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Stochastic Dominance Statistics for Risk Averters and Risk

Seekers: An Analysis of Stock Preferences for USA and China

Abstract We derive the limiting process of the stochastic dominance statistics for

risk averters as well as for risk seekers when the underlying processes might be dependent

or independent. We take account of the dependency of the partitions and propose a

bootstrap method to decide the critical point. In addition, we illustrate the applicability

of the stochastic dominance statistics for both risk averters and risk seekers to analyze the

dominance relationship between the Chinese and US stock markets in the entire period

as well as the sub-periods before and after the financial crises, including the internet

bubble and the recent sub-prime crisis. The findings could be used to draw inferences on

the preferences of risk averters and risk seekers in investing in the Chinese and US stock

markets. The results also enable us to examine whether there is any arbitrage opportunity

in these markets and whether these markets are efficient and investors are rational.

Keywords: Stochastic dominance, risk aversion, risk seeking, test statistic, hypothesis

testing.
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1 Introduction

The stochastic dominance (SD) tests have been developing to test for statistically sig-

nificant differences between any two cumulative density functions, say F and G, of two

assets, Y and Z, drawing inference for the preferences for risk averters. Davidson and

Duclos (hereafter DD, 2000) develop the SD statistic, Tj(x) (j = 1; 2; 3), to determine

the levels of significance for the first-, second-, and third-order SD for two distributions

F and G. The DD test compares distributions at a finite number of grid points, and

under the null hypothesis of equality of F and G, Davidson and Duclos show that Tj

is asymptotically distributed as the studentized maximum modulus (SMM) distribution.

Barrett and Donald (2003) comment that too few grids will miss information about the

distributions between any two consecutive grids whereas, according to Richmond (1982),

one may argue that too many grids will violate the independence assumption required by

the SMM distribution. Fong et al. (2005) and others suggest using 10 major partitions

with 10 minor partitions within any two consecutive major partitions in each compari-

son. We note that the limiting distributions of Tj(x) are not independent even for two

points of partition. More importantly, the limiting correlations would depend on the null

distribution F = G. To solve this problem, in this paper we modify the DD statistic by

taking care of the dependency of the partitions. We suggest investigating the limiting

distribution of Tj(x); a < x < b, regarded as a stochastic process. We derive the limiting

process of the DD test statistic Tj(x), j = 1; 2; 3, and hence, the DD test can be performed

by supx |Tj(x)|.

It is well known that investors may not be risk-averse as they could be risk-seeking (see

Meyer (1977), Stoyan (1983), Wong (2007) and the references therein for properties of the

behavior of risk seekers, and investors with convex utility functions). In this paper, we also

develop SD statistics to test for statistically significant differences between any two density
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functions of two assets, Y and Z, drawing inference for the preferences for risk seekers.

In addition, in many real data analyses, the random variables Y and Z being examined

may not be independent. To take care of both dependent and independent situations,

in this paper we develop the modified DD tests to cover the dependent and independent

situations and provide the limiting correlations on the null distribution F = G. We note

that Bai et al. (2012) have extended the DD test to SD test for investors with S-shaped

and reverse S-shaped utility functions, our paper extend their work in the sense that we

(1) compliment their work and the work by Davidson and Duclos (2000) to develop SD

tests for risk averters and risk seekers, and (2) take care of the dependent and independent

situations. In this paper we also propose a bootstrap method to decide the critical point

of the modified DD tests so that their critical values will be closer to the true critical

values.

Thereafter, we illustrate the applicability of the SD statistics for both risk averters

and risk seekers analyze the dominance relationship between the Chinese and US stock

markets in the entire period as well as the sub-periods before and after the financial

crises, including the internet bubble and the recent sub-prime crisis. The findings could

be used to draw inferences on the preferences of risk averters and risk seekers in investing

in the Chinese and US stock markets. In addition, the results enable us to examine

whether there is any arbitrage opportunity in these markets and whether these markets

are efficient and investors are rational. We also note that a hierarchical relationship exists

in SD mathematically (Sriboonchitta et al., 2009) but, in our analysis, we observe that

the SD hierarchical relationship may not exist statistically. We will discuss this issue in

our illustration section and propose an inference to this new finding in the literature (see,

for example, Wong and Chan (2008), Broll et al. (2010), Egozcue et al. (2011), and the

references therein for further information).
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The remainder of the paper is organized as follows: Section 2 introduces definitions

and notation, and discusses some basic SD properties. We will develop the SD tests for

risk averters and risk seekers in Section 3. In Section 4, we discuss the bootstrap method

to decide the critical points of the tests. Section 5 illustrates the applicability of our

proposed SD test statistics to study the preferences of risk averters and risk seekers for

their investment in the Chinese and USA stock markets. Section 6 concludes our findings.

2 Definitions, Notations, and Basic Properties

Let R be the set of extended real numbers and Ω = [a, b] be a subset of R. Let B be the

Borel σ-field of Ω and µ be a measure on (Ω,B). We first define the functions FA and FD of

the measure µ on the support Ω as FA(x) = FA
1 (x) = µ(a, x] and FD(x) = FD

1 (x) = µ[x, b)

for all x ∈ Ω. Function F is a cumulative distribution function (CDF) and µ is a probability

measure if µ(Ω) = 1. From the basic probability theory, for any random variable X with

an associated probability measure P , there exists a unique induced probability measure

µ on (Ω,B) and a CDF F such that µ(B) = P (X−1(B)) = P (X ∈ B) for any B ∈ B. An

integral written in the form of
∫

A
f(t) d µ(t) or

∫
A

f(t) dF (t) is understood as a Lebesgue-

Stieltjes integral for integrable function f(t). If the integral has the same value for all A

among (c, d], [c, d) or [c, d], we use the notation
∫ d

c
f(t) d µ(t) instead. In addition, if µ is a

Borel measure with µ(c, d] = d− c, we write the integral as
∫ d

c
f(t) dt. Random variables,

denoted by Y and Z, defined on Ω, are considered together with their corresponding

CDFs F and G, respectively. The following notations will be used throughout this paper:

µF = µY = E(Y ) =

∫ b

a

x d F (x), µG = µZ = E(Z) =

∫ b

a

x d G(x) ; and

HA
j (x) =

∫ x

a

HA
j−1(y) dy, HD

j (x) =

∫ x

a

HD
j−1(y) dy, j = 2, 3; (2.1)
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where H = F or G.1 In (2.1), µF = µY is the mean of Y , whereas µG = µZ is the mean

of Z.

We note that the definition of HA
j in (2.1) can be used to develop the SD theory for risk

averters (see, for example, Quirk and Saposnik, 1962; Fishburn, 1964) and thus we call this

type of SD ascending stochastic dominance (ASD) and call HA
j the jth order ASD integral

or the jth order cumulative probability, since HA
j is integrated from HA

j−1 in ascending

order from the leftmost point of downside risk. On the other hand, HD
j can be used to

develop the SD theory for risk seekers (see, for example, Meyer, 1977; Stoyan, 1983; Li

and Wong, 1999) and thus we call this type of SD descending stochastic dominance (DSD)

and call HD
j the jth order DSD integral or the jth order reversed cumulative probability,

since HD
j is integrated HD

j−1 in descending order from the rightmost point of upside profit.

