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Abstract

Between the 1760s and 1980s, we have experienced at least three indus-
trial revolutions. We explain such cycles as ergodic chaos and relate it to
the average long-run interest rate and intellectual property protection. Be-
cause innovation dynamics is intrinsically multi-dimensional, we need newly
to develop a structural characterization of multi-dimensional ergodic chaos
suitable for an economic analysis. Introducing such a characterization for the
two-dimensional case, we show that if the monopolistic use of a new inven-
tion lasts eight years, an industrial-revolution-like burst of new technologies
recurs about every one hundred years, given empirically reasonable values of
the determinants of a long-run interest rate.
Keywords: industrial revolutions, chaotic cycles, intellectual properties,

market quality dynamics.
JEL Classi�cation Codes: C62; E32; O41



1 Introduction

It is often said that we are currently in the middle of the third industrial
revolution. This observation leads to a question as to why an industrial rev-
olution, or a period of very fast and fundamental technological progress, has
emerged cyclically just about every one hundred years. On the one hand, the
�rst industrial revolution is often attributed to various institutional factors
(North, 1981). On the other hand, however, the underlying mechanism of
industrial revolution cycles has not yet been studied in the existing literature.
Kondratie¤ (1925, 1935) discovers �fty to sixty year cycles of innovation,

which he regards as a deterministic phenomenon. Calling them long waves,
he explains,

�In asserting the existence of long waves and in denying that they
arise out of random causes, we are also of the opinion that the
long waves arise out of causes which are inherent in the essence
of the capitalistic economy�(see Kondratie¤ (1935, p. 115)).

About 35 years after the start of the third industrial evolution, we now face
its second wave. This is consistent with Kondratie¤�s observation.1

This study intends to explain the coexistence, and in particular frequen-
cies and magnitudes, of industrial-revolution-like cycles and Kondratie¤-like
waves. It has been known that ergodic chaos is a perfect analytical tool to
explain the average frequency (or time average) of waves by a probability dis-
tribution (or space average); see Birkho¤ (1931) and von Neumann (1932).
A di¢ culty is that while innovation dynamics intrinsically involves two state
variables, no characterization of ergodic chaos has been known by which an
economic structure behind two-dimensional ergodic chaos can be explained.
We develop a new characterization for ergodic chaos that makes it possible

to relate two-dimensional innovation cycles to the determinants of an aver-
age long-run interest rate as well as intellectual property protection. Judd
(1985) and Deneckere and Judd (1992) build models in which innovation is
completed within a single period and in which innovation dynamics may fol-
low single-dimensional ergodic chaos of Lasota and Yorke (1973). Because of
the atemporality of innovation, however, innovation dynamics becomes inde-
pendent of the long-run interest rate in their models, which makes it di¢ cult
to characterize the frequency of innovation cycles in an economically mean-
ingful manner. Because innovation is an intrinsically intertemporal activity,

1Many people, including policymakers, view the current technogical progress based on
the new use of data as the fourth industrial revolution; see, for examaple, Peccarelli (2020).
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it is naturally guided by interest rates (or rates of return to investment in
innovation), which this study highlights.
Our two-dimensional chaos is an extension of what may be called con-

strained chaos, which emerges from the interaction between unstable interior
dynamics in the feasible set of an economy and the boundary of the feasi-
bility constraint; see Nishimura and Yano (1994, 1995a, 1995b).2 While the
existing studies on constrained chaos have been based on a single-dimensional
system, the present study extends it in a two-dimensional system. In this
system, what may be called a �core�of the feasible set exists in which force
is to push the state variable vector out of it; once the state variable vector
leaves the core, it is pushed to the boundary of the feasible set from which
dynamics in the core resumes. Since, on the boundary, the value of one
state variable determines that of the other, double-period dynamics in the
constrained system may follow a single-dimensional system. We prove this
double-period system is expansive and unimodal system, which Lasota and
Yorke (1973) show ergodic chaos.
Our model captures a phase shift from a period of no innovation to that

of positive innovation, which we call an innovation take-o¤. Along an equi-
librium path, three patterns of innovation take-o¤s will alternate irregularly.
The frequency of take-o¤s in each pattern depends on four factors, the dis-
count factor of future utilities, the growth rate of total factor productivity,
that of labor productivity, and the length of time for which a new technology
can be used monopolistically. These parameters jointly determine the steady
state interest rate.
A take-o¤ in the �rst pattern is larger than any take-o¤ in the second

and third patterns. Our simulation shows that, along an equilibrium path,
the �rst pattern take-o¤ occurs about every one hundred years if parame-
ter values are consistent with historical values or, for example, if we set the
annual TFP growth rate around 1.7 percent, the annual per-capita produc-
tivity growth rate around 1.6 percent, the steady state annual interest rate
between 1.9 percent to 2.6 percent, and the length of a period in which a
new technology is monopolistically used about 8 years. With a probability
about one quarter to one third, it is followed by an even larger second wave

2Those studies are concerned with the existencee of an economic stucture in which an
optimal path obeys chaotic dynamics; see Mitra and Khan (2005) for a similar structural
approach. In contrast, Boldirn and Montrucchio (1986) and Deneckere and Polikan (1986)
show the possibility of chaotic optimal dynamics by demonstrating the exististence of an
optimal growth model for a given chaotic system. For early studies in a broader context,
see Benhabib and Dei (1980) and Grandmont (1886), who are concerned with chaotic
economic dynamics, and Scheinkman and LeBaron (1989), who study chaos in �nancial
markets.

