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Abstract

Do price forecasts of rational economic agents need to coincide in perfectly com-

petitive complete markets? To address this question, we define an efficient tempo-

rary equilibrium (ETE) within the framework of a two period economy. Although an

ETE allocation is intertemporally efficient and is obtained by perfect competition, it

can arise without the agents forecasts being coordinated on a perfect foresight price.

We show that there is a one dimensional set of such Pareto efficient allocations for

generic endowments.

JEL classification numbers: D51, D53, D61

1 Introduction

Do price forecasts of rational economic agents need to coincide in perfectly competitive

complete markets? If not, is it rewarding to have a more accurate forecast than others?

This classical but fundamental question does not appear to have received the attention it

deserves. The pervasive approach assumes that they should coincide, perhaps with a jus-

tification that if the economic agents understand the market environment perfectly, they

∗Visiting Professor, Singapore Management University. Kajii acknowledges support from the Grant-

in-aid for scientific research (S)18H05217 and (A)16H02026.
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must reach the same conclusion, and hence in particular, their forecasts must coincide.

But it is against the spirit of perfectly competitive markets to require that the agents

should understand the market environment beyond the market prices they commonly

observe.

To address the issue precisely, let us consider a sequence of commodity markets with

no uncertainty, where there is a riskless bond market in each period, and so the markets

are complete. Finitely many households trade competitively in these markets. There are

two approaches to the study of the functioning of such economies. The first, the classical

temporary equilibrium approach (Grandmont, 1977), asks if there are market clearing

prices in a particular period in question for arbitrarily given anticipated prices for the

markets in the following periods. Since market clearing for subsequent periods is not

required, this approach hardly explains how a sequence of market prices are determined

over time and furthermore, it does not require that forecasts should be equalized. Also,

being completely mute on welfare analysis for intertemporal allocations of goods, it

cannot begin to address the benefits from accurate forecasts.

The second, and the aforementioned more pervasive approach, is the perfect foresight

approach, which assumes that agents’ price forecasts are all perfectly coordinated and

correct. Here, a perfect foresight (more generally, a rational expectations) equilibrium

(Radner, 1982) predicts a sequence of market prices in a determinate way, and the re-

sulting allocation is Pareto efficient. This approach explains prices and addresses the

welfare issue, but it incurs a serious cost in that perfect foresight is assumed, rather

than derived. That the assumption of perfect foresight is extraordinarily strong is a

view expressed by various scholars; a case in point is Radner’s own critique of perfect

foresight.1 It goes without saying that this approach is absolutely inadequate for com-

paring the quality of price forecasts and explaining, among other issues, the use of policy

1On page 942, Radner (1982) writes “Although it is capable of describing a richer set of institutions

and behaviour than is the Arrow-Debreu model, the perfect foresight approach is contrary to the spirit of

much of competitive market theory in that it postulates that individual traders must be able to forecast,

in some sense, the equilibrium prices that will prevail in the future under all alternative states of the

environment. Even if one grants the extenuating circumstances mentioned in previous paragraphs, this

approach still seems to require of the traders a capacity for imagination and computation far beyond

what is realistic.”
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tools that seek to influence the forecasts of diverse subsets of agents. In spite of these

obvious shortcomings, the pervasive use of this approach would appear to stem from

the presumption that perfect foresight is indispensible to a theory that delivers efficient

outcomes and retains some predictive power.

So the following classical question on price forecasts seems a very natural one to pose

in this setup: First, require that all the spot markets clear in the temporary equilibrium

sense. That is, even when the households traded anticipating wrong prices in the past,

describe how they consume and save in every period so that one can address welfare

issues. Secondly, suppose that the markets are so elaborated that the resulting sequence

of consumption constitutes a Pareto efficient allocation, not only within each period

but also intertemporally. Such an equilibrium is referred to as an efficient temporary

equilibrium (henceforth, ETE). Although there is no prerequisite for price forecasts,

market clearing and efficiency property of an ETE should rule out inadequate forecasts.

The question we pose is, must an ETE necessarily be a perfect foresight equilibrium?

At first sight the answer might appear positive, under the standard set of assumptions

on utility functions such as monotonicity, concavity, and differentiability. Intuitively,

the dimension of Pareto efficient allocations should be one less than the number of the

households, since it is in effect the set of wealth transfers across the households. On

the other hand, at an ETE, since the final consumption bundle must be attained in

markets, each household’s consumption bundle must satisfy some budget constraint. By

market clearing one of these budget constraints might be redundant, but still these create

additional restrictions at least as many as the dimension of Pareto efficient allocations.

Recall that the set of Arrow-Debreu equilibrium allocations can be found from Pareto

efficient allocations and budget constraints by the second fundamental theorem of welfare

economics, and Debreu’s theorem shows that the set of Arrow-Debreu equilibria is zero

dimensional generically. Therefore, the same logic seems to suggest that the set of ETE

allocations is zero dimensional generically. Hence if an ETE which does not entail perfect

foresight ever exists, it must be an isolated case relying on some coincidence.

The idea above is reinforced if one recalls “no trade results”, which assert that with

no private information the efficiency of an allocation implies that households’ relative

evaluations of goods must agree with each other. In our context, it would appear to rule
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out even an isolated example mentioned above.

The surprise, the aforementioned logic notwithstanding, is that this conjecture is

incorrect. We illustrate this point in its simplest form, using a standard competitive

two-period exchange economy with inside money. There is one perishable consumption

good in each period to be traded, that is, we trivialize temporary markets to eliminate

potential multiplicity caused by indeterminacy of absolute prices in those markets. In

the first period, a bond which pays off one unit in units of account (dollar) in the second

period is traded. We restrict attention to agents forming point forecasts as this allows for

a more transparent comparison of our approach to the perfect foresight approach. This

restriction not only makes our argument simpler, but also eliminates possible multiplicity

caused by delicate coordination of randomly forecasted prices.