Typically, risk averters prefer assets that have a smaller probability of loss whereas risk

seekers prefer assets that have a higher probability of gain, especially in upside profit. To

make a choice between two assets F and G, risk averters will compare their corresponding

jth order ASD in integrals FA
j and GA

j and choose F if FA
j is smaller, since it has a smaller

probability of loss. On the other hand, risk seekers will compare their corresponding jth

order DSD integrals FD
j and GD

j and choose F if FD
j is bigger, since it has a higher

probability of gain. We first state the definitions of SD for risk averters and risk seekers

as follows:

Definition 2.1 Given two random variables Y and Z with F and G as their respective

CDFs, Y dominates Z and F dominates G in the sense of FASD (SASD, TASD), denoted

by Y ºA
1 Z or F ºA

1 G (Y ºA
2 Z or F ºA

2 G, Y ºA
3 Z or F ºA

3 G), if and only if FA
1 (x) ≤

GA
1 (x) (FA

2 (x) ≤ GA
2 (x), FA

3 (x) ≤ GA
3 (x)) for each x in [a, b], where FASD, SASD, and

TASD stand for first-, second-, and third-order ASD, respectively. In addition, if there

1see, for example, Wong and Li (1999), Anderson (2004), and Wong and Chan (2008).
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exists strict inequality for any x in [a, b], we say that Y dominates Z and F dominates G

in the sense of SFASD, SSASD, and STASD, denoted by Y ÂA
1 Z or F ÂA

1 G, Y ÂA
2 Z

or F ÂA
2 G, and Y ÂA

3 Z or F ÂA
3 G, respectively, where SFASD, SSASD, and STASD

stand for strictly first-, second-, and third-order SD, respectively.

Definition 2.2 Given two random variables Y and Z with F and G as their respective

CDFs, Y dominates Z and F dominates G in the sense of FDSD (SDSD, TDSD), denoted

by Y ºD
1 Z or F ºD

1 G (Y ºD
2 Z or F ºD

2 G, Y ºD
3 Z or F ºD

3 G), if and only if

FD
1 (x) ≥ GD

1 (x) (FD
2 (x) ≥ GD

2 (x), FD
3 (x) ≥ GD

3 (x)) for each x in [a, b], where FDSD,

SDSD, and TDSD stand for first-, second-, and third-order DSD, respectively. In addition,

if there exists strict inequality for any x in [a, b], we say that Y dominates Z and F

dominates G in the sense of SFDSD, SSDSD, and STDSD, denoted by Y ÂA
1 Z or F ÂA

1

G, Y ÂA
2 Z or F ÂA

2 G, and Y ÂA
3 Z or F ÂA

3 G, respectively, where SFDSD, SSDSD,

and STDSD stand for strictly first-, second-, and third-order SD, respectively.

The SD theory is related to utility maximization. To discuss the issue, we first state

the definition of utility functions for risk averters and risk seekers as follows:

Definition 2.3 For j = 1, 2, 3, UA
j , UD

j , USA
j and USD

j are the sets of the utility

functions2 u such that

UA
j (USA

j ) = {u : (−1)iu(i) ≤ (<) 0 , i = 1, · · · , j} ;

UD
j (USD

j ) = {u : u(i) ≥ (>) 0 , i = 1, · · · , j} ;

where u(i) is the ith derivative of u.

We note that investors in UA
j are risk averse, while investors in UD

j are risk seek-

ing. Choosing between F and G in accordance with a consistent set of preferences will

2We note that the theory can be easily extended to satisfy utilities defined to be non-differentiable
and/or non-expected utility functions (Wong and Ma, 2008; Sriboonchitta, et al., 2009).
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satisfy the von Neumann-Morgenstern (1944) consistency properties. Accordingly, F

is (strictly) preferred to G, or equivalently, Y is (strictly) preferred to Z if ∆Eu ≡
u(F ) − u(G) ≡ u(Y ) − u(Z) ≥ 0(> 0), where u(F ) ≡ u(Y ) ≡ ∫ b

a
u(x)dF (x) and

u(G) ≡ u(Z) ≡ ∫ b

a
u(x)dG(x). The ASD and DSD approaches are regarded as two of

the most useful tools for ranking uncertain investment prospects, since ranking assets

have been proven (Li and Wong, 1999) to be equivalent to utility maximization for the

preferences of risk-averse and risk-seeking investors as shown in the following proposition:

Proposition 2.1 Let Y and Z be random variables with CDFs F and G, respectively.

Suppose u is a utility function. For j = 1, 2 and 3, F ºA
j (ÂA

j )G if and only if u(F ) ≥
(>)u(G) for any u in UA

j (USA
j ), and F ºD

j (ÂD
j )G if and only if u(F ) ≥ (>)u(G) for

any u in UD
j (USD

j ).

The existence of ASD implies that the expected utility of the risk-averse investor is always

higher when holding the dominant asset than when holding the dominated asset, and

consequently, the dominated asset would not be chosen. We note that a hierarchical

relationship exists in ASD: FASD implies SASD, which, in turn, implies TASD. However,

the converse is not true. Similarly, the hierarchical relationships also exist in DSD. Thus,

it is a common practice to report only the lowest dominance order of ASD and DSD.

3 SD Tests for Risk Averters and Risk Seekers

The tests developed by Davidson and Duclos (DD, 2000), Barrett and Donald (BD, 2003)

and Linton, et al. (LMW, 2005) are the most commonly used statistics to investigate the

preference for risk averters. Since the test developed by DD is found3 to be one of the

most powerful statistics to test the significance of stochastic dominance and yet one of

the least conservative in size, in this paper we discuss only the DD test and extend the

3See, for example, Wei and Zhang (2003), Tse and Zhang (2004) and Lean, et al. (2008) for more
information.
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theory by modifying only the DD test for risk averters and risk seekers in the following

subsections. One could easily use the idea in our paper to extend the BD and LMW tests

or other SD tests to test for the preferences for risk seekers.

3.1 ASD Tests for Risk Averters

In light of the definition of ASD’s, one may want to test the following hypothesis, for

j = 1, 2, 3,

HA
0 : FA

j ≡ GA
j ,

against three alternatives

HA
1 : F 6≡A

j G, two sided test,

HA
1l : F ÂA

j Gj, one sided test, (3.1)

HA
1r : F ≺A

j G, one sided test.

The three hypotheses are equivalent to

HA
1 : FA

j (x) 6= GA
j (x), for some x,

HA
1l : FA

j (x) ≤ GA
j (x),∀x and the inequality is strict for at least one x,

HA
1r : FA

j (x) ≥ GA
j (x),∀x and the inequality is strict for at least one x.

Now, assume the data {fi} (i = 1, 2, · · · , Nf ) and {gi} (i = 1, 2, · · · , Ng) are observa-

tions drawn from the independent random variables Y and Z with distribution functions

F and G, respectively. The integrals FA
j and GA

j for F and G are defined in (2.1) for

j = 1, 2 and 3. For a grid of pre-selected points {xk, k = 1, · · · , K}, Davidson and Duclos

propose to use the following jth order ascending DD test statistic, TA
j (x) (j = 1, 2 and 3)

to test for HA
1 , HA

1l , and HA
1r:

TA
j (x) =

F̂A
j (x)− ĜA

j (x)√
V̂ A

j (x)
, (3.2)
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where

V̂ A
j (x) = V̂ A

Fj
(x) + V̂ A

Gj
(x),

ĤA
j (x) =

1

Nh(j − 1)!

Nh∑
i=1

(x− hi)
j−1
+ , (3.3)

V̂ A
Hj

(x) =
1

Nh

[
1

Nh((j − 1)!)2

Nh∑
i=1

(x− hi)
2(j−1)
+ − ĤA

j (x)2

]
, H = F,G; h = f, g .

It is not difficult to show that under the null hypothesis HA
0 , for each fixed x ∈

(a, b), TA
j (x) → N(0, 1), the standard normal distribution. However, the limiting joint

distribution of (TA
j (x1), T

A
j (x2)) does not have independent components for any x1 6= x2.

More importantly, the limiting correlation depends on the null in which the distribution

functions F = G. Therefore, it is empirically difficult to test the hypotheses described in

(3.1). One may incorporate the idea proposed by Bishop, et al. (1992) to test the null

hypothesis for a pre-designated finite number of values {xk, k = 1, · · · , K} and then test

the following weaker hypotheses:

HAK
0 : FA

j (xk) = GA
j (xk) for all xk;

HAK
1 : FA

j (xk) 6= GA
j (xk) for some xk;

HAK
1l : FA

j (xk) ≤ GA
j (xk) for all xk, FA

j (xk) < GA
j (xk) for some xk;

HAK
1r : FA

j (xk) ≥ GA
j (xk) for all xk FA

j (xk) > GA
j (xk) for some xk.

