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Abstract 

This paper analyzes two indexes in order to capture the volatility inherent in El Niños 

Southern Oscillations (ENSO), develops the relationship between the strength of 

ENSO and greenhouse gas emissions, which increase as the economy grows, with 

carbon dioxide being the major greenhouse gas, and examines how these gases affect 

the frequency and strength of El Niño on the global economy. The empirical results 

show that both the ARMA(1,1)-GARCH(1,1) and ARMA(3,2)-GJR(1,1) models are 

suitable for modelling ENSO volatility accurately, and that 1998 is a turning point, 

which indicates that the ENSO strength has increased since 1998. Moreover, the 

increasing ENSO strength is due to the increase in greenhouse gas emissions. The 

ENSO strengths for Sea Surface Temperature (SST) are predicted for the year 2030 to 

increase from 29.62% to 81.5% if global CO2 emissions increase by 40% to 110%, 

respectively. This indicates that we will be faced with even stronger El Nino or La 

Nina effects in the future if global greenhouse gas emissions continue to increase 

unabated. 

 

Keywords: El Niños Southern Oscillations (ENSO), Greenhouse Gas Emissions, 

Global Economy, Southern Oscillation Index (SOI), Sea Surface Temperature (SST), 

Volatility. 
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1. Introduction 

The El Niños Southern Oscillations (ENSO) is a periodical phenomenon of 

climatic inter-annual variability which has been found to be associated with regional 

variations in climate throughout the world, and has important implications for global 

greenhouse gas emissions.  ENSO includes three phases, El Niños, La Niña, and 

Neutral, which could be defined through either the Southern Oscillation Index (SOI) 

or the Sea Surface Temperature (SST) Index.  These ENSO phases have been found 

to have significant impacts on global/local agriculture, water, and fishery sectors 

during alternative ENSO phases, strength, and frequency.  For instance, the 

relationship between ENSO and precipitation, stream flow, floods and droughts has 

been investigated and analyzed (McBride and Nicholls, 1983; Ropelewski and Halpert, 

1989; Dracup and Kahya, 1994; Moss et al., 1994; Piechota and Dracup, 1996) in 

recent years, reflecting the importance of this topical issue. 

There is an extensive literature devoted to estimating the economic impacts of 

ENSO on the agricultural and water sectors, such as Handler (1983), Adams et al. 

(1995), Adams et al. (1999), Solow et al. (1998), Chen and McCarl (2000), Chen et al. 

(2001), Chen, McCarl and Hill (2002), Dilley (1997), Naylor et al. (2001), and 

Brunner (2002). These studies examine not only the importance of ENSO information 

on the agricultural economy, but are also linked to fluctuations in ENSO and the 

macro economy (Debelle and Stevens, 1995; Brian et. al., 2008).  

During the past decade, some attention has been transferred to issues of food 

safety and public health.  Some notable examples, including Davis (2001), have been 

devoted to the relationship between ENSO events and famine, while Kovats et al. 

(2003) investigated the variation in cholera risk in Bangladesh, and malaria epidemics 

in South Asia and South America. Other investigations suggest that hurricane losses 

are much greater during a La Niña year in the USA (Pielke and Landsea, 1999), while 
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Chen et al. (2005) used ENSO frequency data to investigate Edwards Aquifer water 

and agricultural management on the phases of ENSO. 

The above examples suggest that the damage of ENSO events could be mitigated 

if ENSO information could be forecast accurately.  This implies that ENSO 

information, including the strength and frequency of ENSO phases, needs to be 

measures and collated accurately.  However, ENSO strength and frequency have 

shifted (Timmermann et al., 1999), and greenhouse gas emissions may be one such 

cause.  In other words, ENSO volatility varies over time.  

The first purpose of this paper is to investigate ENSO volatility using generalized 

autoregressive conditional heteroskedasticity (GARCH) time series models. Such 

empirical findings will provide important information regarding ENSO volatility. The 

second purpose of the paper is to link the relationship between ENSO strength and 

greenhouse gas emissions, and to predict the future ENSO strength based on 

alternative climate change scenarios from IPCC (2007). Such empirical findings will 

provide critical information regarding the impact of the possibly stronger El Nino and 

La Nina occurrences in the near future on greenhouse gas emissions.  

The remainder of the paper is organized as follows. Section 2 presents the 

empirical models, while Section 3 discusses the data and descriptive statistics.  