In this set up, an ETE is defined in a straightforward manner: in addition to requiring

market clearing in each of the two periods, it requires the efficiency of the resulting two-

period consumption bundle. We present a real indeterminacy result for ETE, which has

been shorn of all complications arising from multiple goods and random forecasts so as

to make the indeterminacy more striking, as our principal finding. More precisely, our

main result shows the existence of a one dimensional set of ETE allocations around each

Arrow-Debreu equilibrium allocation, generically in endowments. This result generalizes

the two-agent Edgeworth box example of Chatterji et al. (2018) to arbitrary economies.

Curiously enough, the degree of real indeterminacy does not depend on the number

of households, while the dimension of Pareto efficient allocations increases as explained

above. Therefore, when the number of households is very large, which is a plausible

circumstance for perfect competition, an ETE does require a very delicate coordination

of price forecasts. If one conjectured, despite our intuitive illustration using budget

constraints, that an ETE would hardly restrict price forecasts, then the invariance to

the number of households should turn up as a surprising result.

Coming back to the question we posed above, our answer is that decentralized markets

are able to deliver a significantly larger set of acceptable (Pareto efficient) outcomes

under less restrictive assumptions on forecasts. Moreover, the extra degree of freedom

is only one at least in our model, so the explanatory power is almost as strong as the

perfect foresight approach. Therefore, we contend that the approach based on ETE has

4



considerably greater descriptive appeal than believed erstwhile.

An ETE is a particular variant of a perfectly contracted equilibrium (Chatterji and

Ghosal, 2013), where intertemporal exchanges are modeled using reduced form intertem-

poral (price-contingent) contracts which are required to satisfy a Pareto efficiency and

an individual rationality requirement,2 but are otherwise unstructured and allow for con-

siderable differences in real interest rates across households; as a consequence, perfectly

contracted equilibria generate a subset of Pareto efficient allocations whose dimension

is one less than the number of households. In this paper on the other hand, we focus

on a well specified and well studied class of intertemporal contracts; these arise from

decentralized trade in a bond market with heterogenous forecasts. This puts restrictions

on ways in which the real interest rates across households can diverge in an ETE, so that

we have exactly one degree of freedom in specifying the resulting ETE allocations.

The remainder of the paper is organized as follows. Section 2 presents the model and

the basic definitions. The general result is stated and proved in Section 3. Section 4

presents an explicitly computed example of ETE. Section 5 discusses some aspects of our

formulation and findings, especially the welfare implication of forecasts. In particular,

our analysis demonstrates that an accurate forecast is not necessarily rewarded. Finally,

we note some directions for future research and conjectures pertaining to these.

2 The Model and Definition

We consider a standard competitive exchange economy with inside money. There are

two periods, period 0 and 1, and there is one perishable consumption good in each period

to be traded competitively.

There are H ≥ 1 households, labelled by h = 1, ...,H. Abusing notation we use H for

the set of households as well. Household h is endowed with e0h units of good in the first

period (period 0) and e1h units in the second period (period 1). We write eh =
(
e0h, e

1
h

)
.

2The particular forms of the Pareto efficiency and individual rationality requirements respectively

in perfectly contracted equilibrium require time separable utilities. Svensson (1981) studies a more

complicated market structure where all price contingent contracts are traded and showed that efficiency

obtains when utilities are time separable and probabilistic forecasts are coordinated across agents. Our

formulation of ETE and our result does not require time separable utilities or coordinated forecasts.
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We simply call the good of the first period good 0 and the good of the second period

good 1.

Household h’s consumption set is R2
+, and its preferences for consumption bundles

are represented by a utility function uh : R2
+ → R. Later, we will make assumptions on

uh so that the consumption takes place in R2
++.

In the first period, a bond which pays off 1 + r (r > −1) units in units of account

(dollar) in the second period is traded competitively, i.e., a household takes the market

interest rate r as given to decide its saving. A negative saving corresponds to borrowing.

There is no uncertainty, no limit for saving and borrowing, and default is not allowed.

The net supply of the bond is zero, so it is inside money whose real return is determined

in the markets.

Writing zh for the amount of saving of household h, and writing p0 for the market

price of the consumption good in period 0, the consumption x0h of household h in period

0 is therefore subject to p0x0h ≤ p0e0h − zh.

There is no futures market which might help predict the price of the good in the

second period. Thus we assume that each household h first anticipates the price p̂h of

the good in period 1 in order to decide consumption and saving/borrowing in period

0. Specifically, at the prevailing market interest rate r, household h expects the period

1 budget p̂h
(
x1h − e1h

)
≤ (1 + r) zh if his saving is zh. Since there is no limit for sav-

ing/borrowing in our model, by eliminating zh household h faces in effect the following

budget constraint for consumption goods:

p0
(
x0h − e0h

)
+

p̂h
(1 + r)

(
x1h − e1h

)
≤ 0. (1)

It is readily seen that if
(
x0h, x

1
h

)
∈ R2

+ satisfies (1), then there is z with which the budget

is met in both periods. Note that the monotonicity of uh will assure that the equality

will hold at the optimum.

We denote the market price of the good in period 1 by p. That is, in period 1,

household h is subject to the constraint p
(
x1h − e1h

)
≤ (1 + r) zh, i.e., the market value

of the net consumption must be no greater than the nominal return from the saving.

Notice that zh is already determined before satisfying the period 1 budget. So the
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realized consumption path
(
x0h, x

1
h

)
must satisfy the following equation:

p0
(
x0h − e0h

)
+

p

(1 + r)

(
x1h − e1h

)
≤ 0. (2)

Note that although constraint (2) is not taken into account in period 0, household h will

spend all the income in period 1 at the market price, i.e., p
(
x1h − e1h

)
= (1 + r) zh will

hold if uh is increasing, and then the equality holds for (2) at the optimum.

Now we shall define a dynamic temporary equilibrium: it is simply the standard

classical temporary equilibrium notion applied for each period. Since all the budget

inequalities are all homogeneous in prices, there is no loss of generality if p0 = 1 is

required and hence interest rate r works as an equilibrating market price in period 0,

and so we shall assume p0 = 1 below to economize notation.