Under the null hypothesis HAK
0 , DD show that TA

j is asymptotically distributed as the

studentized maximum modulus (SMM) distribution (Richmond, 1982). To implement the

DD test, the TA
j is computed at each grid point and the null hypothesis, HAK

0 , is rejected

if

max
k≤K

|TA
j (xk)| > MK

∞,α/2, for the alternative HAK
1 ;

min
k≤K

TA
j (xk) < −MK

∞,α, for the alternative HAK
1l ;

max
k≤K

TA
j (xk) > MK

∞,α, for the alternative HAK
1r ;
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where MK
∞,α is the 1− α percentile of MK

∞ tabulated by Stoline and Ury (1979):

Remark 3.1 The DD test compares distributions at a finite number of grid points. Var-

ious studies examine the choice of grid points. For example, Tse and Zhang (2004) show

that an appropriate choice of K for reasonably large samples ranges from 6 to 15. Too

few grids will miss information about the distributions between any two consecutive grids

(Barrett and Donald, 2003), and too many grids will be said to violate the independence

assumption required by the SMM distribution (Richmond, 1982). To make the compar-

isons comprehensive without too much violating the independence assumption, Fong, et

al. (2005), Gasbarro, et al. (2007), and Wong, et al. (2008) suggest to use the 10 major

partitions with 10 minor partitions within any two consecutive major partitions in each

comparison and draw statistical inference based on the SMM distribution for K = 10 and

infinite degrees of freedom.

As we have pointed out earlier that the limiting distributions of TA
j (x) are not inde-

pendent even for two points partition. More importantly, the limiting correlations would

depend on the null in which distributions F = G. To solve these problems, we suggest

to investigate the limiting distribution of TA
j (x), a < x < b, regarded as a stochastic

process. To do so, we establish the following theorem.

Theorem 3.1 Let {fi} (i = 1, 2, · · · , Nf ) and {gi} (i = 1, 2, · · · , Ng) be random

observations drawn from the independent random variables Y and Z, with continuous

distribution functions F and G, respectively. Under the null hypothesis F ≡ G, the jth

order ASD test statistics, TA
j (x) (j = 1, 2 and 3), weakly tends to a limiting Gaussian

process with mean 0, variance 1, and correlation function rA(x, y) in which for the case

j = 1, we get

rA
1 (x, y) =

F (x ∧ y)− F (x)F (y)√
F (x)F (y)(1− F (x))(1− F (y))

,
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and for the case j > 1, we have

rA(x, y) =

∫ x

a

∫ y

a
(x− t)j−2(y − s)j−2(F (t ∧ s)− F (t)F (s))dtds√

V A
j (x)V A

j (y)
,

where ĤA
j (x) and V̂ A

j (x) for H = F and G are defined in (3.2),

V A
1 (x) = F (x)(1− F (x)) ,

and

V A
j (x) =

∫ x

a

∫ x

a

(x− t)j−2(x− s)j−2(F (t ∧ s)− F (t)F (s))dtds .

Based on this theorem, to test the hypotheses in (3.1), we propose to reject the null

hypothesis HA
0 if

max
a<x<b

|TA
j (x)| > MA

α/2, for the alternative HA
1 ;

min
a<x<b

TA
j (x) < −MA

α , for the alternative HA
1l ;

max
a<x<b

TA
j (x) > MA

α , for the alternative HA
1r;

in which we suggest to obtain the critical values MA
α by a bootstrap approach that will

be described later in the paper.

In many cases, the asset random variables Y and Z are not independent of each

other. Assume that they have a joint distribution Q(y, z) with marginal distributions F

and G. Suppose that the sample is drawn in a way that {(fi, gi), i = 1, · · · ,m, fk, gl, k =

m+1, · · · , Nf ; l = m+1, · · · , Ng} are mutually independent. In such a case, the covariance

of F̂A
j (x) and ĜA

j (x) can be estimated by

V̂ A
FGj

(x) =
1

NfNg((j − 1)!)2

m∑
i=1

(x− fi)
j−1
+ (x− gi)

j−1
+ − m

NfNg

F̂A
j (x)ĜA

j (x).

Hence, the variance of F̂A
j (x)− ĜA

j (x) can be estimated by

V̂ A
j (x) = V̂ A

Fj
(x) + V̂ A

Gj
(x)− 2V̂ A

FGj
(x), (3.4)
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in which the integrals Fj
A and Gj

A are defined in (2.1) for j = 1, 2 and 3. Thereafter,

one may define the test statistic TA
j (x) by (3.2) with the new V̂ A

j (x) defined in (3.4). We

summarize the result in the following theorem:

Theorem 3.2 Let {fi} (i = 1, 2, · · · , Nf ) and {gi} (i = 1, 2, · · · , Ng) be random

observations drawn from the dependent random variables Y and Z, with continuous joint

distribution function Q(x, y) and marginal distribution functions F and G, respectively.

Suppose the samples are drawn as described earlier; that is, we assume that (fi, gi); i =

1, · · · ,m are pairwisely drawn and the rest are independent. Suppose that m/(Nf +Ng) →
λ. Then, under the null hypothesis F ≡ G, the jth order ASD test statistic, TA

j (x)

(j = 1, 2 and 3), weakly tends to a limiting Gaussian process with mean 0, variance 1,

and correlation function rA
j, dep(x, y) in which for the case j = 1, we get

rA
1, dep(x, y) =

F (x ∧ y)− λQ(x, y)− (1− 2λ)F (x)F (y)√
F (x)F (y)(1− F (x))(1− F (y))

,

and for the case j > 1, we have

rA
j, dep(x, y) =

V A
j (x, y)√

V A
j (x)V A

j (y)
,

where ĤA
j (x) and V̂ A

j (x) for H = F and G are defined in (3.3) and (3.4), respectively,

and

V A
j (x) =

∫ x

a

∫ x

a

(x− t)j−2(x− s)j−2(F (t ∧ s)− F (t)F (s))dtds and

V A
j (x, y) =

∫ x

a

∫ y

a

(x− t)j−2(y − s)j−2[(F (t ∧ s)− λ(Q(t, s) + Q(s, t))− (1− 2λ)F (t)F (s))]dtds .

3.2 DSD Tests for Risk Seekers

In this paper, we modify the DD test for risk averters to be DD test statistic for risk

seekers and we call it the descending DD test statistic. Let {fi} (i = 1, 2, · · · , Nf ) and

{gi} (i = 1, 2, · · · , Ng) be observations drawn from the independent random variables Y

11



and Z with distribution functions F and G, respectively. The integrals FD
j and GD

j for

F and G are defined in (2.1) for j = 1, 2 and 3. For a grid of pre-selected points {xk,

k = 1, · · · , K}, the jth order descending DD test statistic, TD
j (x) (j = 1, 2 and 3), is:

TD
j (x) =

F̂D
j (x)− ĜD

j (x)√
V̂ D

j (x)
, (3.5)

where

V̂ D
j (x) = V̂ D

Fj
(x) + V̂ D

Gj
(x),

ĤD
j (x) =

1

Nh(j − 1)!

Nh∑
i=1

(hi − x)j−1
+ ,

V̂ D
Hj

(x) =
1

Nh

[
1

Nh((j − 1)!)2

Nh∑
i=1

(hi − x)
2(j−1)
+ − ĤD

j (x)2

]
, H = F,G; h = f, g ;

in which the integrals Fj
D and Gj

D are defined in (2.1) for j = 1, 2 and 3. For k =

1, · · · , K, the following hypotheses are tested for risk seekers:

HD
0 : FD

j (xk) = GD
j (xk) for all xk;

HD
1 : FD

j (xk) 6= GD
j (xk) for some xk;

HD
1l : FD

j (xk) ≥ GD
j (xk) for all xk, FD

j (xk) > GD
j (xk) for some xk;

HD
2r : FD

j (xk) ≤ GD
j (xk) for all xk FD

j (xk) < GD
j (xk) for some xk.