Section 4 analyzes the empirical results.  The linkages between the ENSO strength 

and greenhouse gas emissions are estimated in Section 5. Some concluding remarks 

are given in the final section. 

 

2. The Models 

Modeling ENSO phases using ARMA and/or ARCH models has been considered 

by Chu and Katz (1985), Trenberth and Hoar (1996), and Ahn and Kim (2005).  Chu 

and Katz (1985) found that monthly SOI can be modelled adequately by AR(3) 
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processes, while Trenberth and Hoar (1996) found that an ARMA(3,1) model can be 

fitted for SST by using maximum likelihood and Akaike’s Information Criterion 

(AIC).  Ahn and Kim (2005) found that ARCH is a more suitable model for the SOI 

series.  Each of these studies paid attention to either the SOI or SST index, but not 

both, which may misrepresent ENSO characteristics as both of these indexes can be 

used to define ENSO phases.  On the other hand, although empirical research has 

used time series models, including ARMA, ARCH, and GARCH, to analyze the 

ENSO index, the model adequacy of ENSO volatility has not yet been examined. 

In order to answer these two questions, the generalized autoregressive 

conditional heteroskedasticity (GARCH) model will be applied to the SOI and SST 

indexes. Bai and Perron’s (1998, 2003) approach will be adopted in order to capture 

the structural break point of the ENSO series, which could identify alternative time 

periods for purposes of estimating ENSO volatility.   

 

2.1 Conditional Mean and Conditional Volatility Models 

Based on the pioneering work of Engle (1982) in capturing time-varying 

volatility, the autoregressive conditional heteroskedasticity (ARCH) model, and 

subsequent developments forming the generalized ARCH (GARCH) model of 

Bollerslev (1986), has been used to capture volatility.  The GARCH model is most 

wildly used for symmetric shocks, but when asymmetric shocks exist, the GJR model 

of Glosten et al. (1992), or the EGARCH model of Nelson (1991), are also popular. 

Some further theoretical developments have been suggested by Wong and Li (1997), 

and Ling and McAleer (2002a, 2002b, 2003a, 2003b) and McAleer (2005). The 

volatility models to be used in this section have been discussed by, among others, 

McAleer et al. (2007) and Divino and McAleer (2009).   

In this paper, we consider the stationary AR(1)-GARCH(1,1) or 
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ARMA(p,q)-GARCH(1,1) models for the SOI and SST series data, namely ty : 

1 2 1 ,t t ty y         for 1,..., ,t n                           (1) 

( , )t ty ARMA p q    

where t  is unconditional shocks (or movements in the indices of SOI or SST) are 

given by: 

    
2

1 1

, ~ (0,1),

,

t t t t

t t t

h iid

h h

  

   



  
                                        (2) 

and   0, 0  , 0   are sufficient conditions to ensure that the conditional 

variance 0th  . Ling and McAleer (2003b) indicated equation (2) could be modified 

to incorporate a non-stationary ARMA(p,q) conditional mean and a stationary 

GARCH(r,s) conditional variance. In (2), the   (or ARCH) effect indicates the short 

run persistence of shocks, while the   (or GARCH) effect indicates the contribution 

of shocks to long run persistence (namely,  ).  

    As the GARCH process in equation (2) is a function of the unconditional shocks, 

the moments of t  need to be investigated. Based on the studies of Ling and Li 

(1997) and Ling and McAleer (2002a, 2002b) (see also Bollerslev (1986) and Nelson 

(1990), the necessary and sufficient condition for the existence of the second moment 

of t  for GARCH(1,1) is 1    and, under normality, the necessary and 

sufficient condition for the existence of the fourth moment is 2 2( ) 2 1     . 

    The effects of a positive shock on the conditional variance, th , is assumed to be 

the same as a negative shock of a similar magnitude in the symmetric GARCH model. 

In order to accommodate asymmetric behavior, Glosten et al. (1992) proposed the 

GJR model, for which GJR(1,1) is defined as follows: 

2

1 1 1( ( )) ,t t t th I h                                               (3) 

where 0  , 0  , 0   , 0   are sufficient conditions for 0th   and 
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( )tI  is an indicator variable defined by 

    
1
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as t  has the same sign as t . The indicator variable differentiates between positive 

and negative shocks, so that asymmetric effects in the data are captured by the 

coefficient  , with the expectation that  0. The asymmetric effect,  , measures 

the contribution of shocks to both short run persistence, / 2  , and to long run 

persistence, / 2    . As the ARCH effect,  , must be negative for leverage, in 

which positive shocks decrease volatility while negative shocks of equal magnitude 

increase volatility, leverage is not possible for the GJR model. 