Definition 1 A temporary equilibrium is a tuple
(
x∗, r∗, (p̂h)Hh=1 , p

∗
)
∈
(
R2
++

)H ×
(−1,∞)× (R+)H × R+ such that:

(i) x∗ is a feasible allocation, i.e.,
∑H

h=1 x
∗
h =

∑H
h=1 eh;

(ii) for each h ∈ H, there exists x̂1h such that
(
x0∗h , x̂

1
h

)
maximizes utility under budget

(1) given (r∗, p̂h);

(iii) for each h ∈ H, x1∗h maximizes uh
(
x0∗h , ·

)
under constraint (2) at p = p∗, r = r∗,

and x0h = x0∗h .

Note that condition (i) implies that the total demand meets the total supply in both

periods. Then, condition (ii) says that period 0 market is in temporal equilibrium given

forecasts (p̂h)Hh=1, and condition (iii) says that the period 1 market is also in temporal

equilibrium, given the market interest rate and the consumption allocation in period

0. Since there is only one good, if uh is increasing, condition (iii) can be equivalently

written as p∗
(
x1∗h − e1h

)
= (1 + r∗)

(
e0h − x0∗h

)
for all h, i.e., the nominal income must be

spent for consumption in the second period; that is, condition (iii) is equivalent to (2)

holding with equality in equilibrium.

There is hardly any restriction on equilibrium forecasts, and hence there are many

temporary equilibria, because one can solve the equilibrium condition sequentially in a

trivial manner in this model of a single good. To illustrate this point, choose any (p̂h)Hh=1.

Given these forecasts, the aggregate demand for good 0 is a function of interest rate r,
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but it does not depend on the second period market price p. So there will be an interest

rate r∗ which clears period 0 market, irrespective of p. Then the period 1 demand is

derived by (2), where the first period variables are already fixed. So by an appropriate

choice of p, the period 1 market will be in temporal equilibrium, too.

Since every market is in partial equilibrium, it is no surprise that a temporary equi-

librium is weakly constrained efficient. However, since the equalization of the marginal

rate of substitution of the two goods across agents is not warranted, a temporary equi-

librium tends not to be Pareto efficient. But if one subscribes to the view that a perfect

market structure would induce the households to trade until gains from trade vanish

completely, it is natural to focus on an efficient temporary equilibrium.

Definition 2 An efficient temporary equilibrium (ETE) is a temporary equilibrium(
x∗, r∗, (p̂h)Hh=1 , p

∗
)

where the consumption allocation x∗ is Pareto efficient.

A hypothetical market transaction process justifying an ETE would rule out many

forecasts which would allow unrealized gains from trade. The extreme case is a perfect

foresight equilibrium (henceforth, PFE): by definition, a PFE is a particular temporal

equilibrium
(
x∗, r∗, (p̂h)Hh=1 , p

∗
)

where p̂h = p∗ for all h. In this case, the two budget

constraints (1) and (2) are identical, and each household’s utility must be maximized

within the common budget set. Hence a PFE is an Arrow-Debreu equilibrium where

any contingent good can be traded, and vice versa. Needless to say, an Arrow-Debreu

equilibrium is weakly efficient, and if utility functions are continuous and increasing, it

is Pareto efficient. So under the standard assumptions, a PFE is an ETE.

Conversely, if forecasts p̂h, h = 1, ..,H, coincide with each other in an ETE, then

p̂h = p∗ must clear the period 1 market, i.e., the common forecast is correct ex post,

constituting a PFE. To see this, observe that if the period 0 market clears with a common

forecast, then by Walras law, the planned consumption allocation in period 1 must be

feasible. Therefore, the common forecast is indeed a market clearing price.

It is then interesting to ask if an ETE is necessarily a PFE; is a common forecast

required for efficiency? As mentioned in the introduction, under the standard set of

assumptions on utility functions, there are reasons to expect that the set of ETE alloca-

tions is zero-dimensional generically, but we shall show that there is a one dimensional
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set of ETE allocation around each Arrow-Debreu equilibrium allocation generically in

endowments, irrespective of the number of households. We will establish this result

formally in section 3 below. Section 4 presents an explicitly computed example of ETE.

3 Generic Real Indeterminacy of ETE

In order to employ the standard technique of genericity analysis, we assume the following:

for every household h = 1, ...,H,

• utility function uh is C2 on R2
++, ∂uh � 0, and differentiably strictly concave, and

each indifference curve is closed in R2;

• initial endowments eh are strictly positive.

We fix utility functions throughout, and identify an economy with its initial endow-

ments: so write E :=
(
R2
++

)H
and its generic element is denoted by e = (· · · , eh, · · · ).

We say a subset of E is generic if it is open and its complement has Lebesgue measure

0. The following is the main result:

Proposition 3 There is a generic set E∗ ⊂ E such that for each e ∈ E∗, (i) there

are finitely many PFE, and (ii) for each PFE allocation x̄ ∈
(
R2
++

)H
, there is a one

dimensional C1 manifold of ETE allocations containing x̄.

The method of our proof is to show that ETE allocations can be written as a regular

system of equations, where the number of independent equations is one less than the

unknowns, and the one degree of freedom in the system corresponds to the asserted real

indeterminacy. But first, we begin with some back ground observations on the derived

consumer demand function. We write x0h
(
p0, p1,m

)
for the standard demand function

for good 0 of household h where m > 0 is the income level: that is, for a given positive

price vector
(
p0, p1

)
, it is the unique solution to

max
x0,x1≥0

uh
(
x0, x1

)
subject to p0x0 + p1x1 ≤ m.