Under the null hypothesis HD
0 , one may believe that TD

j is asymptotically distributed as

the studentized maximum modulus (SMM) distribution (Richmond, 1982). Similar to the

argument we correct the ASD test in last subsection, this is not correct and we correct

the theory for the DSD test as follows:

To implement the DD test, TD
j , for risk seekers for j = 1, 2, 3, one should test the

following hypothesis at each grid point being computed:

HD
0 : FD

j ≡ GD
j ,
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against three alternatives

HD
1 : F 6≡D

j G, two sided test,

HD
1l : F ÂD

j Gj, one sided test, (3.6)

HD
1r : F ≺D

j G, one sided test.

The three hypotheses are equivalent to

HD
1 : FD

j (x) 6= GD
j (x), for some x,

HD
1l : FD

j (x) ≥ GD
j (x),∀x and the inequality is strict for at least one x,

HD
1r : FD

j (x) ≤ GD
j (x),∀x and the inequality is strict for at least one x.

Using a similar technique as the development of Theorem 3.1, we obtain the following

theorem for DSD test:

Theorem 3.3 Let {fi} (i = 1, 2, · · · , Nf ) and {gi} (i = 1, 2, · · · , Ng) be random

observations drawn from the independent random variables Y and Z, with continuous

distribution functions F and G, respectively. Under the null hypothesis F ≡ G, the jth

order DSD test statistic, TD
j (x) (j = 1, 2 and 3), weakly tends to a limiting Gaussian

process with mean 0, variance 1, and correlation function rA(x, y) in which for the case

j = 1, we get

rD
1 (x, y) =

F (x ∧ y)− F (x)F (y)√
F (x)F (y)(1− F (x))(1− F (y))

,

and for the case j > 1, we have

rD(x, y) =

∫ b

x

∫ b

y
(t− x)j−2(s− y)j−2(F (t ∧ s)− F (t)F (s))dtds√

V D
j (x)V D

j (y)
,

where ĤD
j (x) and V̂ D

j (x) are defined in (3.5) for H = F and G,

V D
1 (x) = F (x)(1− F (x)) ,

13



and

V D
j (x) =

∫ b

x

∫ b

x

(t− x)j−2(s− x)j−2(F (t ∧ s)− F (t)F (s))dtds .

The proof of this theorem is given in Appendix. Based on this theorem, to test the

hypotheses (3.6), we propose to reject the null hypothesis HD
0 if

max
a<x<b

|TD
j (x)| > MD

α/2, for the alternative HD
1 ;

max
a<x<b

TD
j (x) > MD

α , for the alternative HD
1l ;

min
a<x<b

TD
j (x) < −MD

α , for the alternative HD
1r;

where critical values MD
α is suggested to be found by a bootstrap approach which will be

described later in our paper.

Similar to the case of the ASD tests, the asset random variables Y and Z may not be

independent of each other. Now, we assume that the samples have the same structure as

described in last subsection. In such a case, the covariance of F̂D
j (x) and ĜD

j (x) can be

estimated by

V̂ D
FGj

(x) =
1

NfNg((j − 1)!)2

m∑
i=1

(fi − x)j−1
+ (gi − x)j−1

+ − m

NfNg

F̂D
j (x)ĜD

j (x).

Hence, the variance of F̂D
j (x)− ĜD

j (x) can be estimated by

V̂ D
j (x) = V̂ D

Fj
(x) + V̂ D

Gj
(x)− 2V̂ D

FGj
(x). (3.7)

Then, one may define the test statistic TD
j (x) by (3.5) with the newly defined V̂ D

j (x).

The proof of Theorem 3.3 is given in the Appendix.

Theorem 3.4 Let {fi} (i = 1, 2, · · · , Nf ) and {gi} (i = 1, 2, · · · , Ng) be random

observations drawn from the dependent random variables Y and Z, with continuous joint

distribution function Q(x, y) and marginal distribution functions F and G, respectively.

Suppose the samples are drawn as described earlier; that is, we assume that (fi, gi); i =
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1, · · · ,m are pairwisely drawn and the rest are independent. Suppose that m/(Nf +Ng) →
λ. Then, under the null hypothesis F ≡ G, the jth order DSD test statistic, TD

j (x)

(j = 1, 2 and 3), weakly tends to a limiting Gaussian process with mean 0, variance 1,

and correlation function rD
j, dep(x, y) in which for the case j = 1, we get

rD
1, dep(x, y) =

F (x ∧ y)− λQ(x, y)− (1− 2λ)F (x)F (y)√
F (x)F (y)(1− F (x))(1− F (y))

,

and for the case j > 1, we have

rD
j, dep(x, y) =

V D
j (x, y)√

V D
j (x)V D

j (y)
,

where ĤD
j (x) and V̂ D

j (x) for H = F and G are defined in (3.3) and (3.7), respectively,

and obtain

V D
j (x) =

∫ b

x

∫ b

x

(t− x)j−2(s− x)j−2(F (t ∧ s)− F (t)F (s))dtds

V D
j (x, y) =

∫ b

x

∫ b

y

(t− x)j−2(s− y)j−2[(F (t ∧ s)− λ(Q(t, s) + Q(s, t))− (1− 2λ)F (t)F (s))]dtds.

4 Determination of Critical Values

In this section, we discuss only the situation in which the variables are independent. The

situation in which the variables are dependent could be obtained similarly. Suppose the

variables being examined are independent and the sample series {fi, i = 1, 2, · · · , Nf}
and {gi, i = 1, 2, · · · , Ng} are iid. We draw two resamples {f ∗i , i = 1, 2, · · · , Nf} and

{g∗i , i = 1, 2, · · · , Ng} from the pooled sample {f(i), g(j), i = 1, 2, · · · , Nf , j = 1, 2, · · · , Ng},
the DD test statistics (T̂A

j and T̂D
j ) (j = 1, 2, 3) defined in (3.2) and (3.5) can then be

bootstrapped. Using this method, one can approximate the null distribution of the test

statistics. The details to obtain the critical values of statistic T̂A
j and T̂D

j , j = 1, 2, 3,

are as follows:
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Step 1 Draw a sample set {f ∗i , i = 1, 2, · · · , Nf} from {fi, gj, i = 1, 2, · · · , Nf , j = 1, 2, · · · , Ng}
with replacement and draw another sample set {g∗i , i = 1, 2, · · · , Ng} in the same

way.

Step 2 Compute: Aj = T̂ ∗A
j (x) = [F̂A

j (x) − ĜA
j (x)]/

√
V̂ A

j (x), and Dj = T̂ ∗D
j (x) =

[F̂D
j (x)− ĜD

j (x)]/
√

V̂ D
j (x), where Ĥj(x) and V̂j(x) for H = F and G, respectively,

are defined in (3.2). Repeat this process N times.

Step 3 Find Aj(α) such that ]{|Ajk| ≥ Aj(α), k ≤ N} = [Nα]; that is, the α percentile

of the distribution of T̂ ∗A
j .

Step 4 Find Dj(α) such that ]{|Djk| ≥ Dj(α), k ≤ N} = [Nα]; that is, the α percentile

of the distribution of T̂ ∗D
j .

