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Abstract

We propose and apply a new theory-consistent algorithm, which uses disaggregated inter-city
trade data to identify a pyramidic city system with central places and associated hinterlands.
Because central places possess more industries than the cities in their hinterlands, and
because industries, which are exclusive to central places, are more likely to export to the
small, peripheral cities in the central place’s hinterland, we find that aggregate exports from
central places to their hinterlands are two to five times larger than predicted by gravity
forces. Using a simple decomposition approach, we show that this upward bias results from
aggregation along the extensive industry margin, which is why the bias is much smaller
and only marginally significant if estimation is conducted in a theory-consistent way at the
disaggregated industry level.
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1 Introduction

During the last decades the use of the structural gravity equation as a workhorse model of the

empirical trade literature has expanded far beyond its intellectual origins in the international

trade literature – as evident from a large number of studies, which have adopted the gravity

framework to analyse the pattern of intra-national trade.1

Most international trade models, that provide micro-foundations for the structural gravity

equation, (implicitly) assume that all industries are present in all locations.2 Focussing on

trade between cities in Japan, we argue that the location of industries is endogenous, and that

it roughly follows Christaller’s (1933) hierarchy principle for industries, according to which all

industries, that are present in a city of a given size, are expected to be also present in all cities

of equal or larger size (cf. Mori, Nishikimi, and Smith, 2008; Mori and Smith, 2011; Hsu, 2012;

Schiff, 2015).

Gravity estimations based on aggregate inter-city trade ignore Christaller’s (1933) hierarchy

principle for industries and lump together industry-level trade flows, which according to Fujita,

Krugman, and Mori’s (1999a)3 central place model should be treated as separate observations

(obeying the law of gravity at the industry level conditional on industry existence).4 Because

central places possess more industries than the cities in their hinterland, and because indus-

tries, which are exclusive to central places, are more likely to export to the small, peripheral

cities in the central place’s hinterland, we find that aggregate exports from central places to

their hinterlands are two to five times larger than predicted by the (structural) gravity model

for aggregate inter-city trade. To quantify the importance of aggregation bias in explaining

this systematic deviation from the law of gravity, we compare our result to the outcome of

a theory-consistent industry-level gravity estimation.5 Interestingly, we find that the upward
1See Wolf (2000); Hillberry and Hummels (2003); Millimet and Osang (2007); Yilmazkuday (2012); Coughlin

and Novy (2013, 2016); Felbermayr and Gröschl (2014) as well as Allen and Arkolakis (2014) for studies from the
U.S., Combes, Lafourcade, and Mayer (2005) and Briant, Combes, and Lafourcade (2010) for studies from France,
and Nitsch and Wolf (2013) as well as Lameli, Nitsch, Südekum, and Wolf (2015) for studies from Germany.

2Head and Mayer (2014) review various single-sector models that provide micro-foundations for the structural
gravity equation. Multi-sector extensions of Eaton and Kortum’s (2002) Ricardian trade model and Krugman’s
(1980) monopolistic competition framework, as for example reviewed by Costinot and Rodríguez-Clare (2014,
pp. 213-216), typically assume industries to be active in all locations. Although the multi-sector version of the
Armington trade model (cf. Anderson and van Wincoop, 2004, p. 708) in principle is flexible enough to capture
any kind of industry location pattern, there is no endogenous mechanism, which tells us what kind of industry
configuration we should expect.

3A reprint of Fujita et al.’s (1999a) original article can be found in Fujita, Krugman, and Venables (1999b).
4Head and Mayer (2014, pp.139-40) show that the structural gravity equation relies on two critical conditions.

See Tabuchi and Thisse (2011) and Hsu (2012) for two alternative central place models, that do not fulfil these
conditions.

5Several studies have used intra-national trade data to identify systematic deviations from the structural
gravity equation as the workhorse model of the empirical trade literature (cf. Anderson and van Wincoop, 2004;
Anderson, 2011; Head and Mayer, 2013, 2014). Unlike previous studies, which have either focused on defunct
historical borders (cf. Nitsch and Wolf, 2013; Felbermayr and Gröschl, 2014) or on the boundaries of generic
administrative units at different levels of spatial disaggregation (cf. Wolf, 2000; Hillberry and Hummels, 2003,
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bias in the exports from central places to their respective hinterlands is much smaller and only

marginally significant in theory-consistent gravity estimations that are conducted at the much

more disaggregated industry level.6

Another striking discrepancy between inter-city gravity estimations at different levels of

aggregation concerns the correct interpretation of the distance elasticity, which in aggregate

gravity estimations usually is twice as large as in gravity estimations, that are conducted at

the much more disaggregated industry level. Industries systematically differ with respect to

the rate at which the probability that a certain city exports the industry’s products to its

partner city declines in the bilateral distance. As a consequence, we find that there are two

margins along which the aggregate volume of inter-city trade declines: at the intensive margin

the value of industry-level trade flows declines as the trading distance expands, while at the

same time there is a reduction in the number of exporting industries at the extensive margin.

Distance elasticities from aggregate gravity estimations therefore systematically overstate the

intensive margin adjustment, which in most international trade models (cf. Head and Mayer,

2014) explains why the (aggregate) trade volume is inversely related to bilateral distance.

Further support for the role of aggregation bias in explaining the above results comes from a

simple decomposition analysis (cf. Hillberry and Hummels, 2008), that exploits the full potential

of our micro-level shipment data. Decomposing the upward bias in central places’ exports in

its various in- and extensive margins, reveals that 42.1% to 65.7% of the overall effect can be

explained through more trade at the extensive industry margin, while only 2.1% to 10.8% of

the upward bias stem from observing more shipments within industries. Also, we find that

a substantial share (26.2% to 30.4%) of the trade-reducing distance effect originates from a

reduction in the number of exporting industries at the extensive industry margin.

In his previous research on intra-national trade in Japan Wrona (2018) shows that inter-

prefectural trade between East- and West-Japan is 23.1% to 51.3% lower than trade within

both country parts, and that the lack of east-west trade can be linked to the bipolar structure

of trade-creating social and business networks. As a further robustness check and in order to

make sure that the upward bias in the exports from large central places (in particular Tokyo,

Osaka, and Nagoya) to their respective hinterlands does not follow from a multipolar network

2008; Combes et al., 2005; Yilmazkuday, 2012; Coughlin and Novy, 2016), we show that there is a systematic
upward bias in the exports of large centrally located cities to smaller cities in their periphery, which can be
rationalised within a multipolar city-system with a hierarchical industry structure as derived by Fujita et al.
(1999a).

6In contrast to the previous literature, which – in the absence of highly disaggregated industry-level data – has
compared intra-national gravity estimations at different levels of spatial aggregation (cf. Hillberry and Hummels,
2008; Briant et al., 2010; Coughlin and Novy, 2016), we are pointing to a form of aggregation bias, that results
from lumping together industries with vastly different location patterns, that according to Fujita et al.’s (1999a)
central place model should be treated as separate observations.
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structure, we therefore show that neither of these additional controls correlates in a meaningful

way with our findings.

By developing a simple, theory-consistent algorithm, which not only allows us to rank cities

in terms of their centrality, but also to associate central places with their respective hinterlands,

we make an important methodological contribution, which complements existing research (cf.

Tomer and Kane, 2014), that uses atheoretical concentration and centrality measures to char-

acterise the highly concentrated nature of intra-national goods trade.7 We thereby exploit a

unique feature of our data: Instead of associating hinterlands with their central places based on

raw distance (cf. Christaller, 1933) or on central places’ aggregate exports (cf. Hsu, Mori, and

Smith, 2014b), our assignment method is based on a comparison between the industry-specific

trade pattern, that we observe from our highly disaggregated industry-level trade data, and the

uniform industry-level trade pattern, that would arise in a hypothetical benchmark scenario of a

featureless economy, that does not obey Christaller’s (1933) hierarchy principle for industries.8

We interpret the very fact, that we are able to identify a clear and consistent division into

central places and associated hinterland cities as supportive evidence in favour of Fujita et al.’s

(1999a) central place theory.9 Most central place models (cf. Fujita et al., 1999a; Tabuchi and

Thisse, 2011; Hsu, 2012) generally share three types of predictions, regarding i.) the size and

location of cities, ii.) the presence of industries across cities, and iii.) the pattern of industry-

level trade between these cities.10 To the best of our knowledge, we are the first, who use highly

disaggregated industry-level shipment data to verify the predictions regarding the inter-city

trade pattern, thereby complementing earlier research, which has exclusively focused on the

pattern of industry location (cf. Schiff, 2015) and on the link between city size distribution and

industry location (cf. Mori et al., 2008; Mori and Smith, 2011; Hsu, 2012).

Using the most recent wave of our data, we identify eight major central places, which are
7Tomer and Kane (2014) extend and modify the Freight Analysis Framework (FAF), Version 3.2 (principally

constructed from the 2007 U.S. Commodity Flow Survey (CFS)) to study shipments between U.S. metropolitan
areas. While trade concentration is measured by the GINI coefficient, a network approach, that uses information
on the total number of connections weighted by their trade value, is used to measure a metropolitan area’s
centrality.

8Neary (2003) uses the term “featureless economy” to describe an economy without heterogeneity across indus-
tries in the context of a General Oligopolistic Equilibrium (GOLE) model with Ricardian technology difference
across industries.

9A simple randomisation test shows that the emerging subregions, consisting of a central place and its associ-
ated hinterland, are significantly more compact than the counterfactual subregions, that result under a random
assignment of the hinterland cities.

10Eaton and Lipsey (1976, 1982), Quinzii and Thisse (1990), Fujita et al. (1999a), Fujita et al. (1999b),
Tabuchi and Thisse (2011), as well as Hsu (2012), and Hsu, Holmes, and Morgan (2014a) have developed different
theoretical models to incorporate the basic ideas of Christaller’s (1933) and Lösch’s (1940) Central Place Theory.
See Abdel-Rahman and Anas (2004), Berliant (2008), and Mori (2017) for recent reviews of the theoretical
central place literature. A unifying feature of all central place models is the multiplicity of spatial equilibria,
which implies the possibility of a drastic reconfiguration of the city/industry system in case of a sufficiently large
shock. In our empirical analysis we therefore focus on Japan, whose city and industry structure has proven too
be extremely resilient against large negative shocks in the past (cf. Davis and Weinstein, 2002, 2008).
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endogenously ranked in a pyramidic city system with three nested layers. Unsurprisingly, we

find that the three largest cities in our sample (Tokyo, Osaka, and Nagoya) also belong to the

most highly ranked central places. Although only responsible for 20% of all observed trade

flows, our eight central places account for 75% of the inter-city trade volume in 2015, with the

other 25% of the total trade volume being distributed over the remaining 80% of all trade flows.

Unarguably, it is important to understand how these cities trade, and whether their pattern of

trade systematically deviates from the otherwise extremely well performing (structural) gravity

equation (cf. Head and Mayer, 2014).

We also contribute to a literature that studies the distortions that arise in gravity estima-

tions from aggregation across heterogeneous industries and/or products (cf. Hillberry, 2002;

Anderson and van Wincoop, 2004; Anderson and Neary, 2005). Due to the unavailability of

highly disaggregated industry-level trade data at the national level, most studies (with the no-

table exception of Hillberry (2002)) have focused on disaggregated international trade data.

Most notably, Hummels and Klenow (2005) showed that the extensive goods margin accounts

for around 60 % of the greater exports of larger economies, and that none of the standard

international trade models, that they reviewed in their study was able to explain all of their

stylised facts.

French (2017) uses an extension of Eaton and Kortum’s (2002) Ricardian trade model to

argue that gravity estimation based on sector-level trade data is generally misspecified in the

presence of product-level comparative advantage, recommending instead the use of highly dis-

aggregated product-level trade data. Even though we share the general recommendation to use

more disaggregated trade data, there is an important difference in the underlying narratives. In

French’s (2017) extension of the Eaton-Kortum model there is an aggregation bias because all

products across all sectors in all countries are produced at different product-specific technology

levels. In the absence of Ricardian technology differences at the product-level the aggregation

bias disappears. In the context of Fujita et al.’s (1999a) central place theory, aggregate gravity

estimation is biased exactly because not all industries are ubiquitously distributed in space.

Christaller’s (1933) hierarchy principle for industries thereby is the consequence of endogenous

market entry and continues to hold, even when there are no Ricardian technology differences

at the sub-national level.

The remainder of this paper is structured as follows: In Section 2 we discuss the main

features of Fujita et al.’s (1999a) central place model, which subsequently is used to derive our

key predictions regarding the pattern of inter-city trade, including the emergence of estimation

bias in aggregate gravity estimation. In Section 3 we introduce and discuss central features
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of our data. The following Section 4 contains two of our main results: At first, we develop

a new theory-consistent algorithm to identify central places and their respective hinterlands,

which subsequently are used to quantify the upward bias in the exports from central places to

their respective hinterlands. Section 5 then provides additional evidence, which suggests that

the upward bias in the exports from central places to their respective hinterlands emerges from

aggregation along the extensive industry margin. Section 6 concludes.

2 Theoretical Background

As a theoretical foundation for our analysis of Japan’s inter-city trade pattern we build up on the

work of Fujita et al. (1999a), who were the first to embed Christaller’s (1933) and Lösch’s (1940)

Central Place Theory into a tractable general equilibrium framework with monopolistically

competitive firms and endogenous market entrance. Deviating from Fujita et al.’s (1999a)

original focus on gradual agglomeration processes in a multipolar city system, we are deliberately

choosing this modelling environment for two specific reasons: Unlike in other central place

models (cf. Tabuchi and Thisse, 2011; Hsu, 2012) the pattern of industry-level inter-city trade

obeys the law of (structural) gravity (cf. Anderson and van Wincoop, 2004; Head and Mayer,

2014) conditional on the industry being present in the respective origin city. At the same time,

endogenous market entrance results in a hierarchical industry structure, which stands in marked

contrast to the exogenously fixed distribution of industries in most international trade models.11

We structure the remainder of this Section as follows: In Subsection 2.1 we summarise Fujita

et al.’s (1999a) main results regarding the distribution of cities and industries, and demonstrate

that the pattern of industry-level inter-city trade obeys the law of gravity (conditional on

industry existence). The following two subsections then isolate and verify two key predictions

from Fujita et al.’s (1999a) central place model, that are of central importance in shaping the

pattern of inter-city trade. In Subsection 2.2 we show that the predicted pattern of industry

location follows a clear hierarchy, and that there is strong empirical support in favour of this

pattern. In Subsection 2.3, it is shown that the extensive margin of industry-level inter-city

trade crucially depends on the position of the respective industry in this hierarchy. In the final

Subsection 2.4 we argue that the combination of these two patterns leads to biased results in

aggregate gravity estimations, that systematically underestimate the exports of large cities in
11Multi-sector extensions of Eaton and Kortum’s (2002) Ricardian trade model and Krugman’s (1980) mo-

nopolistic competition framework typically assume industries to be ubiquitously distributed (see Costinot and
Rodríguez-Clare (2014, pp. 213-216) for a recent summary of the literature). The multi-sector version of the
Armington trade model (cf. Anderson and van Wincoop, 2004, p. 708) is flexible enough to replicate arbitrary
patterns of industry location but does not provide theoretical guidance with respect to the underlying determi-
nants of the observed industry location pattern.
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a multipolar city system with a hierarchical industry structure.

2.1 Central Place Theory and the Pattern of Inter-city Trade

In the following we will use the numerical example from Fujita et al. (1999a, Fig. 6, p. 237)

to illustrate some of the key features of their central place model. Fujita et al. (1999a) con-

Figure 1: Central Places and their Hinterlands in a Hierarchical City System

1st layer

2nd layer

3rd layer

Hinterland of 1st-layer
central place

Hinterlands of 2nd-layer
central places

1st-Layer Industries

2nd-Layer Industries

3rd-Layer Industries

sider a multipolar agglomeration model with heterogeneous industries, in which a city not only

gets larger by growing in scale but also by growing in scope (i.e. by adding new industries).