2



about 30 years later.
Our result is related to Matsuyama (1999, 2001), who incorporate the

accumulation of physical capital into Judd�s model. He demonstrates that
innovation takes place along with capital accumulation; also see Matsuyama,
Sushko, and Gardini (2014), who study the international interaction of chaotic
business cycles in a similar basic setting. The possibility with which single-
dimensional chaos emerges in his model has been studied extensively.3

In what follows, we will specify our model by introducing time in inno-
vation into the model of Judd (1985) and characterize the two-dimensional
constrained chaos. In Section 3, we will apply this result to obtain a suf-
�cient condition under which our model of innovation dynamics is in fact
ergodically chaotic. In Section 4, we relate the length of a period in which
inventions are protected to the frequency of innovation take-o¤s in a model
with parameter values consistent with real-world data.

2 Time in Innovation Dynamics

In Judd (1985), innovation and di¤erentiated goods production are assumed
to take place within a single period. This study introduces time in innovation
by assuming new technologies will become available one period after labor
input is made for invention.
Let Nt 2 R+ be the number of technologies existing in period t: Assume

that �vtj and �Zt are labor inputs in period t, respectively, to supply vtj 2 R+
units of product j in period t and to invent Zt 2 R+ technologies by which
new di¤erentiated products can be produced from period t + 1: Then, the
labor market clearing condition isZ Nt

0

�vtjdj + �Zt = Et; (1)

where Et is the amount of e¤ective labor in period t; the number of tech-
nologies available for production in period t+ 1 is

Nt+1 = Nt + Zt: (2)

The rest of the model is much the same as in Judd (1985). That is, the
amount e¤ective labor grows at a constant rate, Et = �t �E: The perfectly

3See Mitra (2001), Mukherji (2005), Gardinia, Iryna, and Naimzada (2008), Yano,
Sato, and Furukawa (2011), and Deng and Kahn (2018).
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competitive retail sector produces the �nal consumption good, X; from the
existing di¤erentiated products by

Xt =

�Z Nt

0

vtj
1��dj

� 1
1��

; 0 < � < 1: (3)

The representative consumer chooses consumption stream Xt by maximizing

U =
1X
t=1

�t�1 lnXt, 0 < � < 1; (4)

subject to the standard budget constraint. The �rst order condition of opti-
mization is

Xt+1=Xt = �(1 + rt); (5)

where rt is the interest rate in period t: Given (4); the inverse demand for
the product may be expressed as

ptj = p(vtj;Xt) = (Xt=vtj)
�: (6)

The license for a new invention is traded at Pt; its purchaser can use the
the invention monopolistically only for one period. The licence market is
perfectly competitive. Given that j is a new product, the price of a license
is equal to, or above, the monopolistic pro�t, i.e,

(p(vtj;Xt)� wt�)vtj � Ptj, (7)

where wt is the wage rate. If j is a product invented in the past, it is traded
perfectly competitively at

ptj = �wt. (8)

Let

xt =
Nt
��t

(9)

and

yt =
1

�

�
Nt
��t

+
Zt
��t

�
: (10)

Our model boils down to the following system with two state variables, xt
and yt :We may prove that our model boils down to8><>:

xt+1 = yt

yt+1 = max

(
1
�
yt;

1
�
yt +

1
�

�E�(1��)1=��1
�

(1��)1=��1(�yt�xt)+xt
(1��)1=�(�yt�xt)+xt

�yt�
��

(1��)1=��1(�yt�xt)+xt
(1��)1=�(�yt�xt)+xt

+1

�
(1��)1=��1

)
;

(11)

see Appendix A for a derivation:
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3 Two-Dimensional Constrained Chaos

Given a solution to a two-dimensional system, (xt+1; yt+1) = f(xt; yt); we
call (y2� ; y2(�+1)); � = 0; 1; 2; :::; a double-period solution. In Figure 1A, a
double-period solution to (11) is plotted for

(�; �; �; �E=�) = (1:12; 0:05; 0:94; 10): (12)

It appears to follow a unimodal and expansive system.4 Figure 1B shows
the probability with which y2� ; � = 0; 1; 2; :::; falls in each interval; this
distribution is independent of initial states.
Lasota and Yorke (1973) show that if a single-period system is unimodal

and expansive, it is ergodic chaos. That is, the ergodic theorem of Birkho¤
(1931) and von-Neumann (1932) holds, or that the relative frequency with
which y2� falls in each Borel set can be described by a probability distribution
independent of initial states.