Under our assumptions, x0h
(
p0, p1,m

)
is a C1 function on R3

++, and the second order

condition for utility maximization holds strictly: that is, at x0h
(
p0, p1,m

)
,

∂2uh

(∂x0)2
(
p1
)2 − 2

∂2uh
∂x0∂x1

p0p1 +
∂2uh

(∂x1)2
(
p0
)2
< 0, (3)
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Notice that there are obvious nominal indeterminacies about ETE, because of the

homogeneity of budget constraints (1) and (2). So we might as well normalize p0 = 1

and r = 0 to establish the real indeterminacy result, that is, ph is the effective price

for (1) and p is the effective price (2). Taking this normalization into account, we write

x0h (ph; eh) for x0h
(
1, ph, e

0
h + phe

1
h

)
, which is a C1 function on R2

++.

A PFE obtains if and only if
∑H

h=1

[
x0h (p̂h; eh)− e0h

]
= 0 and p̂h = p∗ for all h,

and is of course equivalent to a competitive equilibrium in the two good Arrow-Debreu

economy. So we shall identify a PFE with its second period price p, and following the

standard terminology, we say that a PFE p∗ is regular if the derivative of excess demand

is non zero, i.e.,
∑H

h=1
∂
∂p̂h

x0h (p∗; eh) 6= 0. Also we say an economy is regular if all PFE

are regular. As is well known, under our assumptions, the set of regular economies, ER, is

generic, and each regular economy has finitely many PFE, each of which can be written

as a C1 function of e, locally3.

Notice however that at a regular PFE p∗, ∂
∂p̂h

x0h (p∗; eh) = 0 is possible for some

h. But it means that the substitution effect is offset precisely by the income effect, so

it must be coincidental. We say that a PFE p∗ is strongly regular if it is regular and

additionally ∂
∂p̂h

x0h (p∗; eh) 6= 0 hold for all h. An economy is said to be strongly regular

if all the (finitely many) equilibria are strongly regular. Then the following result should

appear plausible (a proof is provided in the Appendix).

Lemma 4 The set of strongly regular economies, ESR, is generic.

We shall now write an ETE as a solution to a system of equations. Introduce an

auxiliary variable λ, and consider the following system of H + 1 equations for H + 2

unknowns, (p̂h)Hh=1, p, and λ:

∑
h

(
x0h (p̂h; eh)− e0h

)
= 0

... (4)

λ
∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
− ∂uh
∂x1

(
x0h (p̂h; eh) , x1h

)
= 0

...

3See for instance, Section 5.5 of Mas-Colell (1985).
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where for each h,

x1h = e1h −
x0h (p̂h; eh)− e0h

p
. (5)

If (p̂h)Hh=1, p, and λ satisfy equations (4) and (5), setting x∗h =
(
x0h (p̂h; eh) , x1h

)
for all

h, r∗ = 0, and p∗ = p, a tuple
(
x∗, r∗, (p̂h)Hh=1 , p

∗
)

constitutes an ETE; recall Definition

1. The first equation of (4) and relation (5) imply that x∗ is a feasible allocation, referring

to condition (i) of Definition 1. The first equation of (4) also shows that condition (ii) of

Definition 1 is automatically met, and since uh is increasing, (5) implies that condition

(iii) of Definition 1 is satisfied. The remaining H equations in (4) assure that x∗ is Pareto

efficient. Conversely, it can be readily confirmed that if
(
x∗, r∗, (p̂h)Hh=1 , p

∗
)

is an ETE,

then
(

( p̂h
1+r∗ )

H
h=1,

p∗

1+r∗ , λ
∗
)

where λ∗ = ∂uh
∂x1

(
x0h( p̂h

1+r∗ ; eh), x1h

)/
∂uh
∂x0

(
x0h( p̂h

1+r∗ ; eh), x1h

)
and x1h = e1h −

x0h(
p̂h

1+r∗ ;eh)−e
0
h

p∗
1+r∗

for all h solve (4) and (5).

A PFE is a solution to (4) and (5) of the form
(

(p̂h)Hh=1 , p
∗, λ∗

)
such that p̂h =

p∗ = λ∗ = ∂uh
∂x1

(
x0h (p∗; eh) , x1h

)
/∂uh
∂x0

(
x0h (p∗; eh) , x1h

)
for all h. Since p̂h and λ∗ are

automatically constructed from p∗, we shall simply identify a PFE solution with its

(normalized) realized price p∗ as we did earlier.

Next, we shall verify that the implicit function theorem can be applied at a PFE

so that the equilibrium variables constitutes a one dimensional manifold about it. Fix

e ∈ E∗ and denote by Φ (p, p̂1, · · · , p̂H , λ) the left hand side of (4). Then Φ is a C1

function from RH+2 to RH+1, and we investigate its Jacobian at a PFE. By direct

calculation we obtain the following result (a proof is provided in the Appendix).

Lemma 5 Evaluated at a PFE p∗, the derivatives of Φ with respect to p̂1, · · · , p̂H , λ has

the following form:

∂Φ/∂ (· · · , p̂h, · · · , λ) =


· · · ∂

∂p̂h
x0h (p̂h; eh) · · · 0

. . . 0
...

ζh
∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
0

. . .
...


p = p∗

p̂1 = · · · = p̂H = p∗

λ = p∗

(6)

where for each h = 1, 2, ...,H,

ζh =

[
p∗

∂2uh

(∂x0)2
− 2

∂2uh
∂x0∂x1

− 1

p∗
∂2uh

(∂x1)2

]
∂

∂p̂h
x0h (p̂h; eh) .
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Now we are ready to prove Proposition 3. Let E∗ be the set of all strongly regular

economies such that the initial endowments are not Pareto efficient. We show that E∗

has the properties we wanted.

Since the set of Pareto efficient allocations constitutes a closed set of a lower dimen-

sion, it can be readily verified by Lemma 4 that E∗ is generic. Condition (i) of Proposition

3 is clearly met by the regularity. So it suffices to show that any PFE of e ∈ E∗, which is

locally unique by regularity, has an ETE with the desired manifold structure around it.