Agglomeration generates two types of cities: On the one hand, we have a limited number of

central places – large, centrally located cities of sufficient size to not only attract ubiquitous

industries, whose goods are costly to trade and therefore optimally produced in close proximity

to customers (e.g. ready mixed concrete), but also some footloose industries, whose goods are

highly tradeable and which therefore prefer centrally located cities with a large home market

(cf. Krugman, 1980). On the other hand, there are many small cities in the hinterlands of

central places, which due to their insufficient size and/or location only attract a limited set of

ubiquitous industries. Sorting central places according to the range of their industries (indicated

by the number of circles around a city in Figure 1), then results in a hierarchical city system

with nested central places and associated sets of hinterland cities as illustrated in Figure 1. The

sorting of industries across a total of three layers in Figure 1 thereby distinguishes between 1st-,

2nd-, and 3rd-layer cities, which systematically differ in terms of their industry diversity (see
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also Subsection 2.2 below).

Although theoretically not explored by Fujita et al. (1999a), it can be shown that the pattern

of industry-level inter-city trade obeys the following set of industry-level gravity equations:

Xij,k = Ej,kYi,k

Yk

(
τij,k

Φi,kΩj,k

)1−σk

∀ Yi,k > 0, (1)

that hold for each exporting cities i, that produces some output Yi,k > 0 in industry k (see

Appendix A.1 for derivation). A city’s average trade costs as ex- or importer thereby are

captured by the ex- and importer-specific multilateral resistance terms:

Φ1−σk
i,k =

∑
j

(
ψijτij,k

Ωj,k

)1−σk
Ej,k

Yk
and Ω1−σk

j,k =
∑

i

(
ψijτij,k

Φi,k

)1−σk
Yi,k

Yk
. (2)

The structural gravity equation in Eq. (1) predicts industry k’ bilateral trade volume Xij,k

from origin city i to destination city j as a simple multiplicative function, which combines

the product of origin i’s sectoral production Yi,k > 0 and destination j’s sectoral expenditure

Ej,k > 0 (normalised by sector k’s total production Yk), with a trade cost term, that includes the

bilateral iceberg-type transportation cost τij,k ≥ 1, as well as the in- and outward multilateral

resistance terms Φ1−σk
i,k > 0 and Ω1−σk

j,k > 0, which measure exporter i’s and importer j’s ease

of market access.12 The sensitivity of the bilateral trade volume with respect to trade frictions

thereby is governed by the industry-specific elasticity of substitution σk > 1.

In summary, we not only have shown that endogenous agglomeration in Fujita et al.’s (1999a)

central place model results in a pyramidic city system with a hierarchical industry structure,

but also that the law of gravity for inter-city trade is expected to hold at the industry level

(conditional on industry existence). Theory-consistent gravity estimation therefore should be

based on industry-level inter-city trade data and not on aggregate inter-city trade data. In

the following we will show that lumping together industry-level trade flows, which according to

Fujita et al.’s (1999a) central place model should be treated as separate observation, results in

a systematic aggregation bias in aggregate inter-city gravity estimation.

2.2 Christaller’s Hierarchy Principle for Industries

As a noticeable feature of the pyramidic city system in Figure 1, we find the distribution of

industries across cities to follow a strict hierarchical pattern: All 3rd-layer industries can also

be found in 2nd-layer cities, and all 2rd-layer industries are also present in the 1st-layer city.
12See Anderson and van Wincoop (2003), Head and Mayer (2014), as well as Larch and Yotov (2016) for a

detailed discussion of the various interpretations and applications of the multilateral resistance terms.
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Following Mori and Smith (2011), we refer to this pattern as Christaller’s (1933) hierarchy

principle for industries, expecting all industries, which can be found in a city of a given size, to

be also present in all cities of larger size.

To check whether our intra-Japanese trade data obeys Christaller’s (1933) hierarchy principle

for industries, we propose a simple three-step randomisation test: At first we compute the

economy’s average hierarchy share (defined by Eq. (3) below) as a measure of how hierarchical

industries are distributed across cities. In a second step we then randomise the distribution of

industries across cities. In the third and last step we finally compare Japan’s average hierarchy

share with its counterfactual counterparts, that are obtained from a randomised distribution of

industries across cities.

For any two cities i and j we can define the hierarchy share Hij as:

Hij ≡
# (Ki ∩Kj)
min{Ki,Kj}

∈ [0, 1], (3)

with Ki as the set of industries in city i, and Ki ≡ #Kj as the corresponding number of

industries in this city.13 The hierarchy share takes a value of Hij = 0 if there is zero overlap

between the sets of industries in i and j. If all industries, that are present in the smaller city, can

also be found in the larger city the hierarchy share takes its maximum value of Hij = 1, which

means that Christaller’s (1933) hierarchy principle for industries holds without restrictions.

Aggregation across all cities i and j requires us to proceed in two steps. We begin by

aggregating across all cities i that host more industries than city j (i.e. Ki > Kj). City j’s

average hierarchy share Hj(κ) can then be computed as:

Hj(κ) = 1
#Gj(κ)

∑
Gj(κ)

Hij with Gj(κ) ≡ {i : Ki > Kj & Ki > κ}, (4)

in which κ > 0 is an exogenous threshold, that restricts the set Gj(κ) of cities i, whose number

of industries is larger than the maximum of κ and Kj . Given the definition of Hj(κ) we can

finally compute the economy-wide average hierarchy share H(κ) as a simple arithmetic mean

H(κ) =
∑N

j=1Hj(κ)/N over all cities j.

As evident from Figure 2, we find Christaller’s (1933) hierarchy principle for industries

to hold particularly well when conditioning only on cities with a sufficiently large number of

industries (i.e. the average hierarchy share H(κ) converges to its maximum value of one for

increasing threshold levels of κ). However, even in the absence of Christaller’s (1933) hierarchy

principle for industries we would expect the hierarchy share between cities i and j with a larger
13See Section 3 below for a more detailed discussion of how cities and industries are defined.
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Figure 2: Testing for Christaller’s (1933) Hierarchy Principle for Industries
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difference, |Ki −Kj |, in their industrial diversity to take larger values. A simple randomisation

test, that holds the number of industries in each city as observed in reality but shuffles the

industry types, therefore delivers a natural benchmark H̃(κ) for the average hierarchy share. In

Figure 2 we plot the mean and maximum values H̄(κ) and Ĥ(κ) of H̃(κ) that emerge from 1,000

random counterfactuals. Across all threshold levels of κ we find Japan’s average hierarchy share

H(κ) to be significantly larger than the random benchmark, which allows us to reject a random

distribution of industries in favour of Christaller’s (1933) hierarchy principle for industries.14

2.3 The Heterogeneous Extensive Margins of Inter-city Trade

Having established Christaller’s (1933) hierarchy principle for industries, we now explore the

heterogeneity in the industry-specific pattern of inter-city trade that is created by this principle.

For the sake of simplicity, we are reducing the complexity of the problem by distinguishing only

between footloose and ubiquitous industries as basic industry categories (e.g. 2nd-layer versus

3rd-layer industries in Figure 1). As illustrated by Fujita et al. (1999a, Fig. 10, p. 244), we

expect footloose (2nd-layer) industries – which only exist in small number of large but relatively

far apart central places – to have high market shares, which due to the absence of any close-

by competitors remain rather stable in their hinterland as the distance from the central place

increases. In contrast, we expect ubiquitous (3rd-layer) industries to have smaller market shares,

which in the presence of competitors quickly decline as the distance, over which the respective
14See also Mori et al. (2008), Mori and Smith (2011), Hsu (2012) and Schiff (2015) for further supportive

empirical evidence in favour of Christaller’s (1933) hierarchy principle for industries.
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goods are traded, expands. In the presence of fixed market entry costs, which were not present

in Fujita et al.’s (1999a) original model but have become an integral part of the trade literature

since then (cf. Melitz, 2003), we would expect this pattern in market shares to be reflected by

the extensive margin of industry-level inter-city trade.15

Figure 3: Heterogeneity in the Extensive Margins of Inter-city Trade at the Industry Level
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In Figure 3, we distinguish industries according to their position in the hierarchy from Figure

1 by classifying them according to the number of cities in which they were present in 2015. For

each set of industries we then plot the extensive margin of inter-city trade (i.e. the share of

all possible destinations, which are actually importing goods produced by this industry) over a

total of 25 different distance intervals, that capture the bilateral distance between origin and

destination city.16 In line with our above argumentation we find that footloose industries, which

are only present in a limited set of cities, feature a substantially higher probability of exporting

(at least over the first 1,000 km), which declines less steeply over increasing distances than the

extensive margin of ubiquitous industries.17

15In Hsu’s (2012) central place model each firm only serves to a finite set of cities out of an infinite mass of
cities located in an unbounded one-dimensional space.

16To be classified as a potential destination for the goods produced by a specific origin city there must be at
least some demand for those goods in these cities (cf. Hillberry and Hummels, 2008).

17The underlying National Commodity Flow Survey [Zenkoku Kamotsu Jun Ryudo Chosa] is introduced in
Section 3. There we also explain why we observe a relatively large number of zero trade flows (even over short
distances of less than 100 km).
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2.4 Central Places, Hinterlands, and Aggregation Bias

The gravity literature (cf. Hillberry, 2002; Hillberry and Hummels, 2008) has identified various

reasons why aggregation across (heterogeneous) industries may generally result in an estimation

bias (see Anderson and van Wincoop (2004, pp.725-729) as well as Anderson and Neary (2005,

pp. 183-185) for a summary of the earlier literature). We contribute to this literature by

establishing a new rationale for the emergence of aggregation bias in gravity estimations based

on inter-city trade data.

In sum the empirical evidence from the previous Subsections 2.2 and 2.3 implies that central

places have more industries and the cities in their hinterland, and that the industries, which

are exclusive to the respective central place, are more likely to export to the smaller, peripheral

cities, that are located in the central place’s hinterland. To understand how these two factors

interact in creating an aggregation bias, we develop in Figure 4 a simple, illustrative example,

which depicts the pattern of trade between two 2nd-layer central places in red and four hinterland

cities in blue (two in each of the central places hinterlands, which are separated by a dashed

line in Figure 4). In contrast to the omnipresent 3rd-layer industries, 2nd-layer industries can

Figure 4: Central Places, Hinterlands, and Aggregation Bias
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only be found in sufficiently large central places. Also these industries differ with respect to
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the extensive margin: All three 3rd-layer industries export to the next adjacent city. But only

two of the 3rd-layer industries export to the one that comes after the next city. No 3rd-layer

industry exports beyond this city. The extensive margin for 2nd-layer industries is less sensitive

to increasing distances: All three 2nd-layer industries export to the next city and the city

that comes after this city. As the distance increases further the number of exporting 2nd-layer

industries then drops from three to two, to one, and finally to zero.

Two important insights can be gained from Figure 4: If we compare the aggregate volume of

exports from central places to their respective hinterland (bold, red arrows in Figure 4) with the

aggregate exports between the average city pair, we notice that these trade flows are made up

of a larger number of industry-level trade flows. Instead of treating these industry-level trade

flows as separate observations, as suggested by Subsection 2.1, they end up being aggregated

into a single inter-city trade flow, that naturally is much larger than what the structural gravity

model for aggregate inter-city trade would make us expect. Also, we find that the aggregate

trade volume is generally declining along two margins. Within each industry the trade volume

decreases at the intensive margin as distance widens, while at the same time the number of

exporting industries is declining at the extensive margin. We therefore expect the distance

elasticity at the aggregate level to be substantially larger than the distance elasticity, that

emerges from a theory-consistent garvity estimation at the industry-level.

3 Data

Our main data source is Japan’s National Commodity Flow Survey [Zenkoku Kamotsu Jun

Ryudo Chosa], which is compiled by the Ministry of Land, Infrastructure, Tourism and Trans-

port (MLIT). The commodity flow data comes in five waves, which have been collected in a

five-year interval from 1995 to 2015. The National Commodity Flow Survey provides detailed

information on establishment-level shipments between all connected municipalities, which are

located at Japan’s four main islands (Hokkaido, Honshu, Shikoku and Kyushu).18 The survey

includes only manufacturing establishments with at least four employees, which are classified

according to the Japanese Standard Industrial Classification (JSIC), which distinguishes be-

tween 24 two-digit manufacturing industries (22 two-digit manufacturing industries in 1995 and

2000).19 In addition to the establishments’ two-digit industry classification we also have de-
18Due to several administrative reforms Japan recently has seen a number of municipality mergers. We focus

on 1,807 connected municipalities in 2015, and use the concordance tables from Kirimura’s (2018) Municipality
Map Maker (MMM) to harmonise the municipality classification across all five survey waves.

19In 2015 a total of 14,620 or 7.0% of all 208,029 relevant manufacturing establishments were sampled. For the
earlier waves the number of sampled manufacturing establishments are 14,097 or 5.4% out of 263,052 in 2010;
13,684 or 4.7% out of 294,170 in 2005; 15,452 or 4.1% out of 373,108 in 2000; and 18,520 or 4.9% out of 378,167
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tailed information on the shipped commodities, which are disaggregated into 9 basic product

categories and 85 sub-categories.

In line with the underlying theoretical model (cf. Fujita et al., 1999a) we focus on cities as the

basic geographic unit of our analysis. Using highly disaggregated grid data from the Japanese

Population Census, cities are constructed based on urban agglomerations (UAs), which are

identified as contiguous and disjoint sets of 1km×1km grid cells with at least 1,000 people per

square kilometre and a total population of at least 10,000 inhabitants.20 The 450 UAs, which we

identify based on the Japanese Population Census from 2015, are home to 77% of Japan’s total

population and occupy 12% of the country’s contiguous landmass.21 To aggregate individual

shipments from the municipality to the city level, we assign municipalities that overlap with

one or multiple UAs to the UA with the largest population share, calling the set of associated

municipalities henceforth a city. Aggregating up our municipality-level shipment data to the

city level leaves us with 292 cities in 2015, which export to at least ten other cities in our

sample.22

One common drawback shared by most commodity flow surveys (cf. Wolf, 2000; Hillberry

and Hummels, 2003, 2008; Combes et al., 2005; Nitsch and Wolf, 2013) is the rather coarse

classification of commodities based on a limited number of industries, which stands in marked

contrast to the availability of high-resolution international trade data. To obtain a sufficiently

detailed industry classification, we combine the establishment-level industry classification (22 to

24 two-digit Japanese Standard Industrial Classification (JSIC) industries) with the shipment-

specific product codes (67 relevant subcategories).23 Not all of the 24 × 67 = 1607 feasible

combinations of industry and product code are relevant for our analysis.24 In order to exclude

outliers, we manually check each industry×product combination to see whether the recorded

shipments make sense to be recognized as an output of the sending establishment. In the same

way we also check whether certain product categories (e.g. 7022: “clothes and belongings”)

are too broadly defined, and therefore could be splitted into multiple sub-categories depending

on industry classification of the sending establishment (e.g. 403: “textil” versus 412: “leather

in 1995. A more detailed discussion of our primary data, including the definition of industries and products, can
be found in an Online Supplement, which is available from the corresponding author’s website.

20See Dijkstra and Poelman (2012, 2014) for a harmonised definition of functional urban areas, which is applied
by Schmidheiny and Suedekum (2015) to identify European cities.

21Figure 7 (delegated to the Appendix) uses a heatmap to illustrate the population distribution across Japan’s
450 urban agglomerations.

22For the earlier waves of the survey we end up with a total of 291 cities in 2010; 307 cities in 2005; 310 cities
in 2000 and 347 cities in 1995.

23We omit all product categories that are related to the disposal of scrap and waste. A complete list of all
industry and product categories can be found in an Online Supplement, which is available from the corresponding
author’s website.