We make the following remarks in obtaining the critical values:

Remark 4.1 The samples {f ∗i , g∗j , i = 1, 2, · · · , Nf , j = 1, 2, · · · , Ng} are iid random

samples with distribution function F ∗
Nf+Ng

=
Nf

Nf+Ng
FNf

+ Ng

Nf+Ng
GNg . So, under the null

hypothesis F ∗ = F = G, the sample sets {f ∗i , g∗j , i = 1, 2, · · · , Nf , j = 1, 2, · · · , Ng} and

{fi, gj, i = 1, 2, · · · , Nf , j = 1, 2, · · · , Ng} are almost the same as the samples which come

from the same distribution only if the sum of Nf and Ng is large enough. Under this

situation, the critical value obtained by using the above procedure will be almost the same

as the real critical point value. But under the relative hypothesis, because the sample sets

{fi, i = 1, 2, · · · , Nf} and {gj, j = 1, 2, · · · , Ng} come from different distributions F and

G, respectively, the absolute value of T̂j with the sample set {f ∗i , g∗j , i = 1, 2, · · · , Nf , j =

1, 2, · · · , Ng} could be different from the real critical point value.

Remark 4.2 Start with N=10000, Nf = 200, Ng = 200, and α = 0.05. Given that F

and G are from some specific distributions, we compare the probability of the error of the

first kind and the power for some varieties for pairs of F and G. For example, suppose
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F = N(0, 1), G = N(0, 1), N(0.1, 1), N(0.2, 1), N(0.3, 1), N(0.4, 1), and N(0.5, 1),

respectively, we obtain the simulation results in Table 1. From the table, one could easily

conclude that when F and G are further apart, the difference between the errors of the

first kind and the power become greater.

Table 1: the error of the first kind and the power of SD tests
ASD test

j=1 N(0,1) N(0.1,1) N(0.2,1) N(0.3,1) N(0.4,1) N(0.5,1)
N(0,1) 0.057 0.139 0.405 0.700 0.934 0.993
j=2 N(0,1) N(0.1,1) N(0.2,1) N(0.3,1) N(0.4,1) N(0.5,1)

N(0,1) 0.060 0.122 0.430 0.733 0.956 0.997
j=3 N(0,1) N(0.1,1) N(0.2,1) N(0.3,1) N(0.4,1) N(0.5,1)

N(0,1) 0.036 0.074 0.085 0.174 0.208 0.423
DSD test

j=1 N(0,1) N(0.1,1) N(0.2,1) N(0.3,1) N(0.4,1) N(0.5,1)
N(0,1) 0.0499 0.1227 0.3566 0.6906 0.9156 0.9921
j=2 N(0,1) N(0.1,1) N(0.2,1) N(0.3,1) N(0.4,1) N(0.5,1)

N(0,1) 0.0542 0.1434 0.4191 0.7726 0.9577 0.9965
j=3 N(0,1) N(0.1,1) N(0.2,1) N(0.3,1) N(0.4,1) N(0.5,1)

N(0,1) 0.0511 0.1362 0.4097 0.7594 0.9495 0.9962

Note: ASD test is defined in (3.2) while DSD test is defined in (3.5).
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5 Empirical Results

In this section, we will illustrate the applicability of the SD statistics for both risk averters

and risk seekers developed in this paper to analyze the dominance relationship between

the Chinese and US stock markets in the entire period as well as the sub-periods before

and after the financial crises, including the internet bubble and the recent sub-prime

crisis. We are also interested in studying their preferences in these markets in the bull

runs as well as in the bear markets. To do so, we apply the modified DD test statistics

developed above to examine the daily returns of both SSE and S&P 500 for the full

sample period (02/01/1996 to 19/05/2011) and the 5 sub-periods: 01/1996 to 03/2000,

03/2000 to 10/2002, 10/2002 to 10/2007, 10/2007 to 11/2008, and 11/2008 to 05/2011.

SSE denotes the Shanghai Stock Exchange Composite Index, while S&P 500 denotes the

Standard & Poor 500 index, a free-float capitalization-weighted index of the prices of 500

large-cap common stocks actively traded in the USA.

The Chinese stock markets, initiated in early 1990’s, have been expanding tremen-

dously in the past decade. China has experienced dramatic economic growth in the past

decade. Its average annual growth rate is about 9%, much higher than that of the world

economy. As one important component of the Chinese economy, Chinese stock markets,

have also expanded rapidly. There are many studies that have analyzed the Chinese and

USA stock markets. For example, Chakravarty et al. (1998) report the bivariate return

correlations among the Chinese stock indices, as well as the U.S. market indices, and

suggest that the Chinese market is still isolated.

We now ready to discuss our analysis for the performance of the daily returns of

Chinese (SSE) and USA (S&P) stock markets for risk averters as well as for risk seekers

in the full sample period as well as all the sub-periods. To analyze the preferences for risk

averters, we adopt the modified DD statistic TA
j (we call it ASD test) for risk averters

for j = 1; 2, and 3 where TA
j is defined in (3.2) for j = 1, 2, and 3 with F and G be the
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CDFs of the returns of S&P and SSE, respectively. We display the results in Table 2.

In addition, we plot the ASD tests together with the CDFs, F and G, of the daily returns

of S&P and SSE in Figure 2. On the other hand, to analyze the preferences for risk

seekers, we employ the modified DD statistic TD
j (we call it DSD test) for risk seekers

for j = 1, 2, and 3 where TD
j is defined in (3.5) for j = 1; 2, and 3 with F = S&P and

G = SSE. We exhibit the results in Table 3. In addition, we plot the DSD tests together

with the DSD integrals FD
1 and GD

1 defined in (2.1) in Figure 3. At last, we summarize

all SD relationship between SSE and S&P 500 for the full sample period as well as all the

5 sub-periods in Table 4.

5.1 First Order Stochastic Dominance Analysis

We first our analysis for the performance of the daily returns of the Chinese and USA

stock markets for risk averters in the full sample period. To minimize the Type II error

and to avoid SD (Leshno and Levy, 2002), we use a 5 per cent cut-off point 4 to the

proportion of the values of the test statistic in (3.2) for SSE and S&P to draw statistical

inferences. Using the 5 per cent cut-off point, if S&P dominates SSE, one should find at

least 5 per cent of TA
j to be significantly negative and no portion of TA

j to be significantly

positive. The reverse holds if SSE dominates S&P. From Table 2, we find that 34.92 per

cent (27.92 per cent) of TA
1 is significantly positive (negative) for the entire period. Thus,

the results lead us reject the hypothesis that S&P stochastically dominates SSE or vice

versa at the first order in the sense of ASD.

Together with the plot of the modified ASD test for risk averters exhibited in Figure

2, the results from Table 2 show that TA
1 is significantly negative in the downside risk and

significantly positive in the upside profit, inferring that investors with increasing utility

functions will prefer to invest in S&P when facing with the downside risk, whereas they

4We note that Leshno and Levy (2002) use an example of 1 per cent to state the problem of almost
SD. We choose a more conservative 5 per cent cut-off point to avoid the problem of almost SD. The
conclusion drawn in our paper holds if one uses any less conservative cut-off point, say 1 per cent.
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will prefer to invest in SSE in anticipation of the upside profit. This could also infer that

investors prefer to invest in USA stock market in the bear markets and prefer to invest

in Chinese stock market in the bull runs. Table 3 shows that 27.92 per cent (34.92 per

cent) of TD
1 is significantly positive (negative), leading us reject the hypothesis that S&P

stochastically dominates SSE or vice versa in the sense of FDSD. Together with the plot

of the modified DSD test for risk seekers displayed in Figure 3, the results reveal that

TD
1 is significantly positive at the downside risk and significantly negative at the upside

profit. This result draws the same inference as the result of TA
1 that S&P is preferred to

SSE on the downside risk and SSE is preferred on the upside profits. These results do not

reject the market efficiency hypothesis. In order to explore whether the market is efficient

and investors are rational, we need to examine the higher-order SD.