Fix a PFE p∗ of economy e ∈ E∗. Then by Lemma 5 and the second order condition

(3), ζh 6= 0 holds for every h. Apply the following basic operations on the matrix:

Multiply the h column of (6) by

∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
ζh

and subtract it from the last column. then the resulting matrix is
· · · ∂

∂p̂h
x0h (p̂h; eh) · · · α

. . . 0
...

ζh 0

0
. . .

...


p = p∗

p̂1 = · · · = p̂H = p∗

λ = p∗

where

α = −
H∑
h=1

∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
ζh

∂

∂p̂h
x0h (p̂h; eh)

= −
H∑
h=1

∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
p∗ ∂

2uh
(∂x0)2

− 2 ∂2uh
∂x0∂x1

− 1
p∗

∂2uh
(∂x1)2

.

Since ∂uh
∂x0

> 0 and the denominator is negative by (3) for every h, we conclude α 6= 0.

Hence the matrix (6) has a full rank of H+ 1, and thus by the implicit function theorem

the solutions to (4) and (5) constitute a one dimensional manifold around the PFE.

Moreover, equilibrium variables p̂1, . . . , p̂H and λ are C1 function of p around p∗.

It therefore remains to show that this indeterminacy about prices is in fact real inde-

terminacy. If we can find p arbitrarily close to p∗ but p 6= p∗, such that the corresponding

equilibrium p̂h differs from p∗ for some h, then by the strong regularity condition, such a
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household’s (excess) demand for good 0 must be different from x0h (p∗; eh) for all p close

enough to p∗, exhibiting real indeterminacy. So suppose that the corresponding equilib-

rium is the same as p∗, that is, p̂h is a constant function of p for every h. Then for any p

close enough to p∗, every household h’s consumption of good 1 at the ETE is e1h−
x0h−e

0
h

p

where x0h = x0h (p̂h; eh) does not depend on p since p̂h does not depend on p. Since the

initial allocation is not Pareto efficient, there must be some household h who trades in

the PFE, i.e., x0h − e0h 6= 0 at p = p∗. Such a household’s period 1 consumption must

change as p changes, exhibiting real indeterminacy in this case as well. This completes

the proof.

4 An Example

An earlier paper (Chatterji et al., 2018) provided a two-household example of ETE, but it

is hard to tell from the example if the one dimensionality is independent of the number of

households. Here we provide a class of three-household economies that describes better

the one dimensionality of the ETE allocations. The following is the specification of the

example.

• H = {1, 2, 3}.

• Endowments: e1 = (2− ε, ε), e2 = (ε′, 2− ε′) and e3 =
(
1 + (ε− ε′), 1 + (ε− ε′)

)
,

where 0 < ε, ε′ < 1 are given parameters. Note that
∑H

h=1 e
0
h = 3 and

∑H
h=1 e

1
h = 3.

• For each h ∈ H, uh(x0h, x
1
h) = lnx0h + lnx1h.

As in the main analysis, we set period-0 price equal to one and the interest rate equal

to zero, and write p̂1, p̂2, p̂3 > 0 for the anticipated prices of the households.

Thus, for all those economies parameterized by ε and ε′, the set of Pareto efficient

allocations is

P =

{
(x0h, x

1
h)Hh=1 ∈ R2×3

+

∣∣(x0h, x1h) = αh(1, 1), αh ≥ 0 for all h ∈ H, and
∑H

h=1
αh = 1

}
.

so in particular, the initial endowments are not Pareto efficient. It is readily seen that

the unique Arrow-Debreu equilibrium, thus the unique PFE, occurs at p̂∗h = p∗ = 1, with

the allocation x∗h = (1, 1) for every h ∈ H.
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For each h ∈ H, by utility maximization under the anticipated price of period 1, we

get the demands in period 0:

x01(p̂1; e1) =
1

2
(2− ε+ p̂1ε), (7)

x02(p̂2; e2) =
1

2

[
ε′ + p̂2(2− ε′)

]
, and (8)

x03(p̂3; e3) =
1

2

[
1 + (ε− ε′) + p̂3(1− (ε− ε′))

]
. (9)

Thus, market clearing in period 0 requires

εp̂1 + (2− ε′)p̂2 + [1− (ε− ε′)]p̂3 = 3. (10)

Furthermore, an inspection of d
dp̂h

x01(p̂h; e1)| p̂h=1 for all h reveals that all the economies

are strongly regular. So it can be readily shown that each of these economies belongs to

E∗ in Proposition 3.

Given (p̂h)3h=1, Pareto efficiency requires that:

x01 = x12 =
1

2
(2− ε+ p̂1ε), (11)

x02 = x12 =
1

2

[
ε′ + p̂2(2− ε′)

]
, and (12)

x03 = x13 =
1

2

[
1 + (ε− ε′) + p̂3(1− (ε− ε′))

]
. (13)

Thus, if forecasts (p̂h)3h=1 satisfy (10), then the efficient allocation constructed as above

is feasible in period 1, too.

To finish the construction of an ETE, we only need to find an actual price p ≥ 0 of

period 1 satisfying the realized budget for all (11), (12) and (13) which means the period

1 consumption is utility maximizing. That is, we need to find p satisfying the followings:

1

2
(2− ε+ p̂1ε)(1 + p) = 2− ε+ pε,

1

2

[
ε′ + p̂2(2− ε′)

]
(1 + p) = ε′ + p(2− ε′), and

1

2

[
1 + (ε− ε′) + p̂3(1− (ε− ε′))

]
(1 + p) = 1 + (ε− ε′) + p(1− (ε− ε′)).