24Some of the recorded shipments clearly are not representative for the establishments typical sales (e.g. a
food manufacture who is shipping a single automobile, probably selling off a former investment good).
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and leather products”). As a result of the data cleaning process we end up with 212 relevant

industry-product combinations, which we henceforth will use in our analysis.25

Our highly disaggregated inter-city trade data is complemented by information on real-road

distances between municipality pairs based on the distance along the road network obtained from

OpenStreetMap (as of July, 2017). The bilateral distance between each pair of municipalities

thereby is computed as the distance between the centroids of the most populated 1km×1km

cells in these municipalities using osrmtime (cf. Huber and Rust, 2016), which is the STATA

interface of the Open Source Routing Machine. We approximate intra-municipality distance

by the average line-distance between a pair of locations on a circle with the area equal to

the habitable area of the municipality (cf. Statistics Bureau, Ministry of Internal Affairs and

Communications of Japan, 2015), which can be approximated by (128/45π)
√
a/π, in which a

is the habitable area of the municipality. Following Head and Mayer (2009), bilateral distance

between city i and j is then computed as a trade-weighted harmonic mean of the bilateral

distances between all the municipalities that belong to city i and j, respectively.26

In addition to the information on bilateral distances the National Commodity Flow Survey

also provides detailed information on the total transportation cost per shipment, including

both distance-related (i.e. gas, tolls, etc.) and time-related (i.e. salaries, insurance, etc.)

expenses. We use this unique information to compute average and industry-specific ad valorem

transportation costs at the city-pair level (as for example in Hertel, Hummels, Ivanic, and

Keeney, 2007).

To assess the representativeness of our data set and as future reference for our later analysis

we conduct a standard gravity estimation, regressing the bilateral trade volume (in logs) lnXij

on the following trade cost function:

ln τij = βTRANS_COST × ln(1 + FREIGHTij) + βDIST × ln DISTij

+ βHOME ×HOMEij + βISLAND × ISLANDij ,
(5)

and the complete set of origin- and destination-specific fixed effects. We thereby distinguish

between average real-road distance between and within cities DISTij and the average ad valorem

transportation costs 1+FREIGHTij , which are defined as one plus the freight rate FREIGHTij

(cf. Hertel et al., 2007). Following Wolf (2000), Hillberry and Hummels (2003, 2008), as well

as Millimet and Osang (2007), we account for non-linear distance effects by introducing a
25A complete list of all industry-product combinations can be found in an Online Supplement, which is available

from the corresponding author’s website.
26See Rauch (2016) for a geometric analogy between gravity in physics and gravity in trade, which suggest that

distances between regions in empirical gravity estimations should be measured as weighted harmonic means over
pairwise distances of local economic activity (see Head and Mayer (2009) for a detailed review of the literature).
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“home bias” dummy HOMEij ∈ {0, 1}, which assumes a value of one for intra-city trade (i.e.

i = j) and a value of zero otherwise. To account for non-linearities in transportation costs

due to Japan’s geography as an archipelago (consisting of the four main islands Hokkaido,

Honshu, Shikoku, and Kyushu), we additionally control for intra-island trade by adding an

island dummy ISLANDij ∈ {0, 1}, which takes a value of one for intra-island trade and a value

of zero otherwise. Table 1 summarises the estimation results, which in terms of magnitude

and significances are comparable to those found in the empirical trade literature (cf. Head and

Mayer, 2014).

Table 1: A First Exploration of Japan’s Inter-city Trade

Dependent variable: Exports from city i to city j

Year: 2015 2010 2005 2000 1995

Model: OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE

Specification: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ln Distanceij −0.7084∗∗∗ −0.5971∗∗∗ −0.6847∗∗∗ −0.5400∗∗∗ −0.6294∗∗∗ −0.4931∗∗∗ −0.6521∗∗∗ −0.4968∗∗∗ −0.6953∗∗∗ −0.5500∗∗∗

(.0232) (.0209) (.0229) (.0211) (.0223) (.0204) (.0228) (.0211) (.0194) (.0178)
ln Transportation costij −6.2627∗∗∗ −9.2228∗∗∗ −6.5300∗∗∗ −7.7930∗∗∗ −7.5985∗∗∗

(.2190) (.3276) (.2383) (.3450) (.2423)
Intra-city trade 0.6498∗∗∗ 0.7119∗∗∗ 1.0031∗∗∗ 1.1426∗∗∗ 0.6473∗∗∗ 0.8652∗∗∗ 0.5137∗∗∗ 0.7579∗∗∗ 0.5391∗∗∗ 0.7961∗∗∗

(.1808) (.1663) (.1644) (.1575) (.1805) (.1680) (.1841) (.1713) (.1583) (.1473)
Intra-island trade 0.0333 0.0144 0.0973 0.0138 −0.0506 0.0046 0.1888∗∗∗ 0.1853∗∗∗ 0.0134 −0.0292

(.0717) (.0642) (.0668) (.0608) (.0702) (.0631) (.0660) (.0606) (.0554) (.0491)

Fixed effects:

Exporter (i): 3 3 3 3 3 3 3 3 3 3

Importer (j): 3 3 3 3 3 3 3 3 3 3

Summary statistics:

Number of observations: 15, 261 15, 261 16, 184 16, 184 18, 098 18, 098 17, 146 17, 146 22, 183 22, 183
R-squared 0.437 0.541 0.418 0.540 0.442 0.552 0.443 0.551 0.440 0.558

Notes: Robust standard errors; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

The trade literature has articulated three major concerns, that arise from the use of the

structural gravity equation as the workhorse model for the analysis of intra-national shipments.

In the following we will explain in detail how each of these concerns is addressed.

The first concern relates to the fact that the same products may enter the shipment data

through multiple records.27 However, several factors mitigate the double counting problem

in the Japanese context: Shipments in the National Commodity Flow Survey are defined at

the transaction level, which means that the un- and reloading of (inter-modal) shipments at

warehouses, ports, and railway freight terminals does not inflate the total number of ship-

ments/transactions. Also it is rather unlikely that the presence of middleman and intermediaries

causes a significant double counting problem, as the data collection for the National Commod-

ity Flow Survey takes place over a relatively short time span of just three days. Despite these

safeguards we account in our analysis for a potential over-representation of short-distance ship-

ments by following the standard procedure of including a binary indicator variable that controls
27Using the U.S. commodity flow survey Hillberry and Hummels (2003) demonstrate that hub and spoke

distribution patterns translate into relatively short distances for shipments that originate from wholesalers rather
than from manufacturers.
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for the home bias in intra-city trade.28

The second concern addresses the role of international trade in shaping the intra-national

trade pattern. Since Japan is an archipelago, the by far largest part of its international trade

is channelled through its well developed system of international ports. Due to the non-random

location of harbours in large cities, we would expect that those cities’ internal trade with nearby

non-harbour cities is systematically upward biased due to their role as international gateways.

Again there are several mitigating factors that moderate the impact that Japan’s external trade

has on the intra-national pattern of inter-city trade. Indeed, it turns out that Japan is the prime

example of a large developed country, whose internal trade pattern can be studied without being

too much concerned about the in- and outflow of its external trade. Generally, Japan’s external

trade is dwarfed by the size of its domestic economy. Due to its remote location and a business

model which favours foreign direct investments over exporting, Japan’s ratio of ex- or import

to GDP is with 18% in 2015 one of the lowest among all OECD members and significantly

below the OECD average of 29% for ex- and 28% for imports.29 Also the internal distribution

of international shipments is highly localised. Analysing the 2013 wave of Japan’s International

Container Trade Survey [Zenkoku Yushutsunyu Kontena Kamotsu Ryudo Chosa] and the 2014

wave of Japan’s Commodity Flow Survey for Bulky Goods [Buruku Kamotsu Ryudo Chosa],

Wrona (2018) finds that an overwhelming share of 80.2% of all containerised exports and a

even larger share of 93.4% of all bulky exports (89.2% of all containerised imports and 98.6%

of all bulky imports) are shipped out (shipped in) through a port, that is located within the

region of origin (destination).30 Finally, it is important to note that the National Commodity

Flow Survey does not include any shipments which originate from one of Japan’s harbours.

We therefore can rule out the internal distribution of goods, that were imported from abroad,

as a potential reason for disproportionately large internal exports from central places to their

respective hinterlands.

Finally, there is a third concern regarding the role of zeros trade flows in intra-national trade

data, that is constructed from commodity flow surveys (cf. Hillberry and Hummels, 2008). Since

all international trade flows have to be reported to customs authorities, the presence of zero

trade flows in the international trade literature typically is rationalised through prohibitively

high trade costs. As a consequence, it has become best practice to estimate the structural

gravity model in its multiplicative form (using Santos Silva and Tenreyro’s (2006) Poisson
28Adding additional controls at higher levels of aggregation to control for a potential upward bias in intra-

prefectural and intra-regional trade does not cause substantial changes in the results from Table 1.
29See also Lawrence (1987, 1991) and Saxonhouse (1993) for earlier contributions discussing Japan’s low ex-

port/import to GDP ratio.
30Japan can be divided into nine administrative regions, which are Hokkaido, Tohoku, Kanto, Chubu, Kansai,

Chugoku, Shikoku, Kyushu and Okinawa.
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Pseudo-maximum Likelihood (PPML) estimator) to include observations with zero trade flows,

which ensures that the analysed trade flows are not systematically selected on non-prohibitive

trade costs. In addition to prohibitively high trade costs, which we expect to be much less

an issue for intra-national trade within a geographically confined island economy with one of

world’s most highly developed transportation sectors, there are two other important reasons

why we expect to find a considerable amount of zeros in our highly disaggregated industry-level

trade data.31 As already discussed in Subsection 2.2, we would not expect all industries to be

present in all locations, which is why bilateral industry-level trade flows are expected be zero,

whenever the respective industry is not present in the city of origin. More importantly, however,

our trade data is based on a stratified random sample of manufacturing firms, whose shipments

were recorded over the relatively short time span of just three days. As a consequence, there is a

large amount of zeros, that emerge simply because a shipment between a specific combination of

origin and destination city by chance did not occur within this rather short sampling period. As

we would dramatically overestimate the trade reducing effect of distance by including these zero

trade flows, we follow Hillberry and Hummels (2008) and restrict our analysis to observations

with positive trade flows.

4 Aggregation Bias in Inter-city Trade

How does the aggregation bias, that results from Christaller’s (1933) hierarchy principle for

industries, affect the pattern of inter-city trade? To answer this question we proceed in two

steps: In Subsection 4.1 we develop a new theory-consistent algorithm to identify central places

and their associated hinterlands in Japan’s pyramidic city system, whose successful application

provides first indirect evidence in favour of the previously derived aggregation bias. In the

following Subsection 4.2 we then use the information on central places and their associated

hinterlands to quantify the upward bias in the exports from central places to their associated

hinterlands.

4.1 In Search for Central Places and their Hinterlands

In order to uncover the pyramidic city system from Figure 1 as theoretically predicted by Fujita

et al. (1999a), we develop a simple algorithm in the spirit of Christaller (1933), who was the

first to compare the actual distribution of city characteristics with a hypothetical benchmark
31According to the the World Bank’s Logistics Performance Index (LPI) Japan occupied the 5th rank of 160

countries, that were compared in 2018. In the 2nd pillar of the World Economic Forum’s Global Competitiveness
Index (GCI), which measures the quality of infrastructure, Japan also occupied the 5th rank of 140 countries,
that were compared in 2015/16.
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scenario, that did not feature a hierarchical city system.32 To learn about Japan’s hierarchical

city system we therefore compare the actual volume of industry-level inter-city trade to the

hypothetical volume of industry-level inter-city trade in a featureless economy without sectoral

heterogeneity, in which the volume of industry-level inter-city trade is directly proportional to

the volume of aggregate trade as predicted by the structural gravity model (cf. Head and Mayer,

2014).

In order to identify central places based on their trading patterns we conduct the following

simple thought experiment: How would the pattern of industry-level inter-city trade look like

in the absence of a hierarchical city system (i.e. without inter-sectoral heterogeneity)? In

a featureless economy without inter-sectoral heterogeneity (except for differences in sectoral

expenditure shares βs) the sectoral gravity equation from Eq. (1) simplifies into :

X̃ij,k = βkX̃ij with X̃ij = Ẽj Ỹi

ỸM

(
τij

Φ̃iΩ̃j

)1−σ

, (6)

in which Φ̃i > 0 and Ω̃j > 0 are analogously defined to Φi,k and Ωj,k from Eq. (2).33 In-

tuitively, the hypothetical industry-level trade flows X̃ij,k are symmetric across industries and

proportional to the volume of aggregate manufacturing trade X̃ij . According to Christaller’s

(1933) hierarchy principle for industries, we expect the exports of highly localised industries,

which only settle in sufficiently large and centrally located cities, to exceed the respective trade

flows, that we would observe in a featureless economy without inter-sectoral heterogeneity, in

which all industries are ubiquitously distributed across all cities, i.e. Xij,k > X̃ij,k. For any

destination city j it is then possible to compute a pair-specific measure of import dependence

Dij ∈ [0, 1], which equals the share of sectors k for which the sectoral imports Xij,k from origin

city i exceed the hypothetical trade volume X̃ij,k, that would have resulted in a featureless

economy.34 If a city is a central place, it is expected to be the dominant origin city in terms

of import dependence Dij for as many as possible destination cities j. We therefore aggregate
32In order to rank cities from Southern Germany in terms of their centrality Christaller (1933, pp. 142) com-

puted the surplus in the number of telephones per capita in a given city (e.g. Munich: 50,290 telephones/747,200
residents ≈ 6.7%) relative to the average number of telephones per capita in the surrounding region (3.0%) or in
the overall sample (2.5%).

33A tilde is used to indicate counterfactual variable values in the hypothetical scenario without inter-sectoral
heterogeneity.

34Rather than to relate the number Nij ≥ 0 of industries with Xij,k > X̃ij,k to the total number of sectors, we
define bilateral import dependence as Dij ≡ Nij/Mij , where Mij is the size of set Kij = KE

i ∪ KI
j , which is the

union of the set of all export industries k ∈ KE
i in origin city i (across all destination cities j ̸= i) and the set of

all import industries k ∈ KI
j in destination city j (across all origin cities i ̸= j). Thereby, the set KE

i of origin
city i’s export industries is defined as the power set over the sets of export industries KE

ij for each destination
city j ̸= i. Analogously, the set KI

j of destination city j’s import industries is defined as the power set over the
sets of import industries KI

ji for each origin i ̸= j.
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across all destinations j ̸= i to obtain our centrality measure:

Ci =
∑
j ̸=i

Ij ·Dij ≥ 0 with Ij =


1 if Dij > Dı̂j ∀ ı̂ ̸= i

0 otherwise
, (7)

in which Ij ∈ {0, 1} is an indicator variable, taking the value one if destination city j’s import

dependence of Dij vis-à-vis origin city i is higher than for any other origin city ı̂ ̸= i. In order

to approximate the trade flows in a counterfactual featureless economy X̃ij,k we exploit the fact

that industry-level trade is proportional to aggregate manufacturing trade X̃ij,k = βkX̃ij . We

thus can replace βkX̃ij by β̂kX̂ij , which is the product of sector k’s average expenditure share

β̂k in our sample and the predicted level of aggregate manufacturing trade X̂ij based on the

regression results from Table 1.

In Table 12 (delegated to the Appendix) we present the 50 top-ranked cities in terms of

centrality for the year 2015 (see Table 13 to 16 for the years 1995 to 2010). In a featureless

economy (without inter-sectoral heterogeneity) we would expect the centrality ranking of cities

to be inconclusive and in particular uncorrelated with city size. Reassuringly we find the top

ranks of our centrality ranking occupied by Japan’s three largest cities Tokyo, Osaka, and

Nagoya. Despite the fact that for the top 10 cities the centrality ranking largely is consistent

with a ranking in terms of city size, there is no one-to-one mapping between centrality and

population size, which can be easily illustrated by comparing two cities from the northeast of

Japan: Sapporo, which is remotely located on Japan’s most northern island Hokkaido, is ranked

6th in terms of centrality and 5th in terms of population size. Sendai, which is located half the

way from Sapporo to Tokyo, follows closely in terms of the 8th city size rank but is only ranked

27th in terms of centrality. Unlike Sapporo, which is sufficiently isolated to be uncontested in

terms of its centrality, Sendai stands in the shadow of the much larger Tokyo, which explains

the much lower centrality rank.35

Equipped with the theory-consistent ranking of cities in terms of their centrality, we now

proceed by linking all (potential) central places to the set of cities in their respective economic

hinterland. Working through the complete list of Japan’s cities in decreasing order of centrality,

each city j is associated with a higher ranked central place i such that the level of import

dependence Dij vis-à-vis the central place is maximised (in comparison to all other central

places). We call a city j that is linked to central place i in this way a direct hinterland city of

central place i, and acknowledge that each city, which is not ranked as the most central city
35A similar pattern has already been documented by Christaller (1933, p. 165), who rationalised the centrality

ranking of cities in Southern Germany through their relative position with respect to Munich as the most central
city in his sample.