Ling and McAleer (2002b) derived the unique strictly stationary and ergodic 

solution of a family of GARCH processes, which includes GJR(1,1) as a special case, 

a simple sufficient condition for the existence of the solution, and the necessary and 

sufficient condition for the existence of the moments. For the special case of GJR(1,1), 

Ling and McAleer (2002b) showed that the regularity condition for the existence of 

the second moment under symmetry of t  is 

1
1,

2
                                                       (4) 

and the condition for the existence of the fourth moment under normality of t  is 

2 23
2 3 3 1,

2
                                           (5) 

while McAleer et al. (2007) showed that the weaker log-moment condition for 

GJR(1,1) was given by 

0])))((ln[( 2   ttIE ,                                      (6) 

which involves the expectation of a function of a random variable and unknown 

parameters.  

An alternative model to capture asymmetric behavior in the conditional variance 
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is the Exponential GARCH (EGARCH(1,1)) model of Nelson (1991), namely: 

1 1 1log log ,t t t th h          1                           (7) 

where the parameters  ,   and   have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models. Leverage is possible in the EGARCH model as it 

depends on the respective magnitudes of   and  . 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0th  ; (ii) Nelson (1991) showed that 1   

ensures stationarity and ergodicity for EGARCH(1,1); (iii) Shephard (1996) observed 

that 1   is likely to be a sufficient condition for consistency of QMLE for 

EGARCH(1,1); (iv) as the conditional (or standardized) shocks appear in equation (3), 

1   would seem to be a sufficient condition for the existence of moments; and (v) 

in addition to being a sufficient condition for consistency, 1   is also likely to be 

sufficient for asymptotic normality of the QMLE of EGARCH(1,1). 

Furthermore, EGARCH captures asymmetries differently from GJR. The 

parameters  and   in EGARCH(1,1) represent the magnitude (or size) and sign 

effects of the conditional (or standardized) shocks, respectively, on the conditional 

variance, whereas   and    represent the effects of positive and negative 

shocks, respectively, of a similar magnitude on the conditional variance in GJR(1,1). 

 

2.2 Modelling Structural Breaks 

The strength, duration, and frequency of ENSO phases have increased during the 

last two decades (Trenberth and Hoar, 1996; Hall et al., 2001), which suggests that 
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there may have been structural breaks in ENSO.  Much research related to structural 

breakpoints has been undertaken by Quandt (1958), Chow (1960) Andrews (1993), 

and Hansen (2001), which need a priori break points before implementation.  

However, the approach by Bai and Perron (1998, 2003) (hereafter BP) does not need 

the a priori assumption of break points. 

The BP method provides a comprehensive treatment based on the following steps. 

First, consider the supF( i | 0 ) type tests (that is, a series of Wald tests) of a non- 

structural break (i=0) against i=k breaks. This test requires a pre-specification of a 

number of breaks for inference, and then to use the double maximum test (UDmax and 

WDmax) of the null hypothesis of no structural break against an unknown number of 

breaks. These tests are used to determine if there is at least one structural break, while 

the structural break is determined endogenously.  In this paper, the maximum 

number of breaks (i) is chosen to be 5, which is based on the Liu, Wu and Zidek 

(LWZ) criterion.   

Following the estimation approach of Bai and Perron (1998, 2003), if these tests 

show evidence of at least one structural break, then the number of breaks can be 

determined by using the supF( i+1| i) test, which performs parameter constancy tests 

for every subsample obtained by cutting off at the estimated breaks, and then by 

adding a break to a sub-sample associated with a rejection. This process is repeated by 

increasing i sequentially until the test fails to reject the null hypothesis of no 

additional structural breaks.   