Then, we have

p̂1 =
2− ε
ε

1− p
1 + p

+
2p

1 + p
, (14)

p̂2 =
ε′

2− ε′
1− p
1 + p

+
2p

1 + p
, and (15)

p̂3 =
1 + (ε− ε′)
1− (ε− ε′)

1− p
1 + p

+
2p

1 + p
. (16)
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Since p̂1, p̂2, p̂3 > 0 and p ≥ 0, we have

0 ≤ p < 2− ε
2− 3ε

if 0 < ε <
2

3
and − 1 < ε− ε′ ≤ 1

3
, (17)

0 ≤ p < min

(
2− ε
2− 3ε

,
1 + (ε− ε′)
3(ε− ε′)− 1

)
if 0 < ε <

2

3
and

1

3
< ε− ε′ < 1, (18)

p ≥ 0 if
2

3
< ε < 1 and − 1 < ε− ε′ ≤ 1

3
, (19)

0 ≤ p < 1 + (ε− ε′)
3(ε− ε′)− 1

if
2

3
≤ ε < 1 and

1

3
< ε− ε′ < 1. (20)

In conclusion, we have an ETE
(
(x0h, x

1
h)Hh=1, (p̂h)Hh=1, p

)
where the actual price of

period 1, p, satisfies (17) - (20), the anticipated prices, (p̂h)Hh=1, satisfy (14) - (16),

and the ETE allocation, (x0h, x
1
h)Hh=1, satisfies (11) - (13). In particular, we know that

(x0h, x
1
h)Hh=1 is the Arrow-Debreu allocation if and only if p̂1 = p̂2 = p̂3 = p = 1. This

confirms that the Arrow-Debreu allocation can only be supported as a PFE. Note that

the Arrow-Debreu equilibrium price p∗ = 1 is included in each price interval of (17) -

(20). Thus, combining (7) and (14), (8) and (15), and (9) and (16) respectively, for each

price interval of (17) - (20), we have a one dimensional set of ETE allocations which

includes the Arrow-Debreu allocation, corresponding to the PFE.

5 Concluding Remarks

5.1 Welfare gains and losses

Since an ETE is Pareto efficient, in comparison with a PFE in the vicinity, some house-

holds are better off while some households are worse off. It is then interesting to ask

how the quality of price forecasts affects the welfare.

At first sight, it might appear plausible to expect that a household with a relatively

accurate forecast should be better off than another household with an inaccurate forecast;

if one’s forecast turns out to be almost correct, his saving decision must be almost

optimal, and if not, it would be clearly suboptimal. So in an ETE
(
x∗, r∗, (p̂h)Hh=1 , p

∗
)

where p∗ is close to a PFE, if |ph − p∗| < |ph′ − p∗|, and if household h′ is better off than

in the PFE, then household h should also be better off.

But this is not the case in general: “better” ex post forecasts does not necessarily

lead to better outcomes for the households. To understand the reason, imagine that each
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households’ utility function has the form vh
(
x0
)

+vh
(
x1
)

and the total endowments are

the same in both periods. Then at an efficient allocation, the consumption must be the

same in both periods. Then if a household happens to consume more than the amount in

a PFE in the first period, then she is better off than in the PFE. So those who forecast

high prices in the second period, and thereby consume more in the first period, tend

to enjoy the advantage of this consumption smoothing effect. The accuracy of forecasts

does not play any role in this logic, and one would “want” to forecast a high inflation

rate, if possible.

Of course, since the dimension of ETE allocations is only one, the forecasts must be

coordinated to a great extent accordingly, and so the implication of the consumption

smoothing effect above is delicate and we are unable to deliver any general character-

ization result for welfare gains and losses. In order to confirm that accuracy does not

necessarily imply welfare gain in a reasonable environment, we shall examine the example

of Section 4 from this point of view.

Consider the special case where ε = ε′ = 1
2 , and regard the ETE’s as being parametrized

by the second period market clearing price p. The PFE (the Arrow Debreu equilibrium)

obtains at p = p∗ = 1. Recall that p̂3 = 1 at any ETE. By direct computation, we get

from (14) that dp̂1(p∗)
dp = −1, and from (15) that dp̂2(p∗)

dp = 1
3 > 0. That is, the ETE

forecast of household 2 is less sensitive to p than that of household 1, and so if p is close

to p∗, the former is closer to p than the latter. On the other hand from (11) and (12), we

have that
∂x0∗h
∂p̂h

> 0, h = 1, 2, conforming with the consumption smoothing effect. Then,

if p decreases slightly from p∗, then household 2 has a more accurate forecast p̂2, but

since p̂2 is smaller than p∗, household 2 is worse off than in the PFE. On the other hand,

p̂1 increases, and hence household 1 is better off than in the PFE. That is, household

1, whose forecast is farther away from p, is rewarded at the expense of agent 2. For

instance, at p = 0.8, p̂1 = 11
9 , p̂2 = 25

27 , x01 = x11 = 19
18 and x02 = x12 = 51

54 , confirming the

finding.

5.2 Source of the indeterminacy and the role of futures markets

The observations about welfare gains and losses shed light on the source of indeterminacy

of ETE. The indeterminacy occurs since an incorrect price forecast yields an unantici-
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pated income from saving, which may be positive or negative. For instance, if p̂h > p,

i.e., household h over estimates “inflation”, then the realized real return on saving in

period 1, (1 + r) /p, is higher than the anticipated real return on saving, (1 + r) /p̂h,

and consequently household receives an unanticipated positive (resp. negative) income

transfer in effect if he saved (resp. borrowed) in the first period. As ETE forecasts move

away from a PFE, this set of unanticipated income transfers takes the households to a

different efficient allocation.

As we have discussed earlier, a PFE is an ETE with a common forecast. We assumed

that there is no direct market for future consumption, but if there is an institutional

arrangement which forces the household to believe in a common forecast in ETE, then

a PFE will occur, i.e., the common forecast will be correct a fortiori.

A complete set of futures markets together can serve as such an institution. In

our simple framework of one good, a desired futures contract corresponds to a claim

which promises to deliver the good. More explicitly, suppose that in addition to the

saving market, there is another market in period 0 where the household can trade a

security which promises to deliver one unit of the good in the second period. Under

normalization of p0 = 1 and r = 0, say that the market price of the security is π. Assume

that households should not allow a free lunch for themselves, i.e., they may engage in

speculative trade to take advantage of an arbitrage opportunity in the markets, but they

should not create such an opportunity for themselves by simply forecasting outrageous

prices. Then, each household h must forecast p̂h = π in equilibrium. Indeed, if p̂h > π,

household h can profit by borrowing to buy this security, and if p̂h < π household h

can profit by selling this security to save. Consequently, every household must forecast

p̂h = π in order not to generate free lunch for themselves, and then we have a PFE.