3.1 Analytical Characterization

Figure 1 may be explained by the fact that the domain of system (11) is
constrained; yt � 1

�
xt: Think of a two-dimensional unconstrained system;

F : R2 ! R2;
(xt+1; yt+1) = F (xt; yt) = (yt; Y (xt; yt)); (13)

and the associated constrained system

(xt+1; yt+1) = (yt;maxfA(yt); Y (xt; yt)g) = f(xt; yt): (14)

Assume:

Assumption 1 For almost every (x; y), jjF t(x; y)jj ! 1 as t!1:

Assumption 2 Function A satis�es y � " > A(y) with some " > 0 and
A(0) = 0:

Assumption 3 Equation Y (x; y) = A(y) can be solved for y = B(x); which
is continuous and monotone decreasing. Moreover, y � B(x) if and
only if Y (x; y) � A(y):

4A system is unimodal and expansive if its graph consists of two parts with one of the
slopes uniformly larger than 1 and the other uniformly smaller than �1:
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Let
C = f(x; y) : y � A(x) and Y (x; y) � A(y)g: (15)

The following two conditions are crucial:

1: yt+1 = A(yt) implies Y (yt; yt+1) � A(yt+1); (16)

2: yt+1 = A(yt) and Y (yt+1; yt+2) � A(yt+2) imply Y (yt+2; yt+3) � A(yt+3):
(17)

Under these conditions, a solution goes in and out of subset C; which may be
called the �core�of nonlinear dynamics. If yt+1 = A(yt); by (16), (yt; yt+1) 2
C; which implies yt+2 = r(yt+1) = R(yt); where

r(y) = Y (A�1(y); y) (18)

and
R(y) = Y (y; A(y)): (19)

If (yt+1; yt+2) =2 C; Y (yt+1; yt+2) < A(yt+2): Thus, by (14), yt+3 = A(yt+2);
which implies, by (16), yt+4 = R(yt+2): If, instead, (yt+1; yt+2) 2 C, Y (yt+1; yt+2) �
A(yt+2); thus, by (14) and yt+1 = A(R�1(yt+2)); yt+3 = G(yt+2) with

G(y) = Y (A(R�1(y)); y): (20)

If, moreover, (yt+2; yt+3) 2 C; by (17), Y (yt+2; yt+3) � A(yt+3); thus, yt+4 =
L(yt+2) = l(yt+3), where

L(y) = Y (y;G(y)) (21)

and
l(y) = Y (G�1(y); y): (22)

By characterizing (16) and (17); our main theorem provides a su¢ cient
condition under which double-period solutions to (14) follow y2(�+1) = T (y2� )
with

T (y) = min
y
fL(y); R(y)g; (23)

which is expansive and unimodal. Let

S(y) =

�
G(y) if L(y) � R(y)
A(y) if L(y) � R(y) : (24)
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Theorem 1 Let yH satisfy A(yH) = B(yH):Moreover, let yC = argmaxx T (x);
ymax = maxx T (x); and yL = R(ymax): Suppose that the following three con-
ditions are met.
Condition 1: L0(x) > 1 and R0(x) < �1;
Condition 2: yC < ymax < yH and yL < L(yL);
Condition 3: If B(x) � y < yH and R(y) < B(A(y)); it holds that

G(R(y)) < B(R(y)) (25)

and
L(R(y)) � B(G(R(y))): (26)

Then, the solution, (xt; yt); t = 0; 1; :::; to the original dynamical system,
(14); from (x0; y0), B(x0) < y0 < yH ; follows an ergodically chaotic system
on [yL; ymax]2 �

x2(�+1); y2(�+1)
�
= (S(y2� ); T (y2� )) : (27)

In order to prove the theorem, we �rst obtain a su¢ cient condition under
which B(xt) < yt < yH implies yt+2 = R(yt) and yt+4 = L(yt+2):

Lemma 1 Suppose that an equilibrium path (xt; yt); solving system (11), sat-
is�es the following conditions:

B(xt) � yt < yH ; (28)

yt+2 < B(xt+2) < yH ; (29)

yt+3 < B(xt+3) < yH : (30)

If that R�1 exists, the equilibrium path satis�es (xt+2; yt+2) = (A(yt); R(yt))
and (xt+4; yt+4) = (G(yt+2); L(yt+2)):

Proof. Let yt satisfy (28). Then, B(xt; yt) � 0: Thus, by (11),

yt+1 = A(yt) and xt+1 = yt: (31)

Since B and A are, respectively, decreasing and increasing and intersect each
other at yt, yt < yH implies yt+1 < B(xt+1): Since this implies Y (xt+1; yt+1) >
A(yt+1); by yt+1 = A(yt) and (11), we have

yt+2 = Y (yt; A(yt)) and xt+2 = A(yt); (32)
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which implies yt+2 = R(yt): Since yt+2 < B(xt+2) < yH by (29), similarly, we
have

yt+3 = Y (yt+1; yt+2) and xt+3 = yt+2; (33)

which implies xt+4 = yt+3 = G(yt+2): Moreover, since yt+3 < B(xt+3) < yH
by (30),

yt+4 = Y (yt+2; yt+3) and xt+4 = yt+3; (34)

which implies yt+4 = L(yt+2) by yt+3 = G(yt+2):