 

3. Data and Descriptive Statistics 

The most common indexes to describe ENSO phases are referred to as the 

Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) Index, which 

are monthly data sets.  SOI is calculated from the monthly inverse variations in the 
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air pressure difference between Tahiti (17.5˚S, 149.6˚W) in the South Pacific Ocean 

and Darwin (12.4˚S, 130.9˚W) in northern Australia. Positive values of the SOI are 

popularly known as a La Niña phase, while negative values are called El Niño. SST is 

the water temperature close to the surface in the Equatorial Pacific Ocean (that is, 4 

for the region 5°N–5°S, 120°– 170°W).  If the period during 5-month rolling means 

of the monthly SST anomalies in the above-mentioned area are C05  or more for at 

least six consecutive months, this is called a Niño year (Trenberth, 1997).  

Figure 1 plots the time series data set for SOI and SST.  These two graphs 

indicate periods of high volatility followed by others of relatively low volatility, 

which implies that using homoskedastic residuals to model volatility behaviour is 

inappropriate. Furthermore, we also find that volatility in the most recent periods is 

higher than in the earlier periods, as shown in the left graph of Figure 1, which 

implies that ENSO volatility has been increasing.   

The data sets for the SOI and SST observations are collected from the Climate 

Prediction Center from January 1933 to July 2007 and January 1950 to April 2007, 

respectively.  Table 1 displays the descriptive statistics for the SOI and SST series.  

The SOI series has a larger variance than the SST series. The Ljung-Box Q-statistics 

for SOI and SST are given as Q(12)=1290.20 and Q(12)=2149.50, respectively, which 

correspond to p-values of the two test statistics of less than 5%, thereby suggesting 

that SOI and SST are correlated. In order to test normality, the JB Lagrange multiplier 

test statistic is used. Table 1 shows that SOI and SST are not normally distributed, as 

the p-values of the JB statistics are less than 5%.  

    Before establishing the volatility model for the SOI and SSI series, unit roots 

tests have to be implemented to ensure the data of the SOI and SSI series are 

stationary. The most common unit root tests are those of Dickey and Fuller (1979, 

1981), who developed tests of the null hypothesis of a unit root against the alternative 
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of stationarity. In this paper, the augmented Dickey-Fuller (ADF) unit root test is 

calculated for the SOI and SST series. The results of the unit root tests are reported in 

Table 2, which indicate that both SOI and SST are stationary at the 1% significance 

level, so that the conditional volatility models can be used to capture time-varying 

volatility in the underlying data series. 

 

4. Empirical Results 

4.1 AR(p) and ARMA(p,q) Processes 

In order to investigate ENSO volatility, a suitable time series model needs to be 

determined that satisfies appropriate regularity conditions. The first task is to 

determine the processes for the mean equation. From Tables 3, the ARMA(1,1) 

process for the SOI series has the smallest Schwarz Bayesian Information Criterion 

(BIC), while ARMA(3,2) has the smallest BIC for the SST series. The p-values of the 

Ljung-Box Q statistics of the residuals from the fitted models indicate that there is no 

autocorrelation at the 5% level. The estimated ARMA(1,1) and ARMA(3,2) models 

are seen to be appropriate models for the SOI and SST series, respectively.   

The specifications of the mean and variance equations for SOI and SST are given 

as follows: 

    ( 1 , 1 ) ,tS O I A R M A     

conditional volatility = GARCH(1,1), GJR(1,1) or EGARCH(1,1) ,  

    ( 3 , 2 ) ,tS S T A R M A    

conditional volatility ={GARCH(1,1), GJR(1,1) or EGARCH(1,1)}. 

 

4.2 Alternative Volatility Models for SOI and SST 
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    The empirical estimates for alternative volatility models for the SOI and SST 

series are shown in Tables 4 and 5. The estimated model for the SOI and SST series 

for GARCH(1,1) shows that all the estimated coefficients satisfy the sufficient 

regularity conditions for the conditional variance to be positive ( 0th  ). Moreover, 

the log-moment and second moment conditions are satisfied for SOI, so the QMLE 

for the two series are consistent and asymptotically normal. The estimates for the 

GJR(1,1) model show that SOI and SST satisfy the sufficient conditions for 

conditional volatility and the log-moment condition, which indicates that the QMLE 

of the parameters of the conditional volatility models for SOI and SST are consistent 

and asymptotically normal. 

  All the   estimates from the EGARCH(1,1) model for SOI and SST are less 

than one in absolute value, which indicates that the estimates are likely to be 

consistent and asymptotically normal. As EGARCH(1,1) is a model of the logarithm 

of the conditional variance, there is no parametric restriction for conditional volatility 

to be positive. The size effects for the SOI and SST series have positive impacts on 

the conditional variance. These estimation results indicate that the sign effects have 

larger impacts than the size effects on the conditional variance.  Furthermore, the 

appropriate model for the SOI series could be chosen by the BIC criterion and the 

regularity conditions. The GARCH (1,1) model for the SOI and SST series is the 

optimal model as it has the smallest BIC value. 