19



(i.e. Tokyo), can be both a central place on its own and a direct hinterland city of another

more centrally ranked city. To obtain the complete set of cities that belong to the economic

hinterland of a specific central place we exploit this recursive structure and aggregate up not

only all direct hinterland cities but also all direct hinterland cities of these direct hinterland

cities (and so forth and so on...).36 For any arbitrary subset of central places it is then possible

to come up with a partition of Japan into economic subregions consisting of a central place and

its associated hinterland.

In order to narrow the number of relevant partitions down to a limited number of layers

as illustrated in Figure 1, and in order to ensure the comparability of the different economic

subregions at these layers, we exploit the recursive linkages between central places and their

direct and indirect hinterland cities, that we have derived above. Thereby each central place can

be nested into a pyramidic layer structure, with Tokyo as Japan’s most central city naturally

occupying the pyramid’s top layer. In order to map the central places together with their

recursively identified direct and indirect hinterland cities into the pyramidic layer structure

from Figure 1 we proceed in two steps: At first, we acknowledge that no city can be nested in

the same layer as the central place to which this city has been allocated as a direct or indirect

hinterland city. To give an example: the city of Fukuoka, which is a direct hinterland city of

Osaka, which itself is a direct hinterland city of Tokyo, can be at most a 3rd-layer central place

but not a central place at the 1st or 2nd layer. What complicates the assignment of central

places to layers, is that Osaka also reappears as a central place in all layers below the 2nd layer.

It therefore is a priori not clear whether Fukuoka is a 3rd-layer city below Osaka as a 2nd-layer

city or a 4th-layer city below Osaka as a 3rd-layer city. In order to determine a city’s final layer

assignment we therefore return to our centrality measure Ci, and assert that no central place

may be ranked in a layer below a central place with a lower centrality index. In the context of

the above example no city with a lower centrality index than the one of Fukuoka can be found

at the 2nd layer, confirming Fukuoka’s assignment as a 3rd-layer central place.

In Figure 5 we illustrate the hierarchical structure of central places, that we have derived

from the 2015 wave of the National Commodity Flow Survey (see Figure 8 from the Appendix

for the years 1995-2010). To avoid clutter, we impose the additional constraint that each central

place must be associated with at least five distinct hinterland cities. We distinguish economic

subregions at the 2nd layer by plotting the sets of hinterland cities that are directly or indirectly

associated with Tokyo and Osaka in the two baseline colours blue and red, respectively. As there
36Trivially, the recursive aggregation process of adding up the direct hinterland cities of the direct hinterland

cities comes to a halt if all sets of direct hinterland cities associated with the previous sets of direct hinterland
cities are empty.
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Figure 5: Central Places and Hinterland Cities at the 2nd and 3rd Layer in 2015
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are eight different central places with associated hinterlands at the 3rd layer, we use different

shades of blue and red in order to illustrate the hinterlands of 3rd-layer central places, depending

on the respective 2nd-layer central place being either Tokyo or Osaka.

Despite a single outlier for 2015 (e.g. Kitakyushu), we find the economic subregions (i.e.

central places + hinterland) in Figure 5 to be rather compact in their shape, with the vast

majority of Japan’s northeastern cities in the hinterland of Tokyo as a 2nd-layer central place

and the vast majority of Japan’s southwestern cities in the hinterland of Osaka as a 2nd-layer

central place. We interpret the compactness of these subregions (which are identified from

Japan’s disaggregated inter-city trade data) as indirect evidence for the importance of central

places in shaping the intra-Japanese trade pattern. The clear east-west pattern that emerges

from Figure 5 thereby is well in line with the finding of Wrona (2018), who shows that there

is more inter-prefectural trade within the East and West of Japan than between both country

parts.37

In Table 2 we report all 2nd- and 3rd-layer central places from 1995 to 2015 with the number
37Wrona (2018) also shows that the east-west bias in inter-prefectural trade becomes somewhat smaller –

although not insignificant – if the analysis is conducted at the more disaggregated level of 68 two-digit product
groups, which is compatible with a (partial) explanation in terms of aggregation bias.
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of associated hinterland cities in parenthesis. In line with our theoretical predictions from

Table 2: Central Places in Japan

Central Places in Japan from 1995 to 2015

Year: 2015

1 Tokyo (292)

Layer: 2 Tokyo (162) a Osaka (130)

3 Tokyo (146) Kitakyushu (6) Sapporo (5) Takasaki (5) Osaka (91) Nagoya (22) Fukuoka (11) Okayama (6)

Year: 2010

1 Tokyo (291)

Layer: 2 Tokyo (170) Osaka (121)

3 Tokyo (147) Nagoya (13) Sendai (10) Osaka (99) Fukuoka (14) Kitakyushu (6)

Year: 2005

1 Tokyo (307)

Layer: 2 Tokyo (146) Nagoya (32) Osaka (129)

3 Tokyo (141) Sendai (5) Nagoya (32) Osaka (118) Fukuoka (6) Kitakyushu (5)

Year: 2000

1 Tokyo (310)

Layer: 2 Tokyo (167) Nagoya (20) Osaka (123)

3 Tokyo (167) Nagoya (20) Osaka (99) Okayama (9) Fukuoka (9) Kitakyushu (6)

Year: 1995

1 Tokyo (347)

Layer: 2 Tokyo (164) a Osaka (183)

3 Tokyo (156) Niigata (8) Osaka (130) Nagoya (34) Sapporo (7) Kitakyushu (7) Fukuoka (5)

Notes: Number of associated hinterland cities in parenthesis.

Section 2 and as evident from Figure 2, we find Japan’s hierarchical city system to be rather

stable over time. Tokyo and Osaka, which always appear as central places at the 2nd layer, are

joined by Nagoya in 2000 and 2005, which otherwise appears as a 3rd-layer central place in the

hinterland of either Tokyo or Osaka.38

To test in a more systematic way for the compactness of the identified subregions (i.e. central

place + hinterland) in Figure 5 and Table 2 we conduct a simple randomisation test: Holding

the number of subregions and the number of cities within subregions at a given layer and for

a specific year fixed, we randomise the assignment of cities into subregions. A comparison of

the average distances Dl =
∑

i

∑
j Dij/Nl between all cities i and j, which belong to the same

subregion at the lth-layer (with Nl as the total number of these city pairs), reveals that the

identified subregions in Figure 5 and Table 2 are much more compact than those obtained from

1,000 independent draws under a random assignment. In particular, we find that the average

distance D̄l in Figure 9 (delegated to the Appendix) is consistently larger than the average and

minimum distances D̄l and Ďl, which we obtain under a randomised assignment.
38Overall we observe only two outliers. Kitakyushu appears in the hinterland of Tokyo as 2nd-layer central

place in 2015, although typically associated with Osaka as a central place at the 2nd or 3rd layer. Similarly, we
find Sapporo to be a hinterland city of Osaka as 2nd-layer central place in 1995, although usually associated with
Tokyo as a central place at the 2nd or 3rd layer.
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4.2 Exploring the Pattern of Inter-city Trade in Japan

Having identified a hierarchical structure of central places and associated hinterlands with three

different layers, we are now equipped to explore the pattern of inter-city trade between these

different entities (i.e. central places versus hinterlands) and to quantify the aggregation bias

predicted in Subsection 2.4. In total we can distinguish between up to eight mutually exclusive

trading relationships, which emerge from the combination of the two possible origin categories:

central place (CP) versus hinterland city (HC) with up to four possible destination categories:

central place (CP), other central place (OCP), hinterland city (HC) and other hinterland city

(OHC).

Table 3: Descriptive Analysis – Inter-City Trade

Descriptive Analysis Inter-City Trade

Year: 2015

Measure: % of Trade Flows % of Trade Volume

Direction: Importer: Importer:

Partner City: CP: OCP: HC: OHC: All: CP: OCP: HC: OHC: All:
Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1st Layer:

CP: 0.0001 – 0.0186 – 0.0187 0.0588 – 0.0658 – 0.1247
Exporter: HC: 0.0187 – 0.9626 – 0.9813 0.1350 – 0.7403 – 0.8753

All: 0.0188 – 0.9812 – 1.0000 0.1939 – 0.8061 – 1.0000

2nd Layer:

CP: 0.0001 0.0001 0.0189 0.0182 0.0373 0.1023 0.0200 0.0754 0.0389 0.2360
Exporter: HC: 0.0187 0.0180 0.5219 0.4041 0.9627 0.1270 0.0773 0.4031 0.1560 0.7634

All: 0.0188 0.0181 0.5408 0.4223 1.0000 0.2293 0.0973 0.4785 0.1949 1.0000

3rd Layer:

CP: 0.0005 0.0037 0.0185 0.0768 0.0995 0.2260 0.1110 0.0548 0.1037 0.4955
Exporter: HC: 0.0180 0.0883 0.3914 0.4028 0.9005 0.1080 0.1500 0.1407 0.1058 0.5045

All: 0.0185 0.0920 0.4099 0.4796 1.0000 0.3340 0.2610 0.1955 0.2095 1.0000
Notes: Abbreviations are defined as follows: central place (CP), other central place (OCP), hinterland city (HC) and
other hinterland city (OHC).

In Table 3 we use the 2015 wave of our data to report two different summary measures,

which are computed separately for the previously derived classifications of central places and

hinterlands at the 1st, 2nd, and 3rd layer.39 To understand how the pattern of inter-city trade

is shaped by Japan’s pyramidic city system with central places and associated hinterlands we

compute the frequency (i.e. the fraction of non-zero trade flows between city pairs) as well as

the trade shares (i.e. the share of the traded value) for all possible trading relationships between

central places and associated as well as unassociated hinterland cities.
39The results for the earlier waves from 1995 to 2010 closely resemble the findings in Table 3. We therefore have

delegated these additional results to an Online Supplement, which is available from the corresponding author’s
website.
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Table 3 confirms the overall importance of central places for the pattern of inter-city trade.

Tokyo as the 1st-layer central place accounts alone for roughly 12.5% of all exports and 19.4% of

all imports. At the 2nd layer Tokyo and Osaka together are responsible for 23.6% of all exports

and 22.9% of all imports. Although exports to hinterland and non-hinterland city occur at the

same frequency (1.9% versus 1.8%), we find that the total volume of exports to hinterland cities

is twice as large as the total export volume to non-hinterland cities (7.5% versus 3.9%). The

same picture also emerges at the 3rd layer: In total the eight central places at the third layer,

although only responsible for 10% of all observed exports, account for 50% of the export volume

in 2015. At the same time, the other 50% of the export volume are made up of the remaining

90% of the observed export flows. Although exporting to non-hinterland cities is four times

as common as exporting to hinterland cities (7.7% versus 1.9%) we find that the total exports

to non-hinterland cities are only twice as large as the total exports to hinterland cities (10.4%

versus 5.5%).

Taking stock, we not only have documented the quantitatively important role of central

places for understanding the pattern of inter-city trade, but also that trade is more intense

with cities in the hinterlands of central places. Of course we would expect that central places

trade more with nearby cities in their hinterland than with far away cities in the hinterlands

of other central places. Using the structural gravity model as the workhorse model of the

empirical trade literature, we demonstrate in the following that central places continue to have

disproportionately large exports vis-à-vis the cities in their hinterlands even when the trade-

reducing effect of distance is explicitly taken into account.

How large is the estimation bias, that results from not taking into account Japan’s pyramidic

city system with a hierarchical industry structure (as uncovered in Subsection 4.1)? To answer

this question we employ in a first step the standard model of a structural gravity equation (cf.

Head and Mayer, 2014), which fits the observed volume of aggregate bilateral trade in 2015 to

the trade cost vector ln τij = βDIST× ln DISTij +βHOME×HOMEij +βISLAND× ISLANDij and to

the complete set of ex- and importer-specific fixed effects without explicitly taking into account

Japan’s hierarchical city system.40 If the pattern of inter-city trade is fully explained by the

usual gravity variables, we would not expect to find systematic patterns when clustering the

gravity residuals according to Japan’s hierarchical city system.

In order to asses the overall fit of the structural gravity equation as workhorse model of
40To ensure comparability across different levels of aggregation in the subsequent analysis we adopt a parsi-

monious trade cost specification, omitting the ad valorem transportation costs 1 + FREIGHTij from Eq. (5),
which is only incompletely observed at the more disaggregated industry level. Reassuringly, our results remain
qualitatively and quantitatively unchanged when also controlling for average and industry-specific ad valorem
transportation costs.
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the empirical trade literature in a systematic way, we report in Table 4 the residual diagnostics

for the ex- and imports of central places (CP) and their associated hinterland cities (HC). We

thereby distinguish between the same eight mutually exclusive trading relationships as in Table

3. For each category we then conduct a simple sign test, computing the share of trade flows for

which the structural gravity model underestimates the actual trade volume (indicated through

a positive residual Xij − X̂ij > 0). To quantify the resulting up- or downward bias that results

from over- or underestimation, we complement our simple sign test by also computing the mean

residual Xij − X̂ij for each category.

Table 4: In Search for Systematic Deviations from Structural Gravity

Residual Diagnostics

Year: 2015

Measure: Share of Xij > X̂ij Mean of Xij − X̂ij

Direction: Importer: Importer:

Partner City: CP: OCP: HC: OHC: All: CP: OCP: HC: OHC: All:
Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1st Layer:

CP: 1.0000 – 0.5845 – 0.5860 0.2247 – −0.0008 – 0.0000
Exporter: HC: 0.5594 – 0.5138 – 0.5148 −0.0008 – 0.0000 – 0.0000

All: 0.5610 – 0.5148 – 0.5161 0.0000 – 0.0000 – 0.0000

2nd Layer:

CP: 1.0000 1.0000 0.6505 0.5054 0.5824 0.4750 1.4110 0.2966 −0.3230 0.0000
Exporter: HC: 0.5930 0.5236 0.5144 0.5082 0.5135 0.2421 −0.2646 0.0027 0.0041 0.0000

All: 0.5621 0.5236 0.5143 0.5082 0.5161 0.0000 −0.2646 0.0000 0.0041 0.0000

3rd Layer:

CP: 0.8750 0.8393 0.6773 0.5256 0.5672 1.3268 1.0069 0.4677 −0.1697 0.0000
Exporter: HC: 0.5818 0.5205 0.5112 0.5054 0.5104 0.2265 −0.2624 0.0013 0.0124 0.0000

All: 0.5400 0.5156 0.5131 0.5039 0.5161 0.0000 −0.0958 0.0000 0.0104 0.0000
Notes: Abbreviations are defined as follows: central place (CP), other central place (OCP), hinterland city (HC) and
other hinterland city (OHC).

According to Table 4 we systematically underestimate the bilateral trade volume between

central places and their associated hinterlands by relying on the structural gravity equation as

the workhorse model of intra-national trade. At each layer the share of underestimated trade

flows Xij > X̂ij between central places and their hinterland cities exceeds the respective share

in the overall sample, with the deviation being larger for central places’ exports (rather than

imports). Accordingly, we find that central places’ average residual trade is positive, when

trading with their associated hinterlands but negative when trading with the hinterland cities

associated to another central place at the same layer.41

41In accordance with Fujita et al.’s (1999a) central place model we also underestimate the volume of trade
among and within central places (see Columns (1) and (2) as well as Columns (6) and (7) in Table 4). We
interpret these findings with great caution, because (i.) computations are based on a rather limited number of
observations, and (ii.) there is an overlap between higher-layer hinterland cities and lower-layer central places.
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Figure 6: Tokyo’s Exports to its own and other Hinterland Cities
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(a) Tokyo’s Exports at the 2nd Layer
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(b) Tokyo’s Exports at the 3rd Layer

In Figure 6 we use a binned scatter plot (cf. Stepner, 2013) to highlight the upward bias in

the (residual) exports from central places to their respective hinterlands by focussing on Tokyo

as 2nd- and 3rd-layer central place. The plot thereby captures the “spirit of gravity” (cf. Head

and Mayer, 2014, p. 134) by simultaneously taking into account size and distance effects.42

Conditional on the partner city’s size and the distance to Tokyo we find that Tokyo as a 2nd-

and 3rd-layer central place exports larger volumes to its respective 2nd- and 3rd-layer hinterland

cities than to cities, that belong to the hinterlands of other central places at the same layer.