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Condition 1, ymax = R(yC) = L(yC): Since
R0 < �1; ymax = R(yC) implies yC > R(ymax) = yL: Since yL < L(yL)
by Condition 2, T (y) = L(y) on [yL; yC ] and T (y) = R(y) on [yC ; ymax]:
Moreover, R([yC ; ymax]) = [yL; ymax] and L([yL; yC ]) � [yL; ymax] by yL <
L(yL): This implies that T (x) is a function on [yL; ymax] onto itself. Thus, by
Lasota and Yorke�s theorem, T is an ergodically chaotic dynamical system
on [yL; ymax]:
Suppose yC � B(xt) � yt < yH for an arbitrary t: As is shown in the

proof of Lemma 1, this implies (xt+2; yt+2) = (A(yt); T (yt)): Since ymax is
achieved at yC ; by Condition 2,

yt+2 = R(yt) = T (yt) � ymax < yH :

Either yt+2 � B(xt+2) of yt+2 < B(xt+2): If yt+2 � B(xt+2); by (25),

yt+4 = L(yt+2) and xt+4 = A(yt+2):

If, instead, that yt+2 < B(xt+2); R(yt) < B(A(yt)): By Condition 3, there-
fore, yt+3 < B(xt+3) and yt+4 < B(xt+4): Thus, by Lemma 1, (xt+4; yt+4) =
(A(yt+2); T (yt+2)):
Finally since yC � B(xt+4) � yt+4 < yH by (26), the above process

repeats. Thus, (xt+2� ; yt+2� ) = (S� (yt); T
� (yt)) for all � if (x0; y0) = (x; y)

and yC � B(x) � y < yH :

3.2 Linear Example

Think of the following example:

f : xt+1 = yt and yt+1 = maxfayt;�bxt � dyt + eg: (35)
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Then, functions B; r; R; G; L and l are given as follows:

B : y = � b

d+ a
x+

e

d+ a
; (36)

r : yt+1 = �(d+
b

a
)yt + e; (37)

R : yt+1 = �a(d+
b

a
)yt�1 + e; (38)

G : yt+2 = �
�
d� ba

b+ da

�
yt+1 � ba

�
e

b+ da

�
+ e; (39)

L : yt+3 =

�
d

�
d� ba

b+ da

�
� b
�
yt+1 + dba

�
e

b+ da

�
� de+ e; (40)

l : yt+3 = �
"
d� b

d� ba
b+da

#
yt+2 + e

��
ba

b+ da

�
� 1
�"

b

d� ba
b+da

#
+ e: (41)

Suppose this example satis�es the conditions of Theorem 1. Then, func-
tions B; r, R; G; L; and l have graphs shown in Figure 2. Let yC � yt�1 �
ymax and yt�1 > B(yt�2); which implies yt = ayt�1. Since yt = ayt�1 �
B(yt�1); yt+1 = r(yt): If yC � yt�1 < yE; yt+1 = r(yt) > B(yt); thus,
yt+2 = ayt+1 � B(yt+1), and yt+3 = r(yt+2) = R(yt+1): If yE � yt�1 � ymax,
yt+1 = r(yt) � B(yt), which implies yt+2 = G(yt+1) and yt+3 = l(yt+2) =
L(yt+1): In short, if yC � yt�1 � ymax and yt�1 > B(yt�2); yt+1 = T (yt�1)
and yt+3 = T (yt+1): Since L0 > 1 and R0 < �1; T is expansive and unimodal.
Since the graph of T lies above line B for yL � y � ymax, and since the graph
of line A lies below line B for yL � y � ymax; the process repeats itself.
Theorem 1 captures this fact in a general setting to characterize our

nonlinear system, (11).

4 Ergodically Chaotic Innovation Dynamics

In our model of innovation dynamics, double-period dynamics is described
by speci�c functions: That is, with � = (1� �)1=��1 and � = (1� �)1=�,

B�(x) =
1

2��

�
�((1� �)x�

�E��

�
��)

+

s�
(1� �)x�

�E��

�
��

�2
+ 4

�E��

�
��(1� �)x

9=; ; (42)
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see Appendix B for a derivation. Moreover,

R�(y) = �
1

�2

�
1

(�� + 1)�
� 1
�
y +

1

�

�E�
�

�� + 1
; (43)

L�(y) =
1

�
G�(y) +

1

�

�E��
�

�(�G�(y)�y)+y
�(�G�(y)�y)+y �G�(y)

���� �(�G�(y)�y)+y
�(�G�(y)�y)+y + �

; (44)

G�(y) =
1

�
y +

1

�

�E��
�

�(�y� 1
�
R�1� (y))+ 1

�
R�1� (y)

�(�y� 1
�
R�1� (y))+ 1

�
R�1� (y)

� y

����
�(�y� 1

�
R�1� (y))+ 1

�
R�1� (y)

�(�y� 1
�
R�1� (y))+ 1

�
R�1� (y)

+ �
: (45)

The initial condition is

�x = �N=� and �y =
1

�
( �N=� + �Z=�): (46)

The equilibrium dynamical system, (11), has a unique �xed point,

y�S =

�E��
�

(�� 1)��� + � (�� 1) + 1 : (47)

The next proposition implies that, due to Theorem 1, our model of inno-
vation dynamics, (11), is ergodically chaotic if � > 0 is su¢ ciently small; see
Appendix C for a proof.

