate truncated normal prior has the following parameters: b̂ (0) = (0.5, 0.5)
′
and Σb̂ (0) = 1000× I2 where

I2 is a 2 × 2 identity matrix. By drawing samples from N
(
b̂,Σb̂

)
that ful�ll the parametric restrictions of the

truncated normal priors, we obtain samples from the desired conditional distribution.

A2. Metropolis algorithm We use random walk proposals and for every i ∈ ΘB we accept with probability:

α
(

( ΘB)
(g+1)
i , ( ΘB)

(g)
i

)
= min

1,
p
(
y|λ, λ0, ( ΘB)

(g+1)
i

)
p
(
λ|λ0, ( ΘB)

(g+1)
i

)
p
(

( ΘB)
(g+1)
i

)
p
(
y|λ, ( ΘB)

(g)
i

)
p
(
λ| ( ΘB)

(g)
i

)
p
(

( ΘB)
(g)
i

)


The proposal densities cancel out due to the symmetry of the random walk proposals. The variance of random walk

proposals was scaled to obtain aacceptance rate in the range of (0, 25, 0.75). The Metropolis algorithm consists of

the following steps, for every i ∈ ΘB :

Step A2.1: Draw ( ΘB)
(g+1)
i from the proposal density q

(
( ΘB)

(g+1)
i | ( ΘB)

(g)
i

)
Step A2.2: Accept ( ΘB)

(g+1)
i with probability α

(
( ΘB)

(g+1)
i , ( ΘB)

(g)
i

)
.

A.3.2 Step B: Latent Factor Sampling

The latent state process cannot be inverted directly from the term structure of CDS spreads because of the obser-

vation error et. Therefore, the latent process λt is sampled using a combination of Metropolis-Hastings algorithm

with a Kalman �ltering method, as described in Geyer (1996). The basic idea used in this paper is to combine an

approximate extended Kalman �ltering method (EKF) with a Metropolis-Hastings algorithm.
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The MCMC algorithm in iteration (g + 1) samples a new starting value λ
(g+1)
0 , which is used by the extended

Kalman �lter to �nd the whole process λ(g+1). This new proposal for the latent factor is either accepted or rejected

with probability:

α
(
λ(g+1) ,λ(g)

)
= min

1,
p
(
y|λ(g+1), λ

(g+1)
0 ,Θ

)
p
(
λ(g+1)|Θ

)
p
(
λ

(g+1)
0

)
p
(
y|λ(g), λ

(g)
0 ,Θ

)
p
(
λ(g)|Θ

)
p
(
λ

(g)
0

) ×
q
(
λ(g)|λ(g+1)

)
q
(
λ(g+1) |λ(g)

)


Thus, it can be summarized as a three-step procedure:

Step B.1: Draw λ
(g+1)
0 from the proposal density

Step B.2: Using λ
(g+1)
0 as a starting value �lter λ(g+1)with an Extended Kalman Filter

Step B.3: Accept λ(g+1)with probability α
(
λ(g+1) ,λ(g)

)
As a proposal density, we use the normal distribution of the following form:

q
(
λ(g)|λ(g+1)

)
∝

1146∏
t=1

e
− (λ(g)t −λ

(g+1)
0 )

2

2c2
λ (31)

where cλ is a variance from the random walk proposal for parameter λ
(g+1)
0 = λ

(g)
0 + cλελ, ελ ∼ N (0, 1). The

discretized di�usion process for the latent factor λt under the objective P measure, de�ned in equation (16), has a

non-central χ2 transition density (Cox et al. (1985)). In our implementation of the EKF, the exact non-central χ2

transition density for the latent factor is substituted with a normal density:

λt|t−1 ∼ N (Ftλt−1 + ut, Qt) (32)

where, from Chen and Scott (1995), we know that Ft, ut and Qt are chosen in such a way that the �rst two moments

of the approximate normal and the exact transition density are equal:

Ft = e−κ
P∆t (33)

ut =
(

1− e−κ
P∆t
)
θP (34)

Qt = σ2 1− e−κP∆t

κP

[(
1− e−κ

P∆t
) θP

2
+ e−κ

P∆tλt−1

]
(35)

In order to cope with the nonlinearity of the CDS function, we will apply an extended Kalman �lter. It relies on

the �rst-order Taylor expansion of equation (16) around the predicted state λt|t−1:

yt = cds
(
λt|t−1|Θ

)
+ Jt

(
λt − λt|t−1

)︸ ︷︷ ︸
=cds(λt,Θ)

+ et (36)

where

Jt =
∂cds

∂λ

∣∣∣∣
λ=λt|t−1

(37)

denotes the Jacobian matrix of the non-linear function cds
(
λt|t−1,Θ

)
and λt|t−1 is the predicted state. The
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derivation of the Jacobian Jt can be found in section 7.4. For a detailed description of latent factor sampling, see

Geyer (1996).