 

4.3 Structural Change  

    In order to examine whether structural change exists for the SOI series, the BP 

approach is implemented, and the estimates are shown in Table 6. The Table shows 

that the values of UDmax and WDmax are greater than the 5% critical value, which 
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indicates the probable existence of structural breaks. As the values of F(1|0), F(2|0), 

F(3|0), F(4|0), F(5|0) exceed the critical value at the 5% significance level, while the 

sequential supF(i+1|i) exhibits significance only for i=1, this suggests there is only 

one break in the SOI series, which occurs at 1998(4). 

The empirical results show there is a structural break for the SOI series in 1998. 

Based on either the SOI or SST index, the 1997-98 El Nino year was the strongest on 

record for any El Nino over the past 40 years. For instance, there were 14 El Nino 

years from 1950 to 1998, based on the definition of ENSO using the SST index. The 

3-month rolling means of the SST anomalies in the El Niño 3.4 region (5
o
N-5

o
S, 

120
o
-170

o
W)] for 1997-98 is 1.841, is greater than for any other El Nino year. Such 

evidence explains why there is a structural break in 1998.  

The strongest SST index in 1997-98 could be the result of global greenhouse 

gases emissions. For instance, Timmermann et al. (1999) have shown that global 

warming may cause the strength and frequency of ENSO events to change. In other 

words, the continuous growth of greenhouse gas emissions shifts the probability of 

strong El Nino and La Nina events. Such a relationship between ENSO strength and 

global greenhouse gas emissions will be examined later.  

 

4.4 Estimating the ENSO Volatility between two Different Structural Breaks  

    This sub-section investigates and compares the ENSO volatility before and after 

the structural breakpoint. From the estimates of structural change, the breakpoint is 

located at April 1998, which will be treated as a boundary to split the sample into two 

periods for the SOI and SST series. In other words, the first period is from January 

1950 to April 1998, while the second period is from May 1998 to July 2007. We have 

estimated the ARMA(1,1)-GARCH(1,1) model for SOI and the 

ARMA(3,2)-GARCH(1,1) model for SST.   
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    The empirical results of volatility for SOI and SST are presented in Table 7. The 

ARMA(1,1)-GARCH(1,1) estimates for SOI suggest that the short run persistence of 

shocks in periods 1 and 2 are 0.008 and 0.438, respectively, while the long run 

persistence of shocks in periods 1 and 2 are 0.359 and 0.530, respectively. The 

ARMA(3,2)-GARCH(1,1) estimates for SST suggest that the short run persistence of 

shocks in periods 1 and 2 are 0.255 and 0.046, respectively, while the long run 

persistence of shocks in periods 1 and 2 are 0.402 and 0.706, respectively. Both SOI 

and SST have larger long run persistence of shocks during the second period from 

May 1998. The estimates show that ENSO volatility has increased since 1998, which 

implies that the ENSO strength and frequency have increased recently. In other words, 

the ENSO strength using SOI and SST during the period 1998 to 2007 has increased 

by 47% and 75%, respectively, which is consistent with the findings in Timmermann 

et al. (1999).  

 

5. The Strength of ENSO and Greenhouse Gas Emissions 

Greenhouse gas emissions increase as the economy grows, with carbon dioxide 

being the major greenhouse gas. Increasing carbon dioxide will lead to increasing 

greenhouse gases. The increasing concentrations of these greenhouse gases is called 

the greenhouse effect that will lead to global climate change as the average 

temperature of the Earth’s surface increases (and hence global warming). Such an 

abnormal increase in temperatures is correlated with ENSO events. Based on this, we 

will analyze the relationship between the strength of ENSO and greenhouse gas 

emissions, and examine how these gases affect the frequency and strength of El Ni o. 