Proposition 1 De�ne T� and y�max as in Theorem 1: Let (xt; yt) be the so-
lution to the two-dimensional equilibrium system (11) from (x0; y0) = (�x; �y)
satisfying y�C < �y < y

�
max and �y > B�(�x): There is �

0 > 0 such that 0 < � < �0

implies that T� : [y�S; y
�
max] ! [y�S; y

�
max] is expansive and unimodal and that

the double-period solution y2� ; � = 0; 1; 2; :::; follows y2(�+1) = T�(y2� ) if and
only ifvuut� (e� 1)2 +

q
(e� 1)4 + 4 (e� 1)3

2
� 1:103 < � <

p
e� 1 = 1:310 (48)

4.1 Three Patterns of Take-o¤s

In the rest of this section, we focus on the case in which (48) holds and in
which � > 0 is su¢ ciently small. In that case, the graph of T� in Proposition
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1 has essentially the same structure as that in Figure 2. Drop subscripts and
superscripts, �; from functions and variables.
If yt = A (yt�1) ; no innovation occurs in period t � 1: If, subsequently,

yt+1 = r(yt) = R(yt�1); active innovation takes place in period t: This phase
shift, from a period of no innovation (period t�1) to that of active innovation
(period t); may be called an innovation take-o¤. Innovation take-o¤s emerge
in three patterns of dynamics. Let yE = R�1(yC) and yD = R�1(yE):

Pattern 1: Let yC � y�1 � yD: Then y�1+1 = A(y�1); y�1+2 = r(y�1+1):

Pattern 2: Let yE � y�2 � ymax: Then y�2+1 = A(y�2); y�2+2 = r(y�2+1);
y�2+3 = G(y�2+2); y�2+4 = l(y�2+3); y�2+5 = A(y�2+4); and y�2+6 = r(y�2+5):

Pattern 3: Let yD � y�3 � yE: Then y�3+1 = A(y�3); y�3+2 = r(y�3+1);
y�3+3 = A(y�3+2); y�3+4 = r(y�3+3); y�3+5 = A(y�3+4) and y�3+6 = r(y�3+5):

If yC � yt � yD for some t = � 1; a Pattern 1 take-o¤ occurs in period t+ 1.
The equilibrium path will immediately move to yE � yt+2 � ymax in period
t + 2 = � 2; from which a Pattern 2 process starts. Six periods later, t + 7;
the equilibrium falls either yD � yt+7 � yE or yC � yt+7 � yD: In the former
case, a Pattern 3 process starts, in which a period of no innovation and that
of positive innovation alternate every other periods for a certain number of
times. It will eventually fall back into yC � y�1 � yD; from which a Pattern
1 process restarts.

4.2 Magnitudes of Take-o¤s

The magnitude of a take-o¤ in period t may be measured by the growth rate
of di¤erentiated products in period t, gt = Nt+1=Nt = �yt=yt�1: Since, by
(10), gt = �R(yt�1)=A(yt�1), gt is decreasing in yt�1: Moreover, since yC <
yD < yE < ymax; take-o¤s in Pattern 1, y�1+2=y�1+1; are larger than those in
Patterns 2 and 3, while second-period take-o¤s in Pattern 2, y�2+2=y�2+1; are
smaller than those in Patterns 1 and 3.

4.3 Second Wave

As is shown below, a Pattern 1 take-o¤, y�1+2=y�1+1; may be followed by even
a larger innovation wave four periods later, y�2+6=y�2+5.

Proposition 2 Let 
(y) = �R(y)=A(y) and g(y) = �L(y)=G(y): Denote
as yF the y satisfying g(R(R(y))) = 
(y): In addition to the hypothesis of

11



Theorem 1, suppose L0(y) > L(y)=y. Then, yC < yF < yD; and for any
y 2 (yF ; yD) 6= �;


(y) < g(R(R(y))): (49)

Proof. Since R0 < �1; 
0 < 0: Since G0 < 0 and L0 > �1; g0R0R0 > 0: This
implies (49).

5 Frequency of Industrial Revolution Cycles

Assume that an industrial revolution is captured in our model by a Pattern
1 take-o¤, which is larger than any other take-o¤ in Patterns 2 and 3; a
Pattern 1 take-o¤ starts with yt 2 [yC ; yD]: As is shown above, a Pattern 1
take-o¤, which is larger than any take-o¤ in Patterns 2 and 3, starts with
yt 2 [yC ; yD]: Since T is ergodic chaos, by von-Neumann-Birkho¤�s theorem,
we may calculate the average frequency with which an equilibrium path will
fall in this interval; [yC ; yD]: Here, we will simulate this frequency for di¤erent
parameter values. We will also simulate the probability with which a Pattern
1 take-o¤ is followed by an even larger innovation wave.
The average long-run real interest rate may be identi�ed with the steady

state interest rate, which is

ro =
�1=(n(1��))

�1=n
� 1; 5 (50)

per year, where n is the length (in years) of a single period in the model.
Borio, Dysyatat, Jeselius, and Rungchaoenkitkul (2017) report that from the
1870s through 2010, except several brief periods, the long-run interest rate
was about ro = 2:5%, although it has been lower since 2006 and was lower
during the two world war periods, or about ro = 2%. These �ndings more or
less agree with Schmelzing (2000), tracking the long-run interest rate since
the early 14th century. For our simulation, we adopt ro 2 [1:9%; 2:6%].
Parameter �o = �1=n is the annual growth rate of labor productivity.