But interestingly, at an PFE, the futures market is redundant, since the saving market

alone is enough to achieve the PFE. That is, had we known that a PFE will result, there

is no need to operate and maintain the futures market in addition to the saving market,

since the markets are already complete in the Arrow-Debreu sense. So our indeterminacy

result points out the importance of a market for price discovery, even if such a market

might appear unnecessary.4 Our result on the existence of a one-dimensional set of

4Kajii (1997) gives a similar observation on redundant security markets. In his model, an inefficent
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ETE allocations opens up the possibility that a price discovery process, which does not

necessarily culminate in full coordination of forecasts, may nonetheless be successful in

achieving Pareto efficiency

5.3 Future research and conjectures

In our formulation of ETE, the forecasts have been fixed and held independent of the

period 0 market clearing process. This has been done for simplicity. It is possible to

incorporate forecast functions in our formulation at the cost of some additional complex-

ity. A second and more vital restriction is the restriction to single good in the period

1 economy. We conjecture that the one dimensional real indeterminacy will continue to

obtain generically for the case of multiple goods in both periods, especially in period 1.

When there are multiple goods, it would be interesting to investigate the structure

of ETE when the asset is a real asset, to understand if our indeterminacy result is a

consequence of the indeterminacy of the real value of the nominal money. For instance,

suppose that there is one real asset, which pays off one unit of each good. Then the

markets are complete and so a PFE is necessarily an Arrow Debreu equilibrium. As dis-

cussed earlier, the forecasts must agree on the implied value of this asset by no arbitrage

argument, which means that the sum of forecasted prices is the same across the house-

holds. But this condition still allows differences in forecasts about relative prices, which

would generate a consumption allocation different from any PFE in period 0. Hence we

conjecture the indeterminacy of ETE obtains even when the asset is a real asset.

Finally, the case of multiple periods is obviously of great interest. The idea of ETE

can be readily extended to accommodate a long sequence, even an infinite sequence of

markets. On one hand, having multiple saving markets, there are more opportunities

of unanticipated income transfers we mentioned before, which suggests that the degree

of indeterminacy might increase with the number of time periods. On the other hand,

since the dimension of efficient allocation does not change over time, the logic similar to

the two period case might prevail, so that the degree of indeterminacy is still one.

competitive equilibrium may arise because of sunspots, but a competitive equilibrium is efficient when

there are options markets, which are redundant in equilibrium.
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Appendix

Proof of Lemma 4:

Recall that the set of regular economies, ER ⊆
(
R2
++

)H
, is a generic set, and for each

e ∈ ER, there are finitely many Arrow-Debreu equilibria, and the derivative of the market

excess demand function is non zero at every equilibrium price. That is, for each e ∈ E ,

if
∑H

h=1 x
0
h (p̂h; eh) = 0 where p̂h = p for all h, then

∑H
h=1

∂
∂p̂h

x0h (p̂h; eh) 6= 0.

We first establish the openness of ESR. Since ER is open, it suffices to show that

ESR is open in ER. Suppose en is a convergent sequence of regular economies such that

en → ē ∈ ER. Suppose en /∈ ESR holds for all sufficiently large n, i.e., there is an

Arrow-Debreu equilibrium pn of en which is not strongly regular. We want to show

ē /∈ ESR. Fix a neighborhood V of ē such that V ’s closure in
(
R2
+

)H
is compact. By

the standard properness argument, the set {(e, p) : p is an Arrow-Debreu equilibrium of

e} is compact, so we might as well assume that pn converges to p̄ > 0. Since pn is not

strongly regular, for some household h, ∂
∂p̂h

x0h (p̂h; enh) = 0 at p̂h = pn. Since there are

only finitely many households, we can find a subsequence of pn for which there exists

a household h such that ∂
∂p̂h

x0h (p̂h; enh) = 0 at p̂h = pn along the subsequence. Then

by continuity ∂
∂p̂h

x0h (p̂h; eh) = 0 must hold at p̂h = p̄, so p̄ is not a strongly regular

Arrow-Debreu equilibrium of ē. Therefore, ē /∈ ESR as we wanted.

We show that ER\ESR is a measure zero set: Fix a household h, and consider the

following system of equations:

Ψh (p; e) =

 ∑H
h=1

(
x0h (p; eh)− e0h

)
∂
∂p̂h

x0h (p; eh)

 ∈ R2

and let

Ē∗h = {e ∈ ER : there is p such that Ψh (p; e) = 0} .

Notice that ER\ESR = ∪Hh=1Ē∗h, so we need to show that ∪Hh=1Ē∗h is a measure zero set,

for which it suffices to show Ē∗h is a measure zero subset of E for every h. Without loss

of generality, we concentrate on the case h = 1.

Since Ψ1 (·; e) is a function of one variable, if 0 ∈ R2 is a regular value of Ψ1 (·; e),

then there cannot be any p such that Ψ1 (p; e) = 0, i.e., such e does not belong to Ē∗1 . By

19



the transversality theorem,5 if 0 is a regular value of Ψ1, i.e., there is a 2× 2 submatrix

of DΨ1 whose rank is 2, then the set of e ∈ ER for which 0 is not a regular value of

Ψ1 (·; e) is of zero measure. The proof is therefore completed if we show that there is a

2× 2 submatrix of DΨ1 of rank 2 whenever Ψ1 (p; e) = 0.

Now suppose Ψ1 (p; e) = 0. Since e is a regular economy,
∑H

h=1
∂
∂p̂h

x0h (p; eh) 6= 0.