A quantitative definition of El Ni o, as originally proposed by the Japan 

Meteorological Agency (JMA), and subsequently modified by the Climate Variability 

and Predictability (CLIVAR) project, gives five-month rolling means of SST 
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anomalies in the Nino 3.4 region (5°N-5°S, 170°W-120°W) that exceed 0.4°C for six 

months or more, based on accepted concepts and designed to be consistent with 

previous recognized events.  Conversely, La Ni a occurs when this index is lower 

than -0.4
o
C for at least six consecutive months.  If the value of the index lies 

between -0.4
o
C and 0.4

o
C, it represents a normal state. Figure 1 represents a plot of 

SST from January 1950 to March 2005. From the right graph of Figure 1, we can 

easily distinguish which are the El Ni o / La Ni a years. For example, for the period 

1982 to 1983, El Ni o was in its warm phase, with the Sea Surface temperature above 

normal.  From this plot, we observe that SST seems to have gained greater strength 

recently. 

  In order to analyze how greenhouse gases (especially for carbon dioxide) affect 

the strength and frequency of El Ni o and La Ni a, we analyze the SST and carbon 

dioxide emissions over the period 1950 to 2008. Thus, in order to determine whether 

increasing greenhouse gas emissions will lead to a greater strength of El Ni o/La Ni a, 

we analyze the SST anomalies in the Nino 3.4 region’s data base using the definition 

of El Ni o and La Ni a by JMA and CLIVAR. If the value for which the 12-month 

rolling means of SST anomalies in the Nino 3.4 region exceeds 0.4°C（or lie below 

-0.4°C）, the dependent variable is represented by the absolute value of the mean of 

the months which exceed 0.4°C or lie below -0.4°C. If the value for which the 

12-month rolling means of SST anomalies in the Nino 3.4 region lies between -0.4
o
C 

and 0.4
o
C, the dependent variable is represented by 0.4. Hence, we would have a large 

number of observations in our sample for which the SST anomalies are 0.4, which is 

an example of censored data. 

The Tobit model is a regression model for censored distributions, which means 

there are no observations beyond a certain point. If there is a large proportion of 

observations at this censoring point, Ordinary Least Squares (OLS) techniques may 
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lead to biased estimates. Based on this, we can specify the model as: 

 

iy 4.04.0 **  iiii yoryifux                      

      4.04.04.0 *  iyif        (8) 

 

where *

iy  is the value for which the 12-month rolling means of SST anomalies lie in 

the Nino 3.4 region, ix  is the carbon dioxide emission at time i, and iu  is the error 

term which is assumed to be normally distributed with zero mean and variance 2 .   

The estimates from the Tobit regression are presented in Table 8. The 

estimated coefficient shows the expected signs that carbon dioxide emissions have a 

positive effect on the value of SST anomalies in the Nino 3.4 region.  Thus, as 

carbon dioxide emissions increase, the value of SST anomalies in the Nino 3.4 

region will be higher, which explains why the strength of El Ni o or La Ni a will 

increase as more greenhouse gases are emitted.   

 In order to forecast the strength of ENSO using future climate change, the 

estimates from Table 8 with future projections of Carbon Dioxide emissions are 

applied. Based on the IPCC (2007) report, global GHG emissions are projected to 

increase by 9.7 to 36.7 GtCO2-eq (25% to 90%) between 2000 and 2030, while CO2 

emissions from energy use between 2000 and 2030 are projected to grow by 40% to 

110% over the same period. Therefore, an increase of 40% to 110% of CO2 emissions 

is applied in this paper.  

Maddala (1983) shows that the prediction equation for the Tobit model can be 

written as j

j

x
x

yE
 )/'(

)(





, where   is the standard error of the estimated 

equation and   is the cumulate distribution function. The forecast of ENSO strength 

in 2030 will increase by 29.62% to 81.5% if global CO2 emissions increase by 40% to 

110%, respectively. 
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6. Concluding Remarks 

Three major contributions of this paper are as follows. The first finding is to 

determine an empirically adequate model of volatility of the Southern Oscillation by 

checking the regularity conditions of the estimated models, and then detecting 

whether structural breaks exist in the climate indexes. The GARCH, GJR and 

EGARCH models were estimated for the SOI and SST indexes, to answer the 

following questions: Under what conditions do GARCH-type processes have finite 

moments? Under what conditions are they stationary? These questions are important 

as the existence of moments permits verification of theoretical models to match 

stylized facts, such as fat tails and the temporal persistence observed in financial data 

(Carrasco and Chen, 2002), as well as economic and environmental data, including 

greenhouse gas emissions and carbon pollution data.  