To quantify the estimation bias, that results from not taking into account Japans hierar-

chical city system from Subsection 4.1, in a more comprehensive way we embed the pyramidic

city structure with multi-layer central places and associated hinterlands from Figure 2 into an

otherwise standard gravity estimation. To this end, we extend our trade cost function to include

not only the geographic controls: DISTij , HOMEij , and ISLANDij (summarised by the trade

cost vector τij) but also the following set of indicator variables:

ln tij =
3∑

l=2
βEXP_l × EXP_CP_HC_lLYij +

3∑
l=2

βIMP_l × IMP_CP_HC_lLYij ∀ l ∈ {2, 3}, (8)

which closely mimics the hierarchical structure of Japan’s poly-centric city system. To capture

the direct trading relationship between a central place and its economic hinterland, we introduce

the directional indicator variables EXP_CP_HC_lLYij ∈ {0, 1} and IMP_CP_HC_lLYij ∈
42We focus on Tokyo as a 2nd- and 3rd-layer central place because as a 1st-layer central place all other cities

belong to Tokyo’s hinterland.
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{0, 1}, taking a value of one whenever a unique central place from the lth-layer exports (imports)

to (from) its respective hinterland, and a value of zero otherwise. Since central places from

higher layers keep reappearing at lower layers, we include each central place only at its highest

layer. The city of Osaka, which is always identified as a 2nd-layer central place, but therefore

also reappears as a central place on lower layers, hence is treated as a 2nd-layer and not as a

3rd-layer central place.

By definition there exists only a single 1st-layer central place (viz. Tokyo), whose hinterland

is formed by the sum of all other cities in Japan. Due to prefect multicollinearity of the indicator

variables EXP_CP_HC_1LYij and IMP_CP_HC_1LYij with the the respective exporter- and

importer-specific fixed effects, it is impossible to independently identify parameters βEXP_1 and

βIMP_1 at the 1st layer. We hence focus only on lower layers (i.e. l ≥ 2) with multiple central

places, and consider each central place only on its highest possible layer. Although estimation

of the 2nd-layer parameters βEXP_2 and βIMP_2 is feasible, identification is based on a limited

number of 2nd-layer central places.43 To understand how the pattern of inter-city trade is

shaped by Japan’s hierarchical city/industry system, we therefore primarily focus on the ex-

and imports of 3rd-layer central places to and from their respective hinterlands.

Table 5 summarises the results for all waves of the commodity flow survey from 1995 to

2015. As baseline specification ordinary least squares (OLS) is used to estimate a log-linearised

(aggregate) gravity equation, imposing the complete set of origin- and destination-specific fixed

effects. In our preferred specification we focus on the 3rd-layer, which features a larger number

of distinct central places. Throughout all waves of our data we find a large and statistically sig-

nificant upward bias in the exports from 3rd-layer central places to their respective hinterlands.

Aggregate exports from 3rd-layer central places to their respective hinterlands thereby exceed

the export volume between comparable city pairs (conditional on gravity forces) by a factor of

two to five. Interestingly, there is no evidence that 3rd-layer central places disproportionately

import from their hinterlands. 2nd-layer results for 2015, 2010, and 1995 capture Osaka’s in-

creased ex- and imports to and from its hinterland. Reassuringly, the upward bias in central

places’ imports is much smaller for the years 2005 and 2000, when identification is based on

multiple central places (i.e. Osaka and Nagoya).44

Having quantified the upward bias in exports from central places to their respective hinter-

lands as predicted in Section 2.4, we now want to further validate our findings by scrutinizing
43In addition to Osaka, which is always identified as a 2nd-layer central place, Nagoya is ranked at the 2nd

layer in 2000 and 2005
44Note that the upward bias in Osaka’s imports as a 2nd-layer central place can be partly explained by the fact

that Osaka also imports from various 3rd-layer central places in its own hinterland. Excluding these cities from
the definition of IMP_CP_HC_2LYij somewhat lowers the import bias.
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Table 5: Central Places, Hinterlands, and the Pattern of Inter-city Trade

Dependent variable: Exports from city i to city j

Year: 2015 2010 2005 2000 1995

Model: OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE

Specification: (1) (2) (3) (4) (5)

2nd Layer:

Exports CP → HC 0.6712∗∗∗ 0.5553∗∗ 0.3865∗∗ 0.4020∗ 0.2420
(.2365) (.2170) (.1684) (.2071) (.1832)

Imports CP ← HC 0.7977∗∗∗ 0.6873∗∗∗ 0.1799 0.3529∗ 0.5032∗∗

(.2387) (.2157) (.1870) (.1827) (.2168)
3rd Layer:

Exports CP → HC 1.0092∗∗∗ 1.5756∗∗∗ 1.8439∗∗∗ 1.2634∗∗∗ 1.0215∗∗∗

(.2818) (.2367) (.5043) (.3570) (.2283)
Imports CP ← HC 0.1072 −0.2481 −0.2058 0.3566 0.1478

(.3092) (.3375) (.5898) (.3506) (.2758)
Controls:

ln Distanceij −0.6974∗∗∗ −0.6764∗∗∗ −0.6250∗∗∗ −0.6468∗∗∗ −0.6893∗∗∗

(.0233) (.0230) (.0224) (.0229) (.0195)
Intra-city trade 0.6563∗∗∗ 1.0081∗∗∗ 0.6317∗∗∗ 0.5036∗∗∗ 0.5368∗∗∗

(.1802) (.1637) (.1801) (.1831) (.1581)
Intra-island trade 0.0332 0.0964 −0.0575 0.1832∗∗∗ 0.0167

(.0719) (.0672) (.0704) (.0663) (.0556)

Fixed effects:

Exporter (i): 3 3 3 3 3

Importer (j): 3 3 3 3 3

Summary statistics:

Number of observations: 15, 261 16, 184 18, 098 17, 146 22, 183
R2 0.438 0.419 0.442 0.443 0.441

Notes: Robust standard errors; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

the conditions under which we can expect to find such a systematic deviation from structural

gravity. We therefore conduct a series of placebo regressions, in which we randomise the assign-

ment of hinterland cities (holding the central places fixed). Throughout we thereby maintain

the basic hierarchical structure from Table 2, fixing the number of layers, the number of central

places on each layer, as well as the number of hinterland cities in the respective hinterland

of each central place. We then randomly construct 10.000 hypothetical divisions into central

places and associated hinterland cities, from which we can derive counterfactual central place

dummies akin to EXP_CP_HC_lLYij ∈ {0, 1} and IMP_CP_HC_lLYij ∈ {0, 1} from Eq. (8).

We implement these counterfactual central place dummies in an otherwise standard OLS grav-

ity estimations, taking into account the trade cost vector ln τij = βDIST × ln DISTij + βHOME ×

HOMEij +βISLAND×ISLANDij , and imposing the full set of origin- and destination-specific fixed
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effects. Clearly, if the associated hinterland cities are randomly picked, we would not expect to

find a systematic deviation from the structural gravity model. Table 6 compares the outcomes

of the placebo regression to the baseline results from Table 5.

Table 6: Placebo Regressions with Randomised Assignment of Hinterlands

Randomised Hinterlands:

Year
Benchmark: Number of

Samples
Mean of
βrandom

EXP_3

Significant Estimates at: Share of
βrandom

EXP_3 > βEXP_3βEXP_3 S. E. p < 0.01h p < 0.05h p < 0.10h

2015 1.0092∗∗∗ (.2818) 10,000 -.0055 .0118 .0388 .0659 .0053
2010 1.5756∗∗∗ (.2367) 10,000 -.0053 .0143 .0410 .0658 .0000
2005 1.8439∗∗∗ (.5043) 10,000 -.0027 .0416 .0819 .1151 .0116
2000 1.2634∗∗∗ (.3570) 10,000 -.0004 .0199 .0508 .0765 .0193
1995 1.0215∗∗∗ (.2283) 10,000 -.0019 .0105 .0371 .0631 .0000

Notes: Robust standard errors; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

Focussing again on the exports of 3rd-layer central places to their respective hinterlands, we

find no systematic upward bias if the assignment of hinterland cities is randomised. The vast

majority of the estimated coefficients βrandom
EXP_3 are in the vicinity of zero and typically statistically

insignificant at the commonly applied significance levels of α = 1%, α = 5%, and α = 10%. At

a significance level of α = 1% only 1.1% to 4.2% of all placebo regressions yield a positive and

significant point estimate if the assignment of hinterland cities (central places) is randomised.

The fraction of placebo regressions that deliver coefficients βrandom
EXP_3, which exceed the baseline

coefficients βEXP_3 from Table 5 ranges from 0.0% to 1.9%.

Summing up the results of this section, we have shown that exports of large and centrally

located cities to smaller cities in their nearby hinterland are systematically underestimated by

a structural gravity estimation, that does not take into account Christaller’s (1933) hierarchy

principle for industries. The upward bias in aggregate exports of 3rd-layer central places to their

hinterland cities is statistically significant and quantitatively important, suggesting that exports

are two to five times larger than predicted by gravity forces. In a series of placebo regressions, in

which the assignment or hinterlands is randomised and not systematically derived as in Section

4.1, it is almost impossible to find comparable effects of similar magnitude.

5 Disaggregation and Decomposition

Having quantified the upward bias in aggregate exports from central places to their respective

hinterlands based on Japan’s pyramidic city system, we are now providing further evidence

that the unexpectedly high aggregate exports of central places are an artefact of the underlying

aggregation process (as explained in Subsection 2.4).

To rationalise the findings from Subsection 4.2 in terms of aggregation bias we follow An-
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derson and van Wincoop (2004, p. 729), whose “obvious recommendation is to disaggregate.”

Table 7 therefore replicates the residual diagnostics from Table 4 based on a theory-consistent

structural gravity estimation, which is conducted at the much more disaggregated industry-

level. To ensure comparability we employ the same trade cost specification as in Table 4, and

include the complete set of origin- and destination-specific fixed effects. We stick to the basic

structure of Table 4, and distinguish between up to eight mutually exclusive combinations of

two origin categories (central place (CP) versus hinterland city (HC)) and four destination cate-

gories (central place (CP), other central place (OCP), hinterland city (HC) and other hinterland

city (OHC)).

Table 7: Residual Diagnostics at the Industry Level

Residual Diagnostics at the Industry Level

Year: 2015

Measure: Share of Xij,k > X̂ij,k Mean of Xij,k − X̂ij,k

Direction: Importer: Importer:

Partner City: CP: OCP: HC: OHC: All: CP: OCP: HC: OHC: All:
Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1st Layer:

CP: 0.5151 – 0.5135 – 0.5136 −0.1493 – 0.0046 – 0.0000
Exporter: HC: 0.5268 – 0.5065 – 0.5075 0.0094 – −0.0005 – 0.0000

All: 0.5260 – 0.5075 – 0.5082 0.0000 – 0.0000 – 0.0000

2nd Layer:

CP: 0.5160 0.5797 0.5224 0.4812 0.5086 −0.1312 0.4955 0.0612 −0.1187 0.0000
Exporter: HC: 0.5417 0.5071 0.5103 0.4997 0.5081 0.0350 −0.0818 0.0090 −0.0079 0.0000

All: 0.5284 0.5071 0.5060 0.4997 0.5082 0.0000 −0.0818 0.0000 −0.0079 0.0000

3rd Layer:

CP: 0.5316 0.5724 0.5288 0.4916 0.5144 0.0996 0.3466 0.0538 −0.1171 0.0000
Exporter: HC: 0.5370 0.4947 0.5145 0.5006 0.5052 0.0187 −0.1551 0.0369 0.0195 0.0000

All: 0.5141 0.4860 0.5066 0.4980 0.5082 0.0000 −0.1213 0.0000 0.0113 0.0000
Notes: Abbreviations are defined as follows: central place (CP), other central place (OCP), hinterland city (HC) and
other hinterland city (OHC).

All indicators suggest that the industry-level gravity estimation from Table 7 outperforms

the aggregate gravity estimation from Table 4 in matching the pattern of intra-Japanese inter-

city trade. While there is a 15 percentage point difference in the shares of underestimated trade

flows (characterised by Xij > X̂ij) for central places’ exports to associated versus unassociated

hinterland cities in Table 4 (Column (3) versus Column (4)), we find that in Table 7 the difference

in these shares (characterised by Xij,k > X̂ij,k) has declined to just 4 percentage points (Column

(3) versus Column (4) in Table 7). A similar picture emerges from the comparison of the mean

residuals: Mean residuals of central places’ trade in Table 4 are 0.2966 (0.4677) for exports

to 2nd-layer (3rd-layer) associated hinterlands and −0.3230 (−0.1697) for exports to 2nd-layer

(3rd-layer) unassociated hinterlands (Column (8) versus Column (9) in Table 4). In Table 7
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the mean residuals of central places’ trade shrink to 0.0612 (0.0538) for exports to 2nd-layer

(3rd-layer) associated hinterlands and −0.1187 (−0.1171) for exports to 2nd-layer (3rd-layer)

unassociated hinterlands (Column (8) versus Column (9) in Table 7).

To quantify the importance of aggregation bias in explaining the upward bias in the exports

from central places to their respective hinterlands we replicate the analysis from Table 5 in Table

8, and run an industry-level gravity estimation on Japan’s hierarchical city system, captured

by the set of fixed effects EXP_CP_HC_lLYij ∈ {0, 1} and IMP_CP_HC_lLYij ∈ {0, 1} for

all l = 2, 3. In addition to the familiar trade cost vector ln τij = βDIST × ln DISTij + βHOME ×

HOMEij+βISLAND×ISLANDij we also include the complete set of origin- and destination-specific

fixed effects.

Table 8: Central Places, Hinterlands, and the Pattern of Industry-level Inter-city Trade

Dependent variable: Industry-level exports from city i to city j

Year: 2015 2010 2005 2000 1995

Model: OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE

Specification: (1) (2) (3) (4) (5)

2nd Layer:

Exports CP → HC 0.1501 0.0613 0.0202 0.0913 0.1504∗

(.1075) (.0998) (.0827) (.0835) (.0850)
Imports CP ← HC 0.1977 0.0813 −0.1601 0.0682 0.1627

(.1533) (.1420) (.1187) (.1302) (.1247)
3rd Layer:

Exports CP → HC 0.3549∗∗ 0.2791∗ 0.4088 0.3477∗∗ 0.2682∗∗

(0.1421) (0.1512) (0.3872) (0.1735) (0.1045)
Imports CP ← HC 0.0356 −0.0464 −0.3287 −0.4172 −0.0758

(.1948) (.2008) (.3795) (.2864) (.1424)
Controls:

ln Distanceij −0.3942∗∗∗ −0.3868∗∗∗ −0.3518∗∗∗ −0.3722∗∗∗ −0.3808∗∗∗

(.01731) (.0170) (.0171) (.0172) (.0142)
Intra-city trade 0.6135∗∗∗ 0.6428∗∗∗ 0.4852∗∗∗ 0.5039∗∗∗ 0.7099∗∗∗

(.1021) (.0905) (.1063) (.1147) (.0988)
Intra-island trade −0.0743 0.0039 −0.0461 0.0587 −0.0607

(.0565) (.0537) (.0537) (.0514) (.0423)

Fixed effects:

Exporter (i): 3 3 3 3 3

Importer (j): 3 3 3 3 3

Summary statistics:

Number of observations: 32, 356 35, 335 39, 262 37, 878 54, 252
R2 0.237 0.210 0.231 0.224 0.230

Notes: Robust standard errors are clustered at the city-pair level; significance: ∗∗∗ p < 0.01,
∗∗ p < 0.05, ∗ p < 0.1.
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Estimates of the upward bias in central places’ exports in Table 8 are much smaller than in

Table 5 and at best marginally significant (at the 5% or 10% significance level) if not statistically

indistinguishable from zero. Instead of a large upward bias of 200% to 500% for the exports

of 3rd-layer central places in Table 5 we find a moderate upward bias of just 30% to 50%.