According to Maddison (2010), the total Western European per capita GDP
grew at about 1:6 percent annually (�o = 1:016) from 1820 through 2008.
In the steady state, by (50), (5) impliesXt+1=Xt = �

1=(1��), which may be
thought of as the growth rate of total factor productivity (TFP); the annual

5See Appendix D for a derivation.
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rate is �1=(1��)o : Shackleton (2013) shows that in the U.S., the average annual
TFP growth rate was between 1.6% to 1.8% (�1=(1��)o 2 [1:016; 1:018]) over
the period from 1870 through 2010.
If �o = 1:016 and �

1=(1��)
o = 1:017; � = 0:056: By (50), �1=(1��)o = 1:017

and ro = 1:024 imply the annual discount factor is �o = �1=n = 0:993:
The frequency of innovation waves do not respond much to a change in the
discount factor, �:
With these considerations, we �x �o = 0:993 and � = 0:05 and calculate

the average frequency of Pattern 1 take-o¤s for n = 4 years through 20 years
and ro 2 [1:9%; 2:6%]; which implies �o = 1:011% to 1:018%:
As Table 1 shows, the frequency is sensitive to a change in the length of

a single period, n. If we set n = 8 years, a Pattern 1 take-o¤, y�1+2=y�1+1;
has several key features of the past industrial revolutions.
First of all, a Pattern 1 take-o¤ is larger than any other take-o¤s in

Patterns 2 and 3. Moreover, the average frequency of Pattern 1 take-o¤s is
about once in 116 years if ro = 1:9%; in 111 years if ro = 2%, and 104 years if
ro = 2:6%: These are consistent with the facts that the past three industrial
revolutions were about one hundred years apart.
Moreover, if n = 8; the second big wave and a Pattern 1 take-o¤, y�2+4=y�2+3 =

y�1+6=y�1+5 and y�1+2=y�1+1; are 32 years apart (or four periods). For the
third industrial revolution, as is noted above, the �rst wave came in the
middle of the 1980s whereas the second wave came, with the introduction of
bigdata, IOT, AI, and blockchain, in the middle of the 2010s. For the second
industrial revolution, the �rst wave came in the 1850s and the second wave,
with the extensive use of electric power, in the 1890s.
By Proposition 2, we may calculate the probability with which the second

wave, y�2+4=y�2+3; is larger than the �rst take-o¤, y�1+2=y�1+1:. Table 2
reports the results for the case in which n = 8 and ro 2 [1:019; 1:026]. The
results show that the probability is between 22% to 34%.

6 Conclusion

Innovation dynamics is intrinsically multi-dimensional, as shown in our model.
We have developed a new characterization for two-dimensional chaos and
shown that the coexistence of industrial revolution cycles and shorter Kon-
dratie¤ waves may be explained as a two-dimensional chaos. Provided that
parameter values set consistently with the real-world average long-run in-
terest rate, TFP growth rate, and labor productivity growth rate, a big in-
dustrial take-o¤ emerges about every one hundred years if the monopolistic
control of a new invention is assumed to last for above eight years.
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Appendix A: Derivation of (11).
In equilibrium, the cost of an invention, wt�; cannot exceed the present value
of the invention, Pt+1=(1 + rt); which gives rise to, by (7),

� �
�(pMt+1 � �wt+1)vMt+1

(1 + rt)wt
= ���

�
�wt+1
1��

�1�1=�
Xt

wt
(51)

where equality holds if Zt > 0: Since

wt =
1

�

 
Nt�1 +

�
1

1� �

�1�1=�
Zt�1

! �
1��

(52)

and

Xt =
�E�t � �Zt

�1�1=�
�
Nt�1 +

�
1
1��
��1=�

Zt�1

�
w
�1=�
t

; (53)

(51) may be written as a dynamical system of Nt and Zt: This may be
transformed into (11) by using (9) and (10).

Appendix B: Derivation of (42).
Note that Y (x; y) = A(y) in Assumption 3 holds if and only if b�(x; y) = 0;
where

b�(x; y) = Y (x; y)� A(y) (54)

and, by (11) and (14),

b�(xt; yt) =
1

�

�E��
�

�(�yt�xt)+xt
�(�yt�xt)+xt � yt

���� �(�yt�xt)+xt
�(�yt�xt)+xt + �

: (55)

Thus, b�(x; y) = 0 if and only if

x = x1(y) + x2(y) (56)

where

x1(y) =
�
�
�E��
�

�2
���
1��

1��
1��

(1� �)y � �E��
�
(1� �)

(57)

and

x2(y) = �
��

1� � y + �
�E��

�

� � �
(1� �)2 : (58)
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This implies that, in the x-y space, the graph of x = x1(y) + x2(y) is the
horizontal sum of a downward sloping rectangular hyperbola, x = x1(y); and
a downward sloping line, x = x2(y). Since x = x1(y) is downward sloping
and asymptotic to the horizontal line y =

�E��
�

1��
1�� , for x � 0; the y satisfying

(56) is uniquely determined. Therefore, Y (x; y) = A(y) determines a unique
y for x � 0; which is y = B�(x); given by (42).