5.2 Higher-Order Stochastic Dominance

We now turn to examine whether there is any higher-order stochastic dominance relation-

ship between the Chinese and USA stock markets. From Table 2, we observe that 89.57

per cent of the second-order modified ASD statistic TA
2 is significantly negative and none

of it is significantly positive at the 5 per cent bootstrap simulated critical level. Similarly,

from Table 2, we find that 98.98 per cent of the third-order modified ASD statistic TA
3

is significantly negative and none of it is significantly positive at the 5 per cent boot-

strap simulated critical level. Hence, we conclude that there is a dominance of S&P over

SSE in terms of both SASD and TASD at the 5 per cent significant level, inferring that

second- and third-order risk averters prefer to invest in the USA stock market rather

than the Chinese stock market. In addition, we also apply the testing procedure by using

maxx |TA
j (x)|. The inference drawn from this approach leads to the same conclusion.

From the results discussed in the above, one may follow the suggestion from Falk and

Levy (1989) and others and conclude that the markets are not efficient and investors are
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not rational. In order to check whether the market is efficient and investors are rational,

in this paper we suggest studying the preference of risk seekers.

5.3 Preference of Risk Seekers

In order to study the preferences of risk seekers between the Chinese and USA stock

markets, we adopt the DSD theory and employ the DSD statistic, TD
j , for risk seekers

as stated in (3.5) for j = 2 and 3 to conduct the analysis. From Table 3, we find that

96.42 per cent of TD
2 is significantly negative and no portion of TD

2 is significantly positive

at the 5 per cent significant level for the whole sample period. This implies that SSE

stochastically dominates S&P in the sense of SDSD, and thus we conclude that second-

order risk seekers prefer SSE to S&P for the whole sample period. Similarly, from Table

3, we find that 98.96 per cent of TD
3 is significantly negative and no portion of TD

3 is

significantly positive at the 5 per cent level for the whole sample period. This implies

that SSE stochastically dominates S&P in the sense of TDSD, and thus third-order risk

seekers prefer SSE to S&P for the whole sample period.

Different from the conclusion drawn in the ASD test in which one could conclude

that risk averters prefer to invest in the USA stock market rather than the Chinese stock

market, our DSD analysis reveals the reverse preference for risk seekers that they are

attracted to the Chinese stock market to maximize their expected utilities. Is there any

inference on market efficiency and rationality from our findings? We will discuss the issue

in next section.

5.4 Robustness Analysis in the Sub-Periods

We turn to investigate the preferences for risk averters and risk seekers in the Chinese

and USA stock markets in each of the sub-periods. We first discuss their relationship in

the sense of the first-order stochastic dominance.

Table 2 indicates that 36.9 per cent, 38.8 per cent, 30.3 per cent, 0 per cent, and 15.9
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per cent of TA
1 are significantly positive in the first, second, third, fourth, and fifth sub-

periods, respectively, and all are occurred in the positive domain. On the other hand, 31.6

per cent, 4.0 per cent, 23.8 per cent, 25.3 per cent, and 0 per cent of TA
1 are significantly

negative for the first, second, third, fourth, and fifth sub-periods, respectively, and all are

occurred in the negative domain. Since the analysis of the FDSD is the same as that of

the FASD, we skip the discussion of the FDSD analysis. From our finding, we notice that

only the first and the third sub-periods (both are in the bull runs) are similar to the ASD

results for the entire period that the results lead us to reject the hypothesis that S&P

stochastically dominates SSE or vice versa in the sense of FSD. Thus, for the first and

third sub-periods, the conclusion drawn from our FSD analysis is the same as that drawn

for the entire period that there is no FSD between S&P and SSE but S&P is preferred to

SSE on the downside risk and SSE is preferred on the upside profits.

For the second sub-period from March 9, 2000 to October 7, 2002, the period after

the burst of internet bubble, investors may expect that the stock market in the USA does

not perform well and the Chinese stock market will be doing better than the USA stock

market. Our FSD analysis supports this argument. From Table 2, we find that 38.8 per

cent of TA
1 are significantly positive in the positive domain whereas 4.0 per cent of TA

1

are significantly negative in the negative domain. One may infer that, same as those

obtained in the first and third sub-periods, there is no FSD between S&P and SSE but

S&P is preferred to SSE on the downside risk and SSE is preferred on the upside profits.

However, if one uses a 5 per cent cut-off point to exclude the possibility of almost SD

(Leshno and Levy, 2002), one could claim that SSE stochastically dominates S&P in the

sense of FSD.

From FSD analysis in the period after the burst of the sub-prime crisis from October

16, 2007 to November 4, 2008, one may recommend investors to invest in the Chinese

stock market but not to invest in the USA stock market when the USA is in a financial
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crisis. However, this may not be true. We turn to conduct our FSD analysis to these

market during the period after the burst of the sub-prime crisis support this argument.

From Table 2, we notice that no TA
1 is significantly positive whereas it possesses 25.3

per cent to be significantly negative, inferring that, surprisingly, the S&P stochastically

dominates SSE in the sense of FSD and thus, investors should invest in the USA stock

market rather than the Chinese stock market during the sub-prime crisis.

Furthermore, one may believe to invest in the USA stock market is better than the

Chinese stock market since the investment is better even during the sub-prime crisis. Our

SD analysis finds that this may not be true either. We make such inference from our SD

analysis in the period during recovery after the burst of sub-prime crisis from November 4,

2008 to May 19, 2011. Table 2 exhibits that 15.9 per cent of TA
1 are significantly positive

whereas none of it is significantly negative. One could conclude that SSE stochastically

dominates the S&P in the sense of FSD and thus, investors should invest in the Chinese

stock market instead of investing in the USA stock market in the bull run during the

recovery of the sub-prime crisis.

However, the situation is not that simple because though we find that SSE stochasti-

cally dominates the S&P in the sense of FASD, our findings indicate that SSE does not

stochastically dominate the S&P in the sense of both SASD and TASD. One may believe

that this result contradicts the hierarchical property for ASD that FASD implies SASD

which, in turn, implies TASD and thus it is recommended that only the lowest dominance

order of ASD is reported. However, our findings show that FASD does not imply SASD

or TASD! We note that there is no contradiction. The hierarchical property does, in fact,

hold for both ASD and DSD mathematically but this does not imply that the hierarchical

property must hold statistically. Our finding in the fifth subperiod shows that it is pos-

sible that FASD does not imply SASD or TASD and thus in this paper we suggest that

academics and practitioners report FSD, SSD, and TSD, in case, say, X stochastically

23



dominates Y FASD, but not SASD and TASD. We suggest to call it X stochastically

dominates Y marginally in the sense of FASD.

6 Inference from our Findings

Without identifying any risk index or any specific model, the SD rules can be used to

determine whether there is any opportunity for arbitrage and whether the markets are

efficient and investors are rational. We begin by examining arbitrage opportunities and

then turn to the questions of market efficiency and investor rationality.

6.1 Inference on Arbitrage Opportunity

Jarrow (1986) and Falk and Levy (1989) claim that if FSD (FASD or FDSD) exists,

under certain conditions, arbitrage opportunities also exist, and investors will increase

their wealth and expected utilities if they shift from holding the dominated asset to the

dominant one. However, Wong, et al. (2008) have shown that if FSD exists statistically,

arbitrage opportunities may not exist, but investors can increase their expected wealth

as well as their expected utilities if they shift from holding the dominated asset to the

dominant one.

To check whether there is any arbitrage opportunity, one can apply the FSD analysis

to the assets for comparison. In our analysis discussed in Section 5.1, although we find

that S&P FSD dominates SSE in the downside returns while SSE FSD dominates S&P

in the upside returns, S&P does not FSD dominate SSE over the entire distribution and

vice versa. This implies that there is no arbitrage opportunity in the USA and Chinese

stock markets over the entire period studied in this paper.

However, in Section 5.5, we find that (1) in the second sub-period from March 9,

2000 to October 7, 2002, the period after the burst of internet bubble, if one adopts a 5

per cent cut-off point to exclude the possibility of almost SD, one could claim that SSE
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stochastically dominates S&P in the sense of FSD; (2) in the period after the burst of

the sub-prime crisis from October 16, 2007 to November 4, 2008, the S&P stochastically

dominates SSE in the sense of FSD; and (3) in the period during recovery from the

sub-prime crisis from November 4, 2008 to May 19, 2011, one could conclude that SSE

stochastically dominates the S&P marginally in the sense of FSD.