Although there have been many contributions to the ARCH/GARCH literature, it 

seems that until recently very little attention has been paid to appropriate model 

selection. Therefore, we conclude that nonlinear models are suitable for modelling the 

SOI and SST indexes after checking the regularity conditions.  

In the second task, we tested for structural breaks in SOI and SST by using the 

Bai and Perron (1998, 2003) test, and then estimated the volatility of the SOI and SST 

indexes based on the structural breaks. The results showed that SOI had a structural 

break point in 1998(04). Therefore, we re-estimated the ARMA(1,1)-GARCH(1,1) 

model for SOI and the ARMA(3,2)-GARCH(1,1) for SST to examine volatility with 

1998(04) as a structural change point.  

The results indicated that the contribution of shocks to long run persistence of 

SOI and SST during 1998(05)-2007(07) was larger than during 1950(01)-1998(04), 
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such that the volatility of ENSO over the decade had become stronger than during the 

previous 50 years. In other words, the ENSO strength has increased significantly since 

1998. Such an increase in the ENSO strength may lead to greater damage worldwide. 

Chen et al. (2008) have shown that the additional welfare will lead to a loss in the 

global rice market by US$595 million and US$637 million if the strength of the El 

Nino and La Nina events, respectively, were to continue to increase unabated. 

Finally, the linkage between ENSO strength and carbon dioxide was examined 

and a positive relationship was found. This implies that the strength of El Ni o or La 

Ni a will increase as more greenhouse gases are emitted. Such estimated outcomes 

with the future projections of carbon dioxide emissions are used to forecast the 

strength of ENSO under future climate change scenarios. We are able to predict that 

ENSO strength in 2030 will increase by 29.62% to 81.5% if global CO2 emissions 

increase by 40% to 110%, respectively. This gives a very strong indication that we 

will faced with far stronger El Nino or La Nina effects in the future if global 

greenhouse gas emissions are not brought under greater control, especially as there is 

substantial scientific evidence that these gases affect the frequency and strength of the 

El Niño impact on the global economy.
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Figure 1. SOI and SST series 
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Table 1 

Descriptive Statistics for the SOI and SST Series 

 

Variables 
Number of 

observations 
Mean Max Min Std Dev Q(p) JB

 

SOI 895 -0.147 2.900 -4.600 1.048 
1290.20 

(0.00) 

30.09 

(0.00) 

SST 691 0.018 2.85 -2.250 0.859 
2149.50 

(0.00) 

19.09 

(0.00) 

Notes:  

1. Q(p) is the Box-Pierce statistic of serial independence. 

2. JB is the Jarque-Bera Lagrange multiplier test of normality. 

3. Values in parentheses denote p-values. 

 



 25 

 

 

Table 2 

ADF Unit Root Test for SOI and SST Series 

 

Variables Level First-Difference Level 

 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

SOI -8.17(12)
* 

-8.24(9)
* 

-8.06(9)
* 

-20.60(8)
* 

-20.59(10)
* 

-20.61(7)
* 

SST -7.87(10)
* 

-7.90(10)
*
 -7.86(9)

* 
-15.76(9)

* 
-15.75( 9)

* 
-15.77(8)

* 

Notes: 

1: * represents significance at the 1% level.  

2: Model 1:auxiliary regression equation with only intercept. 

  Model 2: auxiliary regression equation with only time trend.  

Model 3: auxiliary regression equation with intercept and time trend.  

3: BIC is the criterion for selecting the optimal lag length, and values in parentheses 

denote the lag length. 
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Table 3 

ARMA(p,q) Models for SOI and SST Series 

 

SOI SST 

p q BIC p q BIC 

1 0 2.481 1 0 0.573 

1 1 2.387 1 2 0.561 

2 0 2.405 2 1 0.530 

2 2 2.391 2 2 0.531 

3 0 2.392 3 1 0.524 

5 2 2.410 3 2 0.481 

5 4 2.412 3 3 0.490 

6 2 2.421 3 4 0.540 

6 3 2.416 4 1 0.527 

   4 2 0.534 

   4 3 0.538 
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Table 4 

ARMA(1,1) and GARCH, GJR and EGARCH Models for SOI 

 

Variable(SOI) 
Model 

GARCH(1,1) GJR(1,1) EGARCH(1,1) 

Mean Equation    

AR(1) 0.896(0.021) 0.901(0.019) 0.896(0.019) 