So we need to show that there is a direction in the set of endowments such that the

directional derivative of excess demand is zero while that of ∂
∂p̂1

x01 (p; e1) is non zero.

Specifically, choose a small number t and consider e1 (t) =
(
e01 − tp, e11 + t

)
and

e2 (t) =
(
e02 + tp, e12 − t

)
, and eh (t) = eh for other household h. By construction the

total supplies are constant for all t. Notice that for any household h, the income level

e0h (t) + pe1h (t) is constant for all t, and so is its demand vector. Consequently, the mar-

ket excess demand for good 0 is the same (i.e., equal to zero) for all t, and hence the

directional derivative of excess demand is zero.

So it remains to verify ∂
∂t

(
∂
∂p̂1

x01 (p; e1(t))
)
6= 0 evaluated at t = 0. First, notice

that by construction x01(p; e1) ≡ x01(1, p, e
0
1 + pe11) and the homogeneity of the demand

function x01(p
0, p1,m) at (p0, p1,m) = (1, p, e01 + pe11), we have

∂

∂p̂1
x01 (p; e1) =

∂

∂p1
x01
(
1, p, e01 + pe11

)
+

∂

∂m
x01
(
1, p, e01 + pe11

)
e11, and (21)

1
∂

∂p0
x01(1, p, e

0
1 + pe11) + p

∂

∂p1
x01(1, p, e

0
1 + pe11) + (e01 + pe11)

∂

∂m
x01(1, p, e

0
1 + pe11) = 0.

(22)

Second, we claim ∂
∂mx

0
1

(
1, p, e01 + pe11

)
6= 0. Suppose not, i.e., ∂

∂mx
0
1

(
1, p, e01 + pe11

)
= 0.

As Ψ1(p; e) = 0, we know ∂
∂p̂1

x01 (p; e1) = 0. Then, (21) implies ∂
∂p1

x01
(
1, p, e01 + pe11

)
= 0.

Consequently, (22) implies ∂
∂p0

x01(1, p, e
0
1 + pe11) = 0. It then means that the derivative

of x01 vanishes completely, which is impossible under our assumptions about the utility

function. Therefore, ∂
∂mx

0
1

(
1, p, e01 + pe11

)
6= 0.

Now, since the income is invariant of t, ∂
∂p1

x01
(
1, p, e01 (t) + pe11 (t)

)
= ∂

∂p1
x01
(
1, p, e01 + pe11

)
and ∂

∂mx
0
1

(
1, p, e01 (t) + pe11 (t)

)
= ∂

∂mx
0
1

(
1, p, e01 + pe11

)
holds for all t. These mean that

∂

∂t

(
∂

∂p1
x01
(
1, p, e01(t) + pe11(t)

))
= 0, and (23)

∂

∂t

(
∂

∂m
x01
(
1, p, e01(t) + pe11(t)

))
= 0. (24)

5See, for instance, Chapter 1 of Mas-Colell’s book.
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Therefore,

∂

∂t

(
∂

∂p̂1
x01 (p; e1(t))

)
=

∂

∂t

(
∂

∂p1
x01
(
1, p, e01 (t) + pe11 (t)

)
+

∂

∂m
x01
(
1, p, e01 (t) + pe11 (t)

)
e11 (t)

)
by (21)

=
∂

∂t

(
∂

∂m
x01
(
1, p, e01(t) + pe11(t)

)
e11(t)

)
by (23)

=
∂

∂t

(
∂

∂m
x01
(
1, p, e01 (t) + pe11 (t)

))
e11 (t) +

∂

∂m
x01
(
1, p, e01 (t) + pe11 (t)

)( ∂

∂t
e11 (t)

)
=

∂

∂m
x01
(
1, p, e01 (t) + pe11 (t)

)( ∂

∂t
e11 (t)

)
by (24)

=
∂

∂m
x01
(
1, p, e01 + pe11

)
(because e11 (t) = e11 + t)

6= 0,

which completes the proof.

Proof of Lemma 5

Keep in mind
∂x0h
∂p = 0, since x0h is determined by p̂h, independently of p. The realized

consumption x1h is determined by (5) and hence we always have

∂x1h
∂p

=
x0h − e0h
p2

and
∂x1h
∂p̂h

= −1

p

∂

∂p̂h
x0h(p̂h; eh).

Using these relations, by direct computation, we obtain

∂Φ/∂ (· · · , p̂h, · · · , λ) =


· · · ∂

∂p̂h
x0h (p̂h; eh) · · · 0

. . . 0
...

ζh
∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
0

. . .
...


p = p∗

p̂1 = · · · = p̂H = p∗

λ = p∗

where

ζh =
∂

∂p̂h

[
λ
∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
− ∂uh
∂x1

(
x0h (p̂h; eh) , x1h

)]
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Now,

ζh =
∂

∂p̂h

[
λ
∂uh
∂x0

(
x0h (p̂h; eh) , x1h

)
− ∂uh
∂x1

(
x0h (p̂h; eh) , x1h

)]
| p=p̂h=λ=p∗

= p∗
[
∂2uh

(∂x0)2
∂

∂p̂h
x0h(p̂h; eh)− 1

p∗
∂

∂p̂h
x0h(p̂h; eh)

∂2uh
∂x0∂x1

]
−
[
∂2uh
∂x1∂x0

∂

∂p̂h
x0h(p̂h; eh)− 1

p∗
∂

∂p̂h
x0h(p̂h; eh)

∂2uh

(∂x1)2

]

=

[
p∗
(
∂2uh

(∂x0)2
− 1

p∗
∂2uh
∂x0∂x1

)
−
(

∂2uh
∂x0∂x1

− 1

p∗
∂2uh

(∂x1)2

)]
∂

∂p̂h
x0h(p̂h; eh)

=

[
p∗

∂2uh

(∂x0)2
− 2

∂2uh
∂x0∂x1

− 1

p∗
∂2uh

(∂x1)2

]
∂

∂p̂h
x0h(p̂h; eh),

and thus we have obtained the desired expression.
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