The considerable reduction in the upward bias of exports from central places to their respective

hinterlands confirms the theoretical predictions, that we have derived from Fujita et al.’s (1999a)

central place model in Section 2.4: Central places are not only exporting across more industries

but also are more likely to supply a specific city with the goods of these industries if the city

is located in the respective central place’s hinterland. By treating industry-level trade flows

as separate observations we avoid a systematic estimation bias, that otherwise would result

from asymmetrically aggregating up bilateral trade flows across a large number of industries in

central places and an on average much smaller number of industries located in the other cities.

It is worth noting that the differences between Table 5 and Table 8 only result from treating

industry-level trade flows as separate observations and not from using a less parsimonious spec-

ification of the trade cost function. To account for heterogeneity across industries, as assumed

in Fujita et al.’s (1999a) central place model, we account in Table 17 (delegated to the Ap-

pendix) not only for origin×industry-specific and destination×industry-specific fixed effect but

also for industry-specific ad valorem transportation costs (by allowing the effect of ad valorem

transportation costs to differ across industries). Reassuringly, we find that the point estimates

for the upward bias of 2nd- and 3rd-layer central places’ exports from Table 17 are similar in

terms of magnitude and significance to those from Table 8.

In line with our prediction from Subsection 2.4 we also find that the distance elasticities,

which ranges from −0.3722 to −0.3942 in Table 8, are much smaller than in Table 5, where

the respective point estimates fall into a range from −0.6250 to −0.6974. As in Hillberry and

Hummels (2008, pp. 539-40) this difference in distance elasticities can be attributed to the

underlying aggregation process – with the major difference, that Hillberry and Hummels (2008)

focused on aggregation across different spatial units (3 digit versus 5 digit zip codes) and not at

aggregation across different industries.45 Because the probability of observing a shipment at the

industry level is declining in distance (cf. Figure 3), the aggregate volume of inter-city trade is

declining at the intensive margin within each industry and at the extensive margin as the number

of exporting industries gets smaller over longer distances. As we aggregate across industries,

variation at the extensive margin (presence or absence of industry-level shipments) sums up
45In line with Hillberry and Hummels’s (2008) argumentation, that the home bias in intra-national trade is

an artefact of spatial aggregation, we find that the statistically significant upward bias in intra-city trade is only
marginally affected by aggregation across different industries.
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to a continuous variable (total value of bilateral trade). The response of the aggregate trade

volume to increasing distances therefore is substantially larger than at the more disaggregated

industry-level.

To further strengthen our argumentation, we are now exploiting the full potential of our

micro-level trade data in using Hillberry and Hummels’s (2008) decomposition approach to

identify the extensive industry margin as the main driver behind the previously identified ag-

gregation bias. We decompose the aggregate value of trade Xij =
∑Sij

s=1 Pij,sCij,s from origin

city i to destination city j into the number of unique shipments Sij (the extensive margin) and

the average value per shipment R̄ij ≡
∑Sij

s=1 Pij,sCij,s/Sij (the intensive margin):

Xij = SijR̄ij , (9)

referring to a unique shipment by subscript s.46 Decomposing the number of unique shipments

Sij further into the number of distinct industries Kij across which a certain city exports its

goods and the average number of shipments per industry S̄ij ≡ Sij/Kij then results in:

Sij = KijS̄ij . (10)

In a final step the average value per shipment R̄ij is decomposed into average price P̄ij and

average quantity C̄ij per shipment:

R̄ij =
∑Sij

s=1 Pij,sCij,s

Sij
=
∑Sij

s=1 Pij,sCij,s∑Sij

s=1Cij,s

∑Sij

s=1Cij,s

Sij
= P̄ijC̄ij . (11)

Substituting Sij and R̄ij from Eqs. (10) and (11) back into Xij from Eq. (9) allows us to

deconstruct the aggregate volume of bilateral trade:

Xij = KijS̄ijP̄ijC̄ij (12)

between origin city i and destination city j into its four components: Kij , S̄ij , P̄ij and C̄ij .

Log-linearising the Eqs. (9) and (12) then yields the first-level decomposition:

lnXij = lnSij + ln R̄ij , (13)
46As in Hillberry and Hummels (2008) a unique shipment is defined by the triplet: establishment identifier ×

commodity code × destination municipality. Repeated shipments of the same commodity by the same establish-
ment to the same destination municipality hence are treated as a single shipment, such that there is no difference
between ten shipments of one million Yen and one shipment of ten million Yen.
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and the second-level decomposition:

lnXij = lnKij + ln S̄ij + ln P̄ij + ln C̄ij . (14)

While a decomposition analysis of bilateral inter-city is interesting in its own right (yielding

similar results as in Hillberry and Hummels (2008)), we are particularly interested in under-

standing what is responsible for the upward bias in exports from central places to their respective

hinterlands. We therefore follow Hillberry and Hummels (2008) by treating each element in the

Eqs. (13) and (14) as a dependent variable, which then is separately regressed on the trade cost

vector ln τij = βDIST× ln DISTij +βHOME×HOMEij +βISLAND× ISLANDij , the hierarchy vector

ln tij from Eq. (8), and the complete set of origin- and destination-specific fixed effects.47

Making use of the OLS estimator’s linearity, we separately regress lnXij and all its log-

linearised components on the same set of explanatory variables to obtain coefficients with the

useful additive property: βX
ℓ = βS

ℓ + βR
ℓ with βS

ℓ = βK
ℓ + βS̄

ℓ and βR
ℓ = βP̄

ℓ + βC̄
ℓ . While

superscripts are used to distinguish the dependent variables: Xij , Sij , and Rij as well as Kij ,

S̄ij , P̄ij and C̄ij , we use subscripts to identify the explanatory variable (typically the 3rd-layer

central place export dummy EXP_CP_HC_3LYij ∈ {0, 1} and log distance ln DISTij). Based

on the decomposition from Eq. (14) we then can quantify each component’s contribution to

the upward bias in the exports from central places to their hinterlands (conditional on gravity

forces).

Table 9 reports the decomposition results for the upward bias in exports of 3rd-layer central

places to their respective hinterlands across all waves in a five-year interval from 1995 to 2015.48

In the first Column of Table 9 we replicate the baseline results from Table 5. By decomposing

the strong upward bias in the exports from 3rd-layer central places to their respective hinterlands

into its various components from Eq. (14) we can learn more about what causes the systematic

deviation from the structural gravity model for aggregate inter-city trade. Suppose the upward

bias in 3rd-layer central places’ exports is caused by an omitted variable, whose trade-creating

effect proportionately scales up the volume of bilateral trade (such as the regionally concentrated
47Because two-way fixed effects were computational infeasible, Hillberry and Hummels (2008) eliminated all

variation in output and prices, that is specific to the origin city, and all variation in expenditures and prices, that is
specific to the destination city, through double demeaning each of their variables (i.e. by dividing them through
the variable’s respective mean value across all origin cities and through the variable’s respective mean value
across all destination cities). To make our results comparable to those of Hillberry and Hummels (2008), we also
replicate their analysis by double demeaning all outcome variables instead of imposing the complete set of origin-
and destination-specific fixed effects. Reassuringly we find that the results obtained under double demanding
in Table 18 (delegated to the Appendix) are qualitatively the same as in Table 9. The underlying regressions
tables of the complete decomposition analysis are delegated to an Online Supplement, which is available from
the corresponding author’s website.

48The complete decomposition analysis is delegated to an Online Supplement, which is available from the
corresponding author’s website.
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Table 9: Decomposing the Upward Bias in Exports from Central Places to their Hinterlands

Explanatory Variable: Exports 3rd Layer Central Place → Hinterland

Dependent Variable: lnXij lnSij lnKij ln S̄ij ln R̄ij ln P̄ij ln C̄ij N
βK

EXP_3
βX

EXP_3

βS̄
EXP_3
βX

EXP_3

Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Year:

2015 1.0092∗∗∗ 0.7607∗∗∗ 0.6626∗∗∗ 0.0981∗∗∗ 0.2485 −0.3301∗∗ 0.5785∗∗ 15,261 65.66% 9.72%
(.2818) (.0913) (.0778) (.0325) (.2414) (.1376) (.2683)
[.44] [.65] [.63] [.30] [.37] [.41] [.42]

2010 1.5756∗∗∗ 0.9981∗∗∗ 0.8542∗∗∗ 0.1438∗∗∗ 0.5776∗∗∗ −0.5842∗∗∗ 1.1617∗∗∗ 16,184 54.21% 9.13%
(.2367) (.0789) (.0595) (.0407) (.2025) (.1484) (.2203)
[.42] [.65] [.64] [.29] [.33] [.45] [.41]

2005 1.8439∗∗∗ 0.8155∗∗∗ 0.7769∗∗∗ 0.0386 1.0284∗∗ −0.3652 1.3936∗∗∗ 18,098 42.13% 2.09%
(.5043) (.1242) (.1050) (.0318) (.4166) (.3040) (.3793)
[.44] [.65] [.63] [.33] [.36] [.47] [.41]

2000 1.2634∗∗∗ 0.8991∗∗∗ 0.8302∗∗∗ 0.0689∗ 0.3644 −0.8965∗∗∗ 1.2609∗∗∗ 17,146 65.71% 5.45%
(.3570) (.1201) (.1035) (.0369) (.2760) (.2412) (.2543)
[.44] [.66] [.65] [.32] [.36] [.44] [.43]

1995 1.0215∗∗∗ 0.7303∗∗∗ 0.6205∗∗∗ 0.1098∗∗ 0.2912 −0.7083∗∗∗ 0.9995∗∗∗ 22,138 60.74% 10.75%
(.2283) (.1106) (.0795) (.0452) (.1796) (.1380) (.1930)
[.44] [.67] [.66] [.36] [.34] [.45] [.42]

Fixed effects:

Exporter (i): 3 3 3 3 3 3 3

Importer (j): 3 3 3 3 3 3 3

Notes: R2 of the underlying regression reported in squared brackets. Robust standard errors in parenthesis; significance:
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

business networks in Combes et al. (2005), Requena and Llano (2010), and Wrona (2018)). The

disproportionately high exports from 3rd-layer central places to their respective hinterlands then

are caused by an increase in the average number of shipments per industry rather than by an

increase in the number of exporting industries. Interestingly, we find that the average number

of unique shipments per industry S̄ij merely contributes at all to the overall effect (relative

contributions βS̄
EXP_3/β

X
EXP_3 range between 2.1% and 10.8%). In sharp contrast and in line

with our argumentation from Subsection 2.4 we find that the disproportionately large exports

from 3rd-layer central places to their respective hinterlands are mainly explained through a

larger number of exporting industries – with the extensive (industry) margin’s contribution

βK
EXP_3/β

X
EXP_3 accounting for 42.1% to 65.7% of the overall effect.49 Accordingly, we also find

that the R2 in the extensive industry margin regressions (with outcome variable lnKij) are

much larger than those of the other components of lnXij .

Following our above argumentation, we can now also look into what causes the discrepancy

between aggregate distance elasticities in Table 5 and their smaller industry-level counterparts

in Table 8. As argued in Subsection 2.4, we find that a substantial fraction (26.2% to 30.4%) of

the trade-reducing effect of distance in Table 10 can be attributed to less trade at the extensive
49It is worth to note that exports from 3rd-layer central places to their respective hinterlands are also charac-

terised by disproportionately large average quantities C̄ij , which more than compensate for an on average smaller
price P̄ij . Given that the trade-reducing effect of distance can be decomposed into a positive price effect, that is
dominated by a negative quantity effect (see also Hillberry and Hummels, 2008), it is only natural to expect that
short-distance trade between central places and their rather close hinterlands is characterised by large quantities
and low prices.
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industry-margin, which explains why the combined effect at the intensive and extensive margin

in Table 5 exceeds the intensive margin effect in Table 8. Reassuringly, we find that the point

Table 10: Decomposing the Distance Elasticity

Explanatory Variable: ln Distanceij

Dependent Variable: lnXij lnSij lnKij ln S̄ij ln R̄ij ln P̄ij ln C̄ij N
βK

DIST

βX
DIST

βR̄
DIST

βX
DIST

Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Year:

2015 −0.6974∗∗∗ −0.2022∗∗∗ −0.1830∗∗∗ −0.0193∗∗∗ −0.4952∗∗∗ 0.3588∗∗∗ −0.8539∗∗∗ 15,261 26.24% 71.01%
(.0233) (.0050) (.0046) (.0014) (.0215) (.0152) (.0250)
[.44] [.65] [.63] [.30] [.37] [.41] [.42]

2010 −0.6764∗∗∗ −0.2065∗∗∗ −0.1865∗∗∗ −0.0200∗∗∗ −0.4699∗∗∗ 0.3346∗∗∗ −0.8045∗∗∗ 16,184 27.57% 69.47%
(.0230) (.0051) (.0047) (.0014) (.0212) (.0144) (.0248)
[.42] [.65] [.64] [.29] [.33] [.45] [.41]

2005 −0.6250∗∗∗ −0.1931∗∗∗ −0.1759∗∗∗ −0.0171∗∗∗ −0.4320∗∗∗ 0.3277∗∗∗ −0.7597∗∗∗ 18,098 28.14% 69.12%
(.0224) (.0050) (.0046) (.0013) (.0208) (.0147) (.0238)
[.44] [.65] [.63] [.33] [.36] [.47] [.41]

2000 −0.6468∗∗∗ −0.1915∗∗∗ −0.1707∗∗∗ −0.0208∗∗∗ −0.4553∗∗∗ 0.3083∗∗∗ −0.7636∗∗∗ 17,146 26.39% 70.39%
(.0229) (.0051) (.0045) (.0016) (.0213) (.0146) (.0246)
[.44] [.66] [.65] [.32] [.36] [.44] [.43]

1995 −0.6893∗∗∗ −0.2360∗∗∗ −0.2096∗∗∗ −0.0264∗∗∗ −0.4533∗∗∗ 0.3693∗∗∗ −0.8225∗∗∗ 22,138 30.41% 65.76%
(.0195) (.0049) (.0044) (.0014) (.0178) (.0125) (.0214)
[.44] [.67] [.66] [.36] [.34] [.45] [.42]

Fixed effects:

Exporter (i): 3 3 3 3 3 3 3

Importer (j): 3 3 3 3 3 3 3

Notes: R2 of the underlying regression reported in squared brackets. Robust standard errors in parenthesis; significance:
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

estimates for the intensive margin effect from Column (5) of Table 10 are comparable in size

and magnitude to those from Table 8.50

Following our above argumentation, there is little room for an explanation of the dispro-

portionately high exports from 3rd-layer central places to their respective hinterlands in terms

of omitted variable bias. To scrutinise this finding, we explicitly control in Table 11 for po-

tential alternative explanations. In particular, we follow Wrona (2018), who shows that the

multipolar structure of social and business networks leads to less inter-prefectual trade between

the East and the West of Japan. To account for the role of social networks (cf. Helliwell,

1997; Head and Ries, 1998; Millimet and Osang, 2007; Wrona, 2018) we use bilateral migration

stocks at the municipality level from the 2010 Population Census (provided by the Statistical

Bureau of the Ministry of Internal Affairs and Communications), which are aggregated up to

city-pair level.51 Following Combes et al. (2005) and Wrona (2018), we use Japan’s 2014 Eco-

nomic Census [Keizai Sensasu] to compute the total number of bilateral headquarter-plant links

at the city-pair level. By construction, the resulting business-network variable is symmetric,
50As in Hillberry and Hummels’s (2008) decomposition analysis at the 3-digit zip code level, we find that at

the extensive margin there is less trade across increasing distances because the number of shipments and the
number of shipped commodities declines, while at the intensive margin a positive price effect is dominated by
negative quantity effect – a finding that is also consistent with the results in Hummels and Skiba (2004).