Appendix C: Proof of Proposition 1.
Since this proposition is proved for a range of su¢ ciently small �; it is desir-
able at the outset to extend the domain of T� : [y�S; y

�
max] ! [y�S; y

�
max] to an

interval that is independent of � and contains [y�S; y
�
max] for any su¢ ciently

small �: Towards this end, focus on �, 0 < � � 1=2: Note that, as � ! 0;

� ! 1=e and � ! 1=e; (59)

where e is the base for natural logarithm. Moreover, 0 < � � 1=2 implies

1=e < � � 1=2 and 1=4 < � � 1=e: (60)

Let y�H be the x-axis value of the intersection between curves A and �B�; i.e.,
�B�(y

�
H) = A(y

�
H): It is easy to check

y�H =
�E���

�
: (61)

We may prove the following:

Lemma 2

�yS �
1

e(e (�� 1) + 1)
�E�

�
< y�S < y

�
H <

�

2

�E�

�
� �yH : (62)

Proof. The �rst and third inequality follows from (60). The second inequal-
ity follows from

A(y�S) < y
�
S < �B�(y

�
S): (63)

In what follows, we restrict the domain of T� to the closed interval [�yS; �yH ];
which is independent of �: In order to prove Theorem 1; by Theorem 1, it
su¢ ces to prove that Conditions 1, 2 and 3 of Theorem 1 is met.
In the next two lemmas, we will obtain conditions under which Condition

1 of Theorem 1 (L0� > 1 and R
0
� < �1) is satis�ed.
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Lemma 3 There is �0 > 0 such that 0 < � � �0 implies R0� < �1 on [�yS; �yH ]
if and only if

e� 1 > �2: (64)

Proof. This follow from (43) and (59).

Lemma 4 There is �0 > 0 such that 0 < � � �0 implies G0� < �1 and L0� > 1
on [�yS; �yH ] if and only if

e� 1 > �: (65)

Proof. Let yt+1 = 1
�
R�1� (yt+2): Then, (43) implies

yt+1 = �
� (�� + 1) �

1� (�� + 1) �yt+2 +
�E�
�

1� (�� + 1) : (66)

By de�nition, yt+3 = G�(yt+2) and yt+4 = L�(yt+2) are given by the the
system of equation (66) and the following equations.

yt+3 =
1

�

�E��
�
zt+1 � yt+2

���zt+1 + �
+
1

�
yt+2; (67)

yt+4 =
1

�

�E��
�
zt+2 � yt+3

���zt+2 + �
+
1

�
yt+3; (68)

zt+1 =
� (�yt+2 � yt+1) + yt+1
� (�yt+2 � yt+1) + yt+1

: (69)

zt+2 =
� (�yt+3 � yt+2) + yt+2
� (�yt+3 � yt+2) + yt+2

; (70)

This implies yt+1; yt+3 yt+4; zt+2; and zt+4 satisfy (66), (67), (68), (69), and
(70) if and only if yt+2 = R�(yt) and yt+4 = L�(yt+2):
Then, zt+1; zt+2; yt+3; yt+4 and yt+1 may be thought of as functions of

yt+2: By di¤erentiating (66) through (70) with respect to yt+2; we obtain the
following:

y0t+1 = �
�2(�� + 1)�

1� (�� + 1)� ;

y0t+3 =
1

�

(
�E��
�
+ ���yt+2)z

0
t+1

�(��zt+1 + 1)2
� 1

�

�
1

���zt+1 + �
� 1
�
;
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y0t+4 =
1

�2

�
1

���zt+2 + �
� 1
�2

� 1

�2

�
1

���zt+1 + �
� 1
�
(
�E��
�
+ ���yt+2)

�(��zt+1 + 1)2
z0t+1

+
1

�

(��yt+3 +
�E��
�
)

�(��zt+2 + 1)2
z0t+2;

z0t+1 = �(� � �)
yt+1 � yt+2y0t+1

(� (�yt+2 � yt+1) + yt+1)2
;

z0t+2 = �(� � �)
yt+2y

0
t+3 � yt+3

(� (�yt+3 � yt+2) + yt+2)2
:

By yt+2 2 [�yS; �yH ]; the lemma follows from (59).

In the next two lemmas, we will obtain conditions under which Condition
2 of Theorem 1 (ymax > yC and yL < L(yL)) is satis�ed.