Could these findings infer that there are arbitrage opportunities in the USA and Chi-

nese stock markets and these markets are not efficient? We will say, yes, there could exist

some arbitrage opportunities in the USA and Chinese stock markets in some short periods

and we will discuss the issue of market efficiency in the next subsection.

6.2 Inference on Market Efficiency and Rationality

In Section 5.5, in some short periods SSE stochastically dominates S&P in the sense of

FSD, whereas in some other short periods, the first order dominance relationship reverses.

Indeed, these results do infer that there are some arbitrage opportunities in some short

periods of time. However, since there is no FSD for a long period in these markets, we

will say that our FSD findings do not reject that markets are efficient and investors are

rational.

However, in order to further explore whether the market is efficient and investors are

rational, we need to examine the higher order of SD as studied in Section 5.2. If no SASD

is found in the market containing X and Y, this suggests that risk-averse investors are

indifferent between X and Y, so they will not switch X to Y, or vice-versa, to increase

their expected utility. In this situation, we claim that the market is rational and efficient.

Similarly, if no TASD is found in the market containing X and Y, this implies that risk-

averse investors with DARA are indifferent between X and Y. In this situation, we claim

that the market is both rational and efficient.

Nonetheless, Falk and Levy (1989) claim that, given two assets, X and Y, if by switch-
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ing from X to Y (or by selling X short and holding Y long), an investor can increase

expected utility, the market is inefficient. SSD does not imply any arbitrage opportuni-

ties, but it does imply the preference of one asset over another by risk-averse investors.

For example, as we found in Section 5.2, S&P stochastically dominates SSE in the sense

of both SASD and TASD. Thus, one may not make an expected profit by switching from

SSE to S&P, but switching would allow risk-averse investors to increase their expected

utility. In this situation, should we claim that the USA and Chinese stock markets are

inefficient and investors are irrational?

This claim could be made if one believes that the markets only contain risk-averse

investors. However, it is well known that the market could have other types of investors

(see, for example, Friedman and Savage, 1948, Markowitz, 1952, Thaler and Johnson,

1990, Broll et al., 2010, and Egozcue et al., 2011 for more discussion). Under the assump-

tion that the markets could contain more than one type of investors, such as risk averters

as well as risk seekers, one could find that one asset dominates another asset by ASD but

is dominated by that asset by DSD. These are exactly the findings we obtained in this

paper: S&P stochastically dominates SSE in the sense of both SASD and TASD, while

SSE stochastically dominate S&P strictly in the sense of SDSD and TDSD.

Thus, risk averters could prefer to invest in the USA stock market rather than the

Chinese stock market, while risk seekers prefer to invest in the Chinese stock market rather

than the USA market. Then, in equilibrium, the number of trades that risk averters, who

go long in the USA market and/or short sell the Chinese stock market, would match the

number of trades that risk seekers, who go long in the Chinese stock market and/or short

sell the USA market. In this situation, there is no pressure to push up or down the indices

in the USA and Chinese stock markets when both risk averters and risk seekers can attain

what they seek. Under these conditions, we argue that the market remains efficient and

investors are rational.
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At last, we note that, conceptually, market rationality within the SD framework is not

different from the conventional concepts captured by some of the rational asset pricing

models, such as the CAPM. The only difference is that the latter approach defines an

abnormal return as an excess return adjusted to some specific risk measure, while SD

market rationality tests employ the whole distribution of returns. Given the imprecise

knowledge of the best model, the SD approach with fewer restrictions on both investors’

preferences and return distributions seems to help us understand the markets better.

7 Concluding Remarks

There are two basic approaches to the problem of portfolio selection under uncertainty.

One approach is based on the concept of utility theory (see, for example, Markowitz

(1952a), Post and Levy (2005), and the references therein for more information). Several

SD test statistics5 have been developed by using this approach. This approach offers

a mathematically rigorous treatment for portfolio selection. The other is the mean-risk

(MR) analysis.6 In this approach, the portfolio choice is made with respect to two mea-

sures: the expected portfolio mean return and portfolio risk. A portfolio is preferred if it

has higher expected return and smaller risk. There are convenient computational recipes

and geometric interpretations of the trade-off between the two measures. A disadvantage

of the latter approach is that it is derived by assuming the von Neumann-Morgenstern

quadratic utility function and that returns are normally distributed (Feldstein, 1969).

Thus, it cannot capture the richness of the former. In addition, the SD test statistics

are superior to the MR test statistics because the conclusions drawn by these SD test

statistics between the assets being examined could be used by investors to compare their

expected utility on these assets since they do not require investors to possess a quadratic

5see, e.g. Schechtman, et al. (2008) and the references therein for more information.
6See, for example, Leung and Wong (2008) and Bai, el al. (2009, 2012) and the references therein for

more discussion.
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utility function nor any form of the distribution for the assets being analyzed.

We note that Post and Versijp (2007) have developed a new SD test for multiple com-

parisons. Recently, Egozcue and Wong (2010) present a general theory and a unifying

framework for determining the second-order SD efficient set. Further research could in-

clude extending the DD tests to determine the SD efficient set statistically. In addition,

Lam, et al. (2010, 2012) develop a pseudo-Bayesian model to explain some anomalies

such as the short-run underreaction and long-run overreaction. Further research could

also apply the DD tests to explore the short-run underreaction and long-run overreaction

phenomena. In addition, the theory of SD has been widely used to explain well-known

economic and financial phenomena or financial anomalies and used to test for market

efficiency (Lean, et al., 2010; Chan, et al., 2012). It could also be used to assist investors

for decision making.
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Appendix

Proof of Theorem 3.3:

Without loss of generality, we assume Nf = Ng = N in the proof. According to empirical

process theorem7, for any continuous distribution function F (x), we have

√
N(FN(x)− F (x)) −→ B(F (x)),

where FN is the empirical distribution of N iid observations drawn from F and B(·) is

the standardized Brownian bridge on the interval [0, 1].

Recall that

F̂D
j (x) =

1

N(j − 1)!

N∑
i=1

(fi − x)j−1
+ =

1

(j − 1)!

∫ b

x

(t− x)j−1dFN(t) if a ≤ x ≤ b .

Applying the empirical process theorem, for j ≥ 1, we have

√
N(F̂D

j (x)− FD
j (x)) → 1

(j − 1)!

∫ b

x

(t− x)j−1dB(F (t)) if a ≤ x ≤ b.

Because FD
j (x) = GD

j (x) under null hypothesis, and F̂D
j (x) and ĜD

j (x) are independent,

we get

√
N(F̂D

j (x)− ĜD
j (x)) →

√
2

(j − 1)!

∫ b

x

(t− x)j−1dB(F (t)) if a ≤ x ≤ b.

By the law of large numbers, with probability 1, one could easily find that




NV̂ D
FGj

→ 0

NV̂ D
Fj
→ 1

((j−1)!)2

∫ x

a
(t− x)2j−2dF (t)− FD

j (x)2,

NV̂ D
Gj
→ 1

((j−1)!)2

∫ x

a
(t− x)2j−2dG(t)−GD

j (x)2.

Thereafter, under the null hypothesis, we get

N(V̂ D
Fj

+ V̂ D
Gj

) → 2

((j − 1)!)2

∫ b

x

(t− x)2j−2dF (t)− FD
j (x)2

j>1
=

2

((j − 2)!)2

∫ b

x

∫ b

x

(t− x)j−2(s− x)j−2(F (t ∧ s)− F (t)F (s))dtds .

7Readers may refer to Donsker (1952) and Wolfowitz (1954) for more information about empirical
process theorem.

29



Using integration by parts, when j > 1, we have

√
2

(j − 1)!