51Following Combes et al. (2005) we acknowledge that ex- and imports may be both affected by the structure
of social networks. We therefore use the total stock of lagged migration at the city-pair level to approximate the
structure of social networks.
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suggesting that headquarter-plant linkages are equally important for ex- and imports at the

city-pair level. To account for a potential heterogeneity in the trade-creating effect of social

and business networks, that could explain the upward bias in central places’ exports from Ta-

ble 5, we follow Chen (2004) and interact the indicator variables EXP_CP_HC_lLYij ∈ {0, 1}

and IMP_CP_HC_lLYij ∈ {0, 1} with our two network variables. In Table 11 we compare the

baseline results for 2015 from the Tables 5 and 8 with two specifications that explicitly take

into account the potentially heterogeneous effects that can arise from the presence of social and

business networks. Reassuringly, we find that all interaction effects are statistically insignificant,

which implies that the upward bias in the exports from central places to their hinterlands can

not be explained through a systematic heterogeneity in the trade-creating effect of social and

business networks.52 In accordance with this result, we also find that the point estimates for

the upward bias in central places’ exports from the Tables 5 and 8 basically remain unchanged

in Table 11.

In summary, we have shown that the upward bias in the exports from 3rd-layer central places

to their respective hinterlands, that we have quantified in Subsection 4.2, does not reappear if

the underlying gravity estimation is conducted in a theory-consistent way at the much more

disaggregated industry level. We interpret this finding as supportive evidence in favour of an

explanation in terms of aggregation bias and present further empirical support based on a mirco-

level decomposition of Japan’s inter-city trade that is also well in line with this explanation.

6 Conclusion

Inter-city gravity estimations suffer from a systematic aggregation bias: central places export

two to five times more to their associated hinterlands than predicted by a structural gravity

model, that is based on aggregate inter-city trade data. Central places export more than pro-

portionately to their hinterlands because they possess more industries than the small, peripheral

cities in their hinterlands, and because there is a higher probability that an industry, which only

exists in a central place, will export to the central place’s hinterland. Using a simple decom-

position approach, we verify that the by far largest part of the upward bias in central places’

exports stems from aggregating trade along the extensive industry margin, which is also why

the upward bias is much smaller and only marginally significant if estimation is conducted in a

theory-consistent way at the much more disaggregated industry level.

Another important discrepancy between aggregate and industry-level gravity estimations
52Interestingly, we find the trade-creating effect of social and business networks to be not only larger but also

statistically different from zero, in the theory-consistent industry-level gravity estimations of the Columns (4) to
(6) from Table 11.
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Table 11: In Search for Alternative Explanations

Dependent variable: Exports from city i to city j

Year: 2015

Model: OLS-FE

Specification: (1) (2) (3) (4) (5) (6)

2nd Layer:

Exports CP → HC 0.6712∗∗∗ 0.6544∗∗∗ 0.6652∗∗∗ 0.3433∗∗ 0.2498 0.2665
(.2365) (.2429) (.2464) (.1656) (.1705) (.1684)

Imports CP ← HC 0.7977∗∗∗ 0.8105∗∗∗ 0.8025∗∗∗ 0.3169 0.2822 0.2784
(.2387) (.2465) (.2486) (.2056) (.2183) (.2167)

3rd Layer:

Exports CP → HC 1.0092∗∗∗ 0.9604∗∗∗ 0.9522∗∗∗ 0.4155∗∗ 0.4443∗∗ 0.3283∗

(.2818) (.3722) (.3208) (.1952) (.2113) (.1899)
Imports CP ← HC 0.1072 0.0284 0.0431 0.0433 −0.2616 −0.1279

(.3092) (.3960) (.3369) (.2324) (.2213) (.2049)
Alternative explanatory variables:

Lagged migrationij 0.0001 0.0008∗∗∗

(.0001) (.0001)
2nd Layer:

Lagged migrationij×exports CP → HC 0.0009 0.0100
(.0029) (.0077)

Lagged migrationij×imports CP ← HC −0.0010 −0.0094
(.0029) (.0076)

3rd Layer:

Lagged migrationij×exports CP −0.0009 −0.1085
(.0140) (.0876)

Lagged migrationij×imports CP ← HC 0.0014 0.1118
(.0140) (.0875)

Headquarter-plant linkagesij 0.0002 0.0012∗∗∗

(.0002) (.0002)
2nd Layer:

Headquarter-plant linkagesij×exports CP → HC 0.0003 0.0075
(.0032) (.0062)

Headquarter-plant linkagesij×imports CP ← HC −0.0004 −0.0074
(.0032) (.0061)

3rd Layer:

Headquarter-plant linkagesij×exports CP → HC −0.0002 −0.0341
(.0154) (.1055)

Headquarter-plant linkagesij×imports CP ← HC 0.0005 0.0357
(.0154) (.1055)

Controls:

ln Distanceij −0.6974∗∗∗ −0.6981∗∗∗ −0.6980∗∗∗ −0.4228∗∗∗ −0.4383∗∗∗ −0.4381∗∗∗

(.0233) (.0233) (.0233) (.0239) (.0234) (.0234)
Intra-city trade 0.6563∗∗∗ 0.6259∗∗∗ 0.6138∗∗∗ 0.6974∗∗∗ 0.2625∗ 0.2393

(.1802) (.1838) (.1835) (.2061) (.1514) (.1518)
Intra-island trade 0.0332 0.0329 0.0337 −0.0333 −0.0316 −0.0264

(.0719) (.0719) (.0719) (.0761) (.0746) (.0745)

Fixed effects:

Exporter (i): 3 3 3 3 3 3

Importer (j): 3 3 3 3 3 3

Summary statistics:

Number of observations: 15, 261 15, 261 15, 261 26, 134 26, 134 26, 134
R2 0.438 0.438 0.438 0.649 0.651 0.651

Notes: Robust standard errors; Industry-level regressions clustered at the city-pair level; significance: ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.1.

concerns the distance elasticity, which at the aggregate level is twice as large as in gravity

estimations, that are conducted at the more disaggregate industry level. Aggregating across

industry-level trade flows transforms a de facto binary variation at the extensive margin (pres-

ence or absence of industry-level shipments) into a continuous variable (total value of trade).
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For larger bilateral distances the total value of trade then declines at the extensive and at the

intensive margin, which is why the trade reducing effect of distance in aggregate gravity esti-

mations is overstated in comparison to a theory-consistent gravity estimation at the industry

level.

In accordance with the underlying central place model by Fujita et al. (1999a), we have

focused in our analysis on intra-national trade between cities in Japan, which proves to be

an ideal testing ground due to its status of an isolated island economy. Although similar

patterns with regard to the extensive goods margin have also been found for international trade

(cf. Hummels and Klenow, 2005), it remains an open question whether these patterns can be

equally well explained by Fujita et al.’s (1999a) central place model, which rests on the central

assumption of free labour mobility and does allow for frictions, such as imperfect technology

transmission across regions. We leave this question for future research.
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A Theory Appendix

A.1 Derivation of Eq. (1)

We adopt the preference specification from Fujita et al. (1999a):

Uj = βA lnCj,A + βk

K∑
k=1

lnCj,k with βA +
K∑

k=1
βk = 1, (A.1)

and

Cj,k =
[∫

vk∈Vk

Cj,k(vk)
σk−1

σk dvk

] σk
σk−1

with σk > 1 ∀ k = 1, . . . ,K, (A.2)

in which βA > 0 denotes the constant expenditure share of a homogeneous agricultural good

(indexed by subscript A), which is produced under perfect competition, whereas βk > 0 ∀ k =

1, . . . ,K denote the constant expenditure shares of the K > 1 horizontally differentiated man-

ufacturing goods (indexed by subscript k = 1, . . . ,K), which are produced under monopolis-

tic competition. Aggregate consumption Cj,k of the manufacturing good k (in destination j)

thereby is defined as a CES aggregate over the set of horizontally differentiated varieties Vk,

which are bundled together according to a sector-specific elasticity of substitution σk > 1.

City j’s demand for a sector k’s varieties vk,i ∈ Vk from origin city i can be derived as:

Cij,k(vi,k) =
[
Pij,k(vi,k)
Pj,k

]−σk
βkXj,M

Pj,k
, (A.3)

with

Pj,k ≡
[∑

i

∫
vi,k∈Vi,k

Pij,k(vi,k)1−σkdvi,k

] 1
1−σk

(A.4)
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as the sectoral price index in city j, Xj,M as city j’s aggregate expenditure on manufacturing

products, and Pij,k(vi,k) as the price of sector k’s variety vi,k shipped from origin city i to

destination city j. Due to a constant price elasticities σk > 1, firms charge constant mark-ups

over their marginal costs wi/φi,k, which results in (symmetric) domestic prices:

Pii,k(vi,k) = Pii,k = σk

σk − 1
wi

φi,k
. (A.5)

Combining Pij,k = τij,kPii,k with Eqs. (A.3), (A.4) and (A.5), it is possible to derive the value

Xij,k of sector k’s bilateral trade from origin city i to destination city j as:

Xij,k = πij,kβkXj,M with πij,k ≡
τ1−σk

ij,k (wi/φi,k)1−σkMi,k∑
l τ

1−σk
lj,k (wl/φl,k)1−σkMl,k

∈ [0, 1] (A.6)

denoting the share of destination city j’s expenditure spend on sector k’s goods produced in

origin city i, and Mi,k ≥ 0 as the number of sector k’s firms/varieties in origin city i. Notably,

it holds that Xj,k =
∑n

i=1Xij,k = βkXj,M , which implies Yk =
∑n

j=1Xj,k = βk
∑n

j=1Xj,M =

βkXM = βkYM with Yk as the value of total sectoral production and YM as the value of aggregate

manufacturing production. Balanced trade implies Yi,k =
∑n

j=1Xij,k such that

Yi,k =
n∑

j=1
Xij,k = w1−σk

i Mi,kφ
σk−1
i,k

n∑
j=1

(
τij,k

Ωj,k

)1−σk

Xj,k = w1−σk
i Mi,kφ

σk−1
i,k Φ1−σk

i,k Yk, (A.7)

where Ω1−σk
j,k ≡

∑n
l=1 τ

1−σk
lj,k w1−σk

l Ml,kφ
σk−1
l,k and

Φ1−σk
i,k ≡

n∑
j=1

(
τij,k

Ωj,k

)1−σk
Xj,k

Yk
. (A.8)

Using the fact that w1−σk
i Mi,kφ

σk−1
i,k = (Yi,k/Yk)/Φ1−σk

i,k we can solve for

Ω1−σk
j,k ≡

n∑
i=1

τ1−σk
ij,k w1−σk

i Hi,k =
n∑

i=1

(
τij,k

Φi,k

)1−σk
Yi,k

Yk
. (A.9)

Finally, replacing
∑n

l=1 τ
1−σk
lj,k w1−σk

l Ml,kφ
σk−1
l,k = Ω1−σk

j,k and w1−σk
i Mi,kφ

σk−1
i,k = (Yi,k/Yk)/Φ1−σk

i,k

in Eq. (A.6) results in the system of structural gravity equations in Eq. (1).
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B Data Appendix

Figure 7: Identifying Cities based on Urban Agglomerations
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C Results Appendix

Figure 8: Central Places and Hinterland Cities at the 2nd and 3rd Layer – 1995-2010

Figure 9: Testing for the Spatial Clustering of Central Places and their Hinterlands
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Table 12: Centrality and Central Places in 2015

Rank Central Place

City Prefecture Centrality Population 2nd Layer 3rd Layer

(1) Tokyo Tokyo 1 1 Tokyo Tokyo
(2) Osaka Osaka 2 2 Osaka Osaka
(3) Nagoya Aichi 3 3 Osaka Nagoya
(4) Fukuoka Fukuoka 4 4 Osaka Fukuoka
(5) Kitakyushu Fukuoka 5 7 Tokyo Kitakyushu
(6) Sapporo Hokkaido 6 5 Tokyo Sapporo
(7) Okayama Okayama 7 10 Osaka Okayama
(8) Takasaki Gunma 8 6 Tokyo Takasaki
(9) Oita Oita 9 24 Tokyo Kitakyushu

(10) Matsuyama Ehime 10 18 Osaka Osaka

(11) Toyohashi Aichi 11 17 Osaka Osaka
(12) Koyama Tochigi 12 41 Tokyo Tokyo
(13) Yokkaichi Mie 13 16 Tokyo Tokyo
(14) Satsumasendai Kagoshima 14 158 Osaka Nagoya
(15) Miyakonjo Miyazaki 15 83 Osaka Okayama
(16) Nobeoka Miyazaki 16 92 Osaka Osaka
(17) Hamamatsu Shizuoka 17 11 Osaka Osaka
(18) Miyazaki Miyazaki 18 36 Tokyo Tokyo
(19) Wakayama Wakayama 19 22 Osaka Osaka
(20) Matsue Shimane 20 66 Osaka Osaka

(21) Takaoka Toyama 21 56 Tokyo Tokyo
(22) Niigata Niigata 22 20 Tokyo Tokyo
(23) Isahaya Nagasaki 23 102 Osaka Fukuoka
(24) Shunan Yamaguchi 24 64 Osaka Osaka
(25) Komatsu Ishikawa 25 74 Osaka Osaka
(26) Sano Tochigi 26 101 Tokyo Tokyo
(27) Sendai Miyagi 27 9 Tokyo Tokyo
(28) Niigata (Kita) Niigata 28 188 Osaka Osaka
(29) Tanabe Wakayama 29 144 Osaka Nagoya
(30) Kanoya Kagoshima 30 140 Osaka Osaka

(31) Kagoshima Kagoshima 31 21 Osaka Nagoya
(32) Kirishima Kagoshima 32 106 Osaka Osaka
(33) Aira Kagoshima 33 135 Osaka Nagoya
(34) Kobayashi Miyazaki 34 244 Osaka Okayama
(35) Minamata Kumamoto 35 267 Osaka Osaka
(36) Yashiro Kumamoto 36 108 Tokyo Kitakyushu
(37) Uki Kumamoto 37 197 Osaka Okayama
(38) Hyuga Miyazaki 38 156 Osaka Osaka
(39) Nagasaki Nagasaki 39 25 Osaka Osaka
(40) Ohmura Nagasaki 40 105 Osaka Fukuoka

(41) Sasebo Nagasaki 41 59 Osaka Fukuoka
(42) Imari Saga 42 220 Osaka Osaka
(43) Shimabara Nagasaki 43 212 Osaka Osaka
(44) Kumamoto Kumamoto 44 12 Tokyo Tokyo
(45) Tamana Kumamoto 45 206 Osaka Fukuoka
(46) Kikuchi Kumamoto 46 272 Osaka Nagoya
(47) Ohmuta Fukuoka 47 63 Osaka Fukuoka
(48) Yamaga Kumamoto 48 246 Tokyo Tokyo
(49) Takeo Saga 49 255 Tokyo Kitakyushu
(50) Saga Saga 50 61 Osaka Osaka

48



Table 13: Centrality and Central Places in 2010

Rank Central Place

City Prefecture Centrality Population 2nd Layer 3rd Layer

(1) Tokyo Tokyo 1 1 Tokyo Tokyo
(2) Osaka Osaka 2 2 Osaka Osaka
(3) Fukuoka Fukuoka 3 4 Osaka Fukuoka
(4) Nagoya Aichi 4 3 Tokyo Nagoya
(5) Sendai Miyagi 5 9 Tokyo Sendai
(6) Kitakyushu Fukuoka 6 7 Osaka Kitakyushu
(7) Takasaki Saitama 7 6 Tokyo Tokyo
(8) Okayama Okayama 8 10 Osaka Osaka
(9) Hachinohe Aomori 9 49 Tokyo Tokyo