Lemma 5 There is �0 > 0 such that if 0 < � < �0; y�C 2 [�yS; �yH ] and
y�max 2 [�yS; �yH ]:

Proof. By Lemmas 4 and 3, y�C is determined by R�(y
�
C) = L�(y

�
C) = y

�
max:

Then, by (20), (45), (44), and (59), y�C ! E�
e�
and y�max ! E�

e�
(�e� (e� 1))

as � ! 0: Thus, the lemma holds for y�C and y
�
max:

Lemma 6 Suppose condition (64) is satis�ed. Then, there is �0 > 0 such
that 0 < � � �0 implies L�(y�L) > B�(G�(y�L)) > y�L if and only if

� >

vuut� (e� 1)2 +
q
(e� 1)4 + 4 (e� 1)3

2
: (71)

Moreover, if (65) and (71) are met, there is �0 > 0 such that 0 < � � �0

implies y�max > y
�
C :

Proof. By Lemmas 4 and 3, we may choose �0 in such a way that 0 < � � �0
implies L0� > 1; G0� < �1 and R0� < �1 on [�yS; �yH ]: Thus, y�C = yt+2;
R(y2) = L�(y2) = yt+4; and y�L = R�(y4) = yt+6 satisfy the following:

yt+4 = �
1

�2

�
1

��� + �
� 1
�
yt+2 +

1

�

�E�
�

�� + 1
; (72)
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yt+6 = �
1

�2

�
1

��� + �
� 1
�
yt+4 +

1

�

�E�
�

�� + 1
: (73)

Thus, yt+1; yt+2; yt+3, yt+4; yt+6; zt+1 and zt+2 are determined by the system
of equations (66), (67), (68), (69), (70), (72), and (73). Moreover, L�(y�L) is
determined by

yt+8 = �
1

�2

�
1

��� + �
� 1
�
yt+6 +

1

�

�E�
�

�� + 1
: (74)

Boundary equation (56) with (57) and (58) shows that, as � ! 0; B�(xt)!
�B =

�E�
e�
uniformly in xt 2 [�yS; �yH ]: Thus, if and only if there is " > 0 such

that yt+8 = L�(yt+6) >
�E�
e�
+ " and

�E�
e�
� " > yt+6 for any �; 0 < � � �0; it

holds that L�(yt+6) > B(G�(yt+6)) > yt+6:
In order to prove this, take the limit case of � = 0: Since � = � in the

limit case, by (69) and (70), zt+1 = zt+2 = 1: By using this fact, we may
solve the system of (68) and (72) to obtain yC = yt+2 =

E�
e�
: By this together

with (73) and (74), in � = 0; we have

yt+6 =
�E��

�

 
1

�4

�
1

�
� 1
�2
� 1

�3

�
1

�
� 1
�
1

�
+
1

�

1

�

!

This implies yt+6 �
�E��
�
< 0; given (64) and (71). Moreover,

yt+8 =
1

�2

�E�

�e
((e�� (e� 1)e)

+(e� 1)2
�
1

�4
�
e�3 � (e� 1) e�+ (e� 1)2

��
:

Thus, yt+8 >
�E�
e�
if and only if

(�� (e� 1))
�
�4 + (e� 1)2 �2 � (e� 1)3

�
< 0:

Given (65), this implies that there are �0 > 0 and " > 0 such that yt+8 =
L�(yt+6) >

�E�
e�
+ " for any �; 0 < � � �0:

The latter half of the lemma directly follows from L0� > 1; L�(y
�
L) > y

�
L

and the de�nitions of y�C and y
�
max: This establishes the lemma.

Proof. We are now ready to complete the proof of Proposition 1. Note that
if (48) is satis�ed, (64), (65), and (71) are also satis�ed. Since this implies
that Conditions 1 and 2 are met for su¢ ciently small �, it su¢ ces to prove
that Condition 3 is also met for su¢ ciently small �.
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Take an equilibrium path, (xt; yt); solving (11) from (�x; �y): Suppose yt �
y�max and yt > B�(yt�1): This implies yt+1 = 1

�
yt < y�max: Moreover, since

yt+1 =
1
�
yt; yt < y�max < y�H implies implies yt+1 < B�(yt); which implies

yt+2 = r�(yt+1): We will prove that if yt+2 < Bt+1(yt+1); (25) and (26) are
satis�ed.
Let yt+2 < B�(yt+1): Then, yt+3 = G�(yt+2); as is shown in the proof of

Theorem 1. Moreover, yt+2 < b�(yt+1) implies y�L � yt+2 < R�(y
�
D); where

y�D is given by R�(y�D) = B�(
1
�
y�D): Let z

�
S = G�(z

�
S): Then, by (20), (45)

and (59),
��y�S � x�S�� ! 0; as � ! 0: Thus, y�L � yt+2 implies z�S < yt+2:

Since G0� < �1; this implies G�(yt+2) < z�S: Since G
0
� < �1; the graphs

of yt+3 = B�(yt+2) and yt+3 = G�(yt+2) intersects only once. These facts
together with y�L � yt+2 < R�(y�D) implies that G�(yt+2) = yt+3 < B�(yt+2):
Thus, condition (25) is satis�ed.
Moreover, yt+4 = l�(yt+3) = l�(G�(yt+2)) = L�(yt+2): Since, by Lemma

6, L�(y�L) > B�(G�(y
�
L)); and since yt+4 � y�L; L�(y) > B�(G�(y)): Thus,

condition (26) is satis�ed.

Appendix D: Derivation of (50). This follows from (5), (52) and (53).
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Figure 1:  Chaos in Innovation Dynamics
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Figure 2: Two-Dimensional Constrained Chaos
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