∫ b

x

(t− x)j−1dB(F (t)) = −
√

2

(j − 2)!

∫ b

x

(t− x)j−2B(F (t))dt .

Hence, when j > 1, we obtain

TD
j (x) → −

∫ b

x
(t− x)j−2B(F (t))dt√∫ b

x

∫ b

x
(t− x)j−2(s− x)j−2(F (t ∧ s)− F (t)F (s))dtds

if a ≤ x ≤ b .

From this expression, we know that the limiting process of Tj is Gaussian with mean 0,

variance 1, and covariance function

rD
j (x, y) =

∫ b

x

∫ y

a
(t− x)j−2(s− y)j−2(F (t ∧ s)− F (t)F (s))dtds√

VD
j (x)VD

j (y)
if a ≤ x, y ≤ b ,

where VD
j (x) =

∫ x

a

∫ x

a
(t−x)j−2(s−x)j−2(F (t∧s)−F (t)F (s))dtds. For the case j = 1, we

have TD
1 (x, y) = B(F (x))√

F (x)−F 2(x)
. The limiting process is also Gaussian with mean 0, variance

1, and covariance function rD
1 (x, y) = F (x∧y)−F (x)F (y)√

F (x)F (y)(1−F (x))(1−F (y))
if a < x, y < b.

2
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Figure 1: Time series plot of SSE and S&P500 from 02/01/1996 to 19/05/2011.
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Figure 2: The modified ASD test statistics and the distribution functions F and G from
02/01/1996 to 19/05/2011
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Note: Tj is the test statistic TA
j (x) defined in (3.2) for j = 1, 2, and 3 with F = FA

1 = S&P and
G = GA

1 = SSE. FA
1 and GA

1 are defined in (2.1).
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Table 2: Results of the modified ASD test statistic for the Risk Averters
02/01/1996-19/05/2011 FASD SASD TASD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 34.92 27.92 0 89.57 0 98.98
Positive Domain(%) 34.92 0 0 0 0 0
Negative Domain(%) 0 27.92 0 89.57 0 98.98
max (|TA

j |) 9.10 7.36 0.68 7.16 1.00 6.20

02/01/1996-09/03/2000 FASD SASD TASD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 36.91 31.59 0 91.29 0 99.32
Positive Domain(%) 36.91 0 0 0 0 0
Negative Domain(%) 0 31.59 0 91.29 0 99.32
max (|TA

j |) 8.35 5.94 0.54 6.35 1.00 5.46

09/03/2000-07/10/2002 FASD SASD TASD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 38.82 4.02 63.98 0 20.21 0
Positive Domain(%) 38.82 0 63.98 0 20.21 0
Negative Domain(%) 0 4.02 0 0 0 0
max (|TA

j |) 4.83 3.59 3.52 1.00 2.14 1.00

07/10/2002-16/10/2007 FASD SASD TASD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 30.34 23.81 0 87.25 0 98.98
Positive Domain(%) 30.34 0 0 0 0 0
Negative Domain(%) 0 23.81 0 87.25 0 98.98
max (|TA

j |) 8.86 7.48 1.04 6.84 0.74 5.42

16/10/2007-04/11/2008 FASD SASD TASD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 0 25.28 0 78.86 0 61.13
Positive Domain(%) 0 0 0 0 0 0
Negative Domain(%) 0 25.28 0 78.86 0 61.13
max (|TA

j |) 2.79 4.39 1.41 3.49 1.39 2.74

04/11/2008-19/05/2011 FASD SASD TASD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 15.94 0 0 0 0 0
Positive Domain(%) 15.94 0 0 0 0 0
Negative Domain(%) 0 0 0 0 0 0
max (|TA

j |) 3.73 2.41 1.00 1.14 1.00 0.56

Note: This table summarizes the modified ASD test results for risk averters. The table reports
the percentage of modified ASD statistics that are significantly negative or positive at the 5%
significance level, based on the critical value generated from a bootstrap method discussed in
Section 4. Tj is the test statistic TA

j (x) defined in (3.2) for j = 1, 2, and 3 with F = S&P and
G = SSE. FASD, SASD, and TASD stand for first-, second-, and third-order ASD,
respectively.
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Table 3: Results of the modified DSD test statistic for the Risk Seekers
02/01/1996-19/05/2011 FDSD SDSD TDSD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 27.92 34.92 0 96.42 0 98.96
Positive Domain(%) 27.92 0 0 0 0 0
Negative Domain(%) 0 34.92 0 96.42 0 98.96
max (|TA

j |) 7.36 9.10 1.35 8.72 1.24 6.92

02/01/1996-09/03/2000 FDSD SDSD TDSD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 31.59 36.91 0 96.95 0 99.46
Positive Domain(%) 31.59 0 0 0 0 0
Negative Domain(%) 0 36.91 0 96.95 0 99.46
max (|TA

j |) 5.94 8.35 0.54 8.06 1.00 6.96

09/03/2000-07/10/2002 FDSD SDSD TDSD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 4.02 43.38 0 0 0 0
Positive Domain(%) 4.02 0 0 0 0 0
Negative Domain(%) 0 43.38 0 0 0 0
max (|TA

j |) 3.59 4.83 2.23 1.63 0.73 1.51

07/10/2002-16/10/2007 FDSD SDSD TDSD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 23.81 30.34 0 96.30 0 98.36
Positive Domain(%) 23.81 0 0 0 0 0
Negative Domain(%) 0 30.34 0 96.30 0 98.36
max (|TA

j |) 7.48 8.86 1.00 8.64 1.00 7.32

16/10/2007-04/11/2008 FDSD SDSD TDSD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 25.28 0 0 0 0 0
Positive Domain(%) 25.28 0 0 0 0 0
Negative Domain(%) 0 0 0 0 0 0
max (|TA

j |) 4.39 2.79 1.53 1.75 1.31 1.09

04/11/2008-19/05/2011 FDSD SDSD TDSD
F =S&P500, G =SSE T1 > 0 T1 < 0 T2 > 0 T2 < 0 T3 > 0 T3 < 0
Total(%) 0 15.94 0 0 0 0
Positive Domain(%) 0 0 0 0 0 0
Negative Domain(%) 0 15.94 0 0 0 0
max (|TA

j |) 2.41 3.73 0.81 2.01 0.74 1.00

Note: This table summarizes the modified DSD test results for risk seekers. The table reports
the percentage of modified DSD statistics that are significantly negative or positive at the 5%
significance level, based on the critical value generated from a bootstrap method discussed in
Section 4. Tj is the test statistic TD

j (x) defined in (3.5) for j = 1, 2, and 3 with F = S&P and
G = SSE. FDSD, SDSD, and TDSD stand for first-, second-, and third-order DSD,
respectively.
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Table 4: Results of ASD and DSD Tests for the Risk Averters and Risk Seekers
01/1996-05/2011 G=S&P500 SSE

F=S&P500 SASD
SSE SDSD

01/1996-03/2000 G=S&P500 SSE
F=S&P500 SASD

SSE SDSD

03/2000-10/2002 G=S&P500 SSE
F=S&P500 FASD/FDSD#

SSE

10/2002-10/2007 G=S&P500 SSE
F=S&P500 SASD

SSE SDSD

10/2007-11/2008 G=S&P500 SSE
F=S&P500 FASD/FDSD*

SSE

11/2008-05/2011 G=S&P500 SSE
F=S&P500

SSE FASD*/FDSD*

Note: Here all the “SD” results are “F” (in the first column) SD “G” (in the first row). *
means SD marginally and # means SD when taking the concept of almost SD, Readers may
refer to the text for more details.
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Figure 3: The modified DSD test statistics and the DSD integrals FD
1 and GD

1 from
02/01/1996 to 19/05/2011
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Note: Tj is the test statistic TD
j (x) defined in (3.5) for j = 1, 2, and 3 with F = S&P and G = SSE.

FD
1 and GD

1 are defined in (2.1).
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