A.4 First-Order Taylor Approximation of CDS Price Function for the Extended

Kalman Filter

In order to implement the extended Kalman �lter, we solve the Jacobian of the CDS function with respect to λ:

Jt =
∂cds

∂λ

∣∣∣∣
λ=λt|t−1

at the predicted point λt|t−1. In our case, the Jacobian Jt will be a 5× 1 vector, because λ is one-dimensional and

the CDS equation (14) has to be computed at �ve di�erent maturities, that is:

Jt =
∂

∂λ


cdsT=1

t

(
λ = λt|t−1

)
cdsT=3

t

(
λ = λt|t−1

)
cdsT=5

t

(
λ = λt|t−1

)
cdsT=7

t

(
λ = λt|t−1

)
cdsT=10

t

(
λ = λt|t−1

)


We show how to compute Jt by decomposing equation (14) into a numerator and denominator.

A.4.1 Numerator:

For the numerator of the CDS function, we need to �nd:

∂

∂λ
Ldefaultt (T ) =

ˆ T

t

{
∂

∂λ
EQ
t

[
e−
´ v
t
λsdsλv (1− φ (λv))

]}
dv.

We know that

∂

∂λ
Ldefaultt (T ) =

ˆ T

0

{
(1− β2)

∂

∂λ
EQ
t

[
e−
´ t
0
λsdsλt

]
+ β0

∂

∂λ
EQ
t

[
e−
´ t
0
λsdsλte

β1λt
]}

dt,

so it is enough to �nd the following derivatives:

∂

∂λ
EQ
t

[
e−
´ v
t
λsdsλv

]
=

∂

∂λ

{
eΦλ(v−t,0)+Ψλ(v−t,0)λ(t)

[
Φλu (v − t, 0) + Ψλ

u (v − t, 0)λt
]}

(38)

= Ψλ (v − t, 0)EQ
t

[
e−
´ v
t
λsdsλv

]
+ Ψλ

u (v − t, 0) eΦλ(v−t,0)+Ψλ(v−t,0)λt (39)

= Ψλ (v − t, 0)EQ
t

[
e−
´ v
t
λsdsλv

]
+ Ψλ

u (v − t, 0)EQ
t

[
e−
´ v
t
λsds

]
(40)

and
∂

∂λ
EQ
t

[
e−
´ v
t
λsdsλve

β1λ(v)
]

=
∂

∂λ

{
eΦλ(v−t,β1)+Ψλ(v−t,β1)λ(t)

[
Φλu (v − t, β1) + Ψλ

u (v − t, β1)λv
]}

= Ψλ (v − t, β1)EQ
t

[
e−
´ v
t
λsdsλve

β1λt
]

+ Ψλ
u (v − t, β1) eΦλ(v−t,β1)+Ψλ(v−t,β1)λ(t)
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= Ψλ (v − t, β1)EQ
t

[
e−
´ v
t
λsdsλve

β1λ(v)
]

+ Ψλ
u (v − t, β1)EQ

t

[
e−
´ v
t
λsdseβ1λ(v)

]
. (41)

These formulae give us the numerator of the �rst derivative of the CDS price formula.

A.4.2 Denominator:

For the denominator of the CDS function, we need to �nd Lfixedt (T ):

∂

∂λ
Lfixedt (T ) =

1

4

4T∑
j=1

∂

∂λ
EQ
t

[
e−
´ 1

4
j

t λsds

]
+

ˆ T

t

{
∂

∂λ
EQ
t

[
e−
´ v
t
λsdsλv

] (
v − TI(v)

)}
dv

and, with the following derivative, we obtain all the necessary functions:

∂

∂λ
EQ
t

[
e−
´ v
t
λsds

]
=

∂

∂λ

{
eΦλ(v−t,0)+Ψλ(v−t,0)λ(t)

}
(42)

= Ψλ (v − t, 0)EQ
t

[
e−
´ v
t
λsds

]
. (43)

A.4.3 Numerator and denominator:

Once we have all the necessary components of the numerator and denominator of equation (14), we can obtain
∂
∂λcds (λ,Θ). Rewrite the CDS pricing function in terms of functions f , g and h:

cds (λ,Θ) =

ˆ T

t

EQ
t

[
e−
´ v
t
λsdsλv

(
1− β2 + β0e

β1λ(v)
)]
dv︸ ︷︷ ︸

=f(λ)

1

4

4T∑
j=1

EQ
t

[
e−
´ 1

4
j

t λsds

]
︸ ︷︷ ︸

=g(λ)

+

ˆ T

t

EQ
t

[
e−
´ v
t
λsdsλv

] (
v − TI(v)

)
dv︸ ︷︷ ︸

h(λ)

(44)

=
f (λ)

g (λ) + h (λ)
. (45)

Then, by using

∂

∂λ
cds (λ) =

∂
∂λf (λ)× [g (λ) + h (λ)] + f (λ)×

[
∂
∂λg (λ) + ∂

∂λh (λ)
]

[g (λ) + h (λ)]
2 (46)

we may combine equations (36)-(40) in order to derive the Jacobian Jt.
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