MA(1) -0.477(0.044) -0.474(0.042) -0.471(0.042) 

Variance Equation    

  0.337 (0.145) 0.470 (0.166) -0.532 (0.144) 

  0.103 (0.044) 0.202 (0.063) 0.245 (0.071) 
  0.361 (0.152) 0.127(0.267) 0.077(0.043) 

   -0.139 (0.072) 0.292(0.261) 

Log moment -0.351 -0.719  

Second moment 0.464 0.127  

BIC 2.399 2.405 2.404 

 

 

 



 28 

 

Table 5 

ARMA(3,2) and GARCH, GJR and EGARCH models for SST 

 

Variable(SST) 
Model 

GARCH(1,1) GJR(1,1) EGARCH(1,1) 

Mean Equation    

AR(1) 0.823(0.045)  0.849(0.032)  0.858(0.029)  

AR(2) 0.957(0.006)  0.955(0.006)  0.958(0.005)  

AR(3) -0.846(0.041)  -0.866(0.029)  -0.876(0.026)  

MA(1) 0.233(0.060)  0.188(0.048)  0.179(0.044)  

MA(2) -0.762(0.059)  -0.807(0.048)  -0.816(0.044)  

Variance Equation    

  0.003(0.045) 0.051(0.051)  -1.667(0.450)  

  0.034(0.006) 0.179(0.092)  0.400(0.095)  

  0.930(0.059) 0.224(0.110) 0.447(0.053) 

   0.125(0.177) -0.067(0.176)  

Log moment -0.015 -0.712  

Second moment 0.963 0.466  

BIC 0.483 0.488 0.485 

Note: Values in parentheses denote standard errors. 
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Table 6 

Results of SOI for Structural Break Tests 

 

Test Hypothesis Statistics
 

  SOI  Critical value
a 

UDmax H0:m=0 H1:m>0 13.14 
* 

 8.88 

WDmax H0:m=0 H1:m>0 13.14 
* 

 9.91 

supF(i|0) Test H0:m=0 H1:m=1 13.14 
* 

 8.58 

 H0:m=0 H1:m=2 8.04
* 

 7.22 

 H0:m=0 H1:m=3 7.37
*
  5.96 

 H0:m=0 H1:m=4 5.58
*
  4.99 

 H0:m=0 H1:m=5 4.50
*
  3.91 

supF(i+1| i) Test supF(2| 1)  7.34
*
  8.58 

 supF(3| 2)  2.49  10.13 

 supF(4| 3)  2.02  11.14 

 supF(5| 4)  0.00  11.83 

LWZ 1 0.1662
* 

   

 2 0.1889
 

   

 3 0.2228    

 4 0.2581    

Notes:  

“a” is the critical value at 5%, while “*” represents significance at 5%. 

LWZ(1): denotes the number of breaks chosen by LWZ to be 1. 
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Table 7 

Estimates of ENSO Volatility for Different Periods 

 

 SOI SST 

 Period 1 Period 2 Period 1 Period 2 

Mean Equation     

AR(1) 0.905 

(0.024) 

0.869 

(0.044) 

0.890 

(0.023) 

0.287 

(0.245) 

AR(2) 
 

 0.960 

(0.010) 

0.709 

(0.111) 

AR(3)   -0.899 

(0.021) 

-0.168 

(0.196) 

MA(1) -0.453 

(0.051) 

-0.439 

(0.141) 

0.112 

(0.033) 

1.015 

(0.255) 

MA(2)   -0.880 

(0.036) 

0.177 

(0.231) 

Variance Equation     
  0.363 

(0.243) 

0.413 

(0.236) 

0.058 

(0.017) 

0.015 

(0.015) 
  0.008 

(0.053) 

0.438 

(0.210) 

0.255 

(0.077) 

0.046 

(0.012) 

  0.351 

(0.408) 

0.092 

(0.279) 

0.147 

(0.190) 

0.660 

(0.316) 

Note: Values in parentheses denote standard errors 
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Table 8 

Tobit Regression Results 
 

 

Tobit Analysis, Limit=0.4 

 

Variable Coefficient 

Estimate 

Standard 

Error 

t-Ratio 

CO2 0.0001426 0.00003819 3.734 

    

Log Likelihood -54.998   

Limit Observation 26   

Non-Limit Observation 33   

Note: Carbon dioxide emissions are measured in millions of tons. 
 

 