(10) Kagoshima Kagoshima 10 20 Osaka Osaka

(11) Matsuyama Ehime 11 16 Osaka Osaka
(12) Nobeoka Miyazaki 12 86 Osaka Fukuoka
(13) Kanazawa Ishikawa 13 14 Osaka Osaka
(14) Ube Yamaguchi 14 50 Tokyo Tokyo
(15) Oita Oita 15 25 Osaka Kitakyushu
(16) Kanoya Kagoshima 16 134 Osaka Fukuoka
(17) Kirishima Kagoshima 17 100 Tokyo Tokyo
(18) Satsumasendai Kagoshima 18 153 Osaka Kitakyushu
(19) Kobayashi Miyazaki 19 235 Osaka Osaka
(20) Nichinan Miyazaki 20 206 Osaka Fukuoka

(21) Miyakonjo Miyazaki 21 79 Osaka Fukuoka
(22) Miyazaki Miyazaki 22 37 Osaka Osaka
(23) Izumi Kagoshima 23 245 Osaka Osaka
(24) Minamata Kumamoto 24 258 Osaka Osaka
(25) Amakusa Kumamoto 25 207 Osaka Osaka
(26) Yashiro Kumamoto 26 98 Osaka Fukuoka
(27) Takanabe Miyazaki 27 256 Osaka Kitakyushu
(28) Hyuga Miyazaki 28 149 Osaka Fukuoka
(29) Nagasaki Nagasaki 29 24 Osaka Osaka
(30) Ohmura Nagasaki 30 99 Osaka Kitakyushu

(31) Sasebo Nagasaki 31 56 Osaka Osaka
(32) Imari Saga 32 222 Osaka Fukuoka
(33) Shimabara Nagasaki 33 203 Osaka Osaka
(34) Kumamoto Kumamoto 34 12 Tokyo Tokyo
(35) Isahaya Nagasaki 35 96 Tokyo Tokyo
(36) Kikuchi Kumamoto 36 260 Osaka Kitakyushu
(37) Ohmuta Fukuoka 37 57 Osaka Fukuoka
(38) Yamaga Kumamoto 38 233 Osaka Osaka
(39) Takeo Saga 39 252 Osaka Fukuoka
(40) Saga Saga 40 59 Osaka Osaka

(41) Hita Oita 41 154 Osaka Fukuoka
(42) Saiki Oita 42 192 Osaka Kitakyushu
(43) Beppu Oita 43 72 Tokyo Tokyo
(44) Karatsu Saga 44 125 Osaka Osaka
(45) Asakura Fukuoka 45 212 Osaka Fukuoka
(46) Iizuka Fukuoka 46 70 Tokyo Tokyo
(47) Tagawa Fukuoka 47 107 Osaka Kitakyushu
(48) Nakatsu Oita 48 122 Tokyo Nagoya
(49) Shimonoseki Yamaguchi 49 163 Osaka Osaka
(50) Kochi Kochi 50 36 Osaka Osaka
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Table 14: Centrality and Central Places in 2005

Rank Central Place

City Prefecture Centrality Population 2nd Layer 3rd Layer

(1) Tokyo Tokyo 1 1 Tokyo Tokyo
(2) Osaka Osaka 2 2 Osaka Osaka
(3) Nagoya Aichi 3 3 Nagoya Nagoya
(4) Fukuoka Fukuoka 4 4 Osaka Fukuoka
(5) Kitakyushu Fukuoka 5 6 Osaka Kitakyushu
(6) Yokkaichi Mie 6 13 Osaka Osaka
(7) Sapporo Hokkaido 7 5 Tokyo Tokyo
(8) Sakade Kagawa 8 55 Osaka Osaka
(9) Sendai Miyagi 9 9 Tokyo Sendai

(10) Kumagaya Saitama 10 14 Tokyo Tokyo

(11) Fukuyama Hiroshima 11 32 Osaka Osaka
(12) Kumamoto Kumamoto 12 15 Osaka Osaka
(13) Toyama Toyama 13 40 Osaka Osaka
(14) Niigata Niigata 14 17 Tokyo Tokyo
(15) Sanjo Niigata 15 89 Osaka Osaka
(16) Takasaki Gunma 16 11 Tokyo Tokyo
(17) Yamagata Yamagata 17 49 Tokyo Tokyo
(18) Nobeoka Miyazaki 18 87 Osaka Osaka
(19) Ohmuta Fukuoka 19 59 Tokyo Tokyo
(20) Kure Hiroshima 20 64 Osaka Osaka

(21) Toyohashi Aichi 21 21 Nagoya Nagoya
(22) Kanoya Kagoshima 22 138 Tokyo Tokyo
(23) Kagoshima Kagoshima 23 22 Osaka Osaka
(24) Kirishima Kagoshima 24 107 Tokyo Tokyo
(25) Satsumasendai Kagoshima 25 146 Osaka Osaka
(26) Nichinan Miyazaki 26 203 Osaka Osaka
(27) Miyakonjo Miyazaki 27 86 Osaka Osaka
(28) Miyazaki Miyazaki 28 41 Nagoya Nagoya
(29) Minamata Kumamoto 29 259 Osaka Osaka
(30) Amakusa Kumamoto 30 208 Tokyo Tokyo

(31) Yashiro Kumamoto 31 102 Tokyo Tokyo
(32) Uki Kumamoto 32 198 Osaka Osaka
(33) Hyuga Miyazaki 33 143 Osaka Kitakyushu
(34) Nagasaki Nagasaki 34 25 Tokyo Tokyo
(35) Ohmura Nagasaki 35 109 Tokyo Tokyo
(36) Sasebo Nagasaki 36 58 Osaka Osaka
(37) Imari Saga 37 226 Tokyo Tokyo
(38) Isahaya Nagasaki 38 98 Osaka Kitakyushu
(39) Tamana Kumamoto 39 235 Osaka Osaka
(40) Kikuchi Kumamoto 40 267 Osaka Fukuoka

(41) Yamaga Kumamoto 41 240 Osaka Fukuoka
(42) Takeo Saga 42 266 Osaka Osaka
(43) Saga Saga 43 51 Osaka Osaka
(44) Yanagawa Fukuoka 44 159 Osaka Fukuoka
(45) Hita Oita 45 148 Osaka Osaka
(46) Oita Oita 46 28 Osaka Kitakyushu
(47) Uwajima Ehime 47 152 Osaka Osaka
(48) Karatsu Saga 48 145 Osaka Osaka
(49) Asakura Fukuoka 49 223 Osaka Osaka
(50) Tagawa Fukuoka 50 100 Osaka Fukuoka
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Table 15: Centrality and Central Places in 2000

Rank Central Place

City Prefecture Centrality Population 2nd Layer 3rd Layer

(1) Tokyo Tokyo 1 1 Tokyo Tokyo
(2) Osaka Osaka 2 2 Osaka Osaka
(3) Nagoya Aichi 3 3 Nagoya Nagoya
(4) Fukuoka Fukuoka 4 4 Osaka Fukuoka
(5) Okayama Okayama 5 9 Osaka Okayama
(6) Kitakyushu Fukuoka 6 8 Osaka Kitakyushu
(7) Hiroshima Hiroshima 7 6 Osaka Osaka
(8) Sakade Kagawa 8 56 Osaka Osaka
(9) Mishima Shizuoka 9 11 Tokyo Tokyo

(10) Rittou Shiga 10 20 Osaka Osaka

(11) Sapporo Hokkaido 11 5 Tokyo Tokyo
(12) Kochi Kochi 12 30 Nagoya Nagoya
(13) Wakayama Wakayama 13 23 Osaka Osaka
(14) Ohmuta Kumamoto 14 53 Osaka Osaka
(15) Kure Hiroshima 15 59 Osaka Osaka
(16) Oita Oita 16 26 Osaka Fukuoka
(17) Bofu Yamaguchi 17 92 Osaka Osaka
(18) Tokushima Tokushima 18 29 Osaka Osaka
(19) Iwaki Fukushima 19 44 Tokyo Tokyo
(20) Shimonoseki Yamaguchi 20 43 Nagoya Nagoya

(21) Kumamoto Kumamoto 21 14 Osaka Osaka
(22) Hita Oita 22 157 Osaka Kitakyushu
(23) Matsuyama Ehime 23 18 Osaka Osaka
(24) Shunan Yamaguchi 24 63 Tokyo Tokyo
(25) Minakuchi Shiga 25 199 Tokyo Tokyo
(26) Hachinohe Aomori 26 50 Tokyo Tokyo
(27) Asahikawa Hokkaido 27 32 Osaka Osaka
(28) Kagoshima Kagoshima 28 19 Osaka Osaka
(29) Minamata Kumamoto 29 248 Tokyo Tokyo
(30) Kanoya Kagoshima 30 142 Osaka Fukuoka

(31) Kirishima Kagoshima 31 98 Tokyo Tokyo
(32) Satsumasendai Kagoshima 32 152 Osaka Osaka
(33) Nichinan Miyazaki 33 250 Tokyo Tokyo
(34) Miyakonjo Miyazaki 34 84 Osaka Fukuoka
(35) Miyazaki Miyazaki 35 39 Osaka Osaka
(36) Izumi Kagoshima 36 261 Nagoya Nagoya
(37) Yashiro Kumamoto 37 96 Osaka Osaka
(38) Uki Kumamoto 38 161 Osaka Osaka
(39) Hyuga Miyazaki 39 139 Osaka Osaka
(40) Nobeoka Miyazaki 40 82 Nagoya Nagoya

(41) Nagasaki Nagasaki 41 24 Osaka Osaka
(42) Ohmura Nagasaki 42 105 Osaka Osaka
(43) Sasebo Nagasaki 43 48 Osaka Osaka
(44) Imari Saga 44 224 Osaka Osaka
(45) Isahaya Nagasaki 45 72 Osaka Fukuoka
(46) Tamana Kumamoto 46 233 Osaka Osaka
(47) Yamaga Kumamoto 47 249 Osaka Osaka
(48) Kashima Saga 48 238 Osaka Fukuoka
(49) Saga Saga 49 62 Osaka Osaka
(50) Yanagawa Fukuoka 50 88 Osaka Osaka
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Table 16: Centrality and Central Places in 1995

Rank Central Place

City Prefecture Centrality Population 2nd Layer 3rd Layer

(1) Tokyo Tokyo 1 1 Tokyo Tokyo
(2) Osaka Osaka 2 2 Osaka Osaka
(3) Nagoya Aichi 3 3 Osaka Nagoya
(4) Kitakyushu Fukuoka 4 6 Osaka Kitakyushu
(5) Niigata Niigata 5 16 Tokyo Niigata
(6) Fukuoka Fukuoka 6 4 Osaka Fukuoka
(7) Oita Oita 7 28 Osaka Osaka
(8) Sapporo Hokkaido 8 5 Osaka Sapporo
(9) Okayama Okayama 9 9 Osaka Nagoya

(10) Hiroshima Hiroshima 10 7 Osaka Osaka

(11) Sakade Kagawa 11 56 Osaka Osaka
(12) Kurume Fukuoka 12 35 Osaka Kitakyushu
(13) Shunan Yamaguchi 13 61 Tokyo Tokyo
(14) Miyakonjo Miyazaki 14 85 Tokyo Tokyo
(15) Sendai Miyagi 15 8 Tokyo Tokyo
(16) Noboribetsu Hokkaido 16 68 Osaka Nagoya
(17) Fukuyama Hiroshima 17 29 Osaka Osaka
(18) Toyama Toyama 18 37 Osaka Osaka
(19) Ube Yamaguchi 19 53 Osaka Osaka
(20) Kirishima Kagoshima 20 107 Osaka Osaka

(21) Kochi Kochi 21 31 Osaka Osaka
(22) Arida Wakayama 22 228 Osaka Osaka
(23) Wakayama Wakayama 23 23 Osaka Osaka
(24) Matsumoto Nagano 24 49 Tokyo Tokyo
(25) Ishimaki Miyagi 25 78 Tokyo Tokyo
(26) Satsumasendai Kagoshima 26 156 Osaka Osaka
(27) Kagoshima Kagoshima 27 19 Osaka Osaka
(28) Kobayashi Miyazaki 28 257 Osaka Osaka
(29) Nichinan Miyazaki 29 285 Tokyo Tokyo
(30) Miyazaki Miyazaki 30 38 Osaka Osaka

(31) Izumi Kagoshima 31 290 Osaka Osaka
(32) Yashiro Kumamoto 32 98 Osaka Osaka
(33) Uki Kumamoto 33 174 Osaka Nagoya
(34) Hyuga Miyazaki 34 141 Osaka Kitakyushu
(35) Nobeoka Miyazaki 35 82 Tokyo Tokyo
(36) Nagasaki Nagasaki 36 24 Osaka Osaka
(37) Ohmura Nagasaki 37 119 Osaka Osaka
(38) Sasebo Nagasaki 38 48 Osaka Kitakyushu
(39) Imari Saga 39 240 Osaka Fukuoka
(40) Kumamoto Kumamoto 40 14 Osaka Osaka

(41) Isahaya Nagasaki 41 73 Osaka Osaka
(42) Tamana Kumamoto 42 254 Osaka Osaka
(43) Kikuchi Kumamoto 43 311 Tokyo Tokyo
(44) Ohmuta Kumamoto 44 55 Osaka Osaka
(45) Yamaga Kumamoto 45 271 Osaka Osaka
(46) Kashima Saga 46 251 Osaka Osaka
(47) Setaka Fukuoka 47 300 Osaka Nagoya
(48) Takeo Saga 48 296 Osaka Osaka
(49) Saga Saga 49 60 Osaka Kitakyushu
(50) Yanagawa Fukuoka 50 80 Tokyo Tokyo
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Table 17: Robustness Checks – Industry-level Inter-city Trade

Dependent variable: Industry-level exports from city i to city j

Year: 2015 2010 2005 2000 1995 2015 2010 2005 2000 1995

Model: OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE

Specification: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

2nd Layer:

Exports CP → HC 0.3433∗∗ 0.1447 0.1312 0.2014 0.4015∗∗∗ 0.3223∗∗ 0.2499 0.1885 0.1605 0.3713∗∗

(.1656) (.1516) (.1349) (.1490) (.1558) (.1492) (.1565) (.1248) (.1337) (.1473)
Imports CP ← HC 0.3169 0.1323 0.02669 0.3662∗ 0.2193 0.3003 0.0958 0.0670 0.2895 0.1801

(.2056) (.2054) (.1839) (.1963) (.1929) (.1962) (.1881) (.1737) (.1846) (.1806)
3rd Layer:

Exports CP → HC 0.4155∗∗ −0.02187 0.5405∗ 0.2559 0.3391∗∗ 0.3933∗∗ −0.0565 0.4881 0.4081∗ 0.3320∗∗

(.1952) (.1917) (.3217) (.2015) (.1695) (.1813) (.1747) (.3001) (.2112) (.1533)
Imports CP ← HC 0.0433 0.4705 −0.2642 −0.2043 −0.0423 0.0343 0.4859∗ −0.2563 −0.2850 −0.0474

(.2324) (.3013) (.2990) (.2233) (.2157) (.2155) (.2755) (.3347) (.2317) (.1966)
Controls:

ln Distanceij −0.4228∗∗∗ −0.4201∗∗∗ −0.3874∗∗∗ −0.3864∗∗∗ −0.3883∗∗∗ −0.2530∗∗∗ −0.2273∗∗∗ −0.2082∗∗∗ −0.1902∗∗∗ −0.2166∗∗∗

(.0239) (.0239) (.0231) (.0235) (.0198) (.0222) (.0230) (.0213) (.0217) (.0182)
Intra-city trade 0.6974∗∗∗ 0.6671∗∗∗ 0.3959 0.7085∗∗∗ 0.8458∗∗∗ 0.8099∗∗∗ 0.8373∗∗∗ 0.6082∗∗∗ 0.9712∗∗∗ 1.0360∗∗∗

(.2061) (.2119) (.2492) (.2547) (.2181) (.2057) (.2069) (.2326) (.2384) (.2081)
Intra-island trade −0.0333 0.0563 −0.0454 0.0704 0.0618 −0.0600 0.0287 −0.0455 0.0624 0.0173

(.0761) (.0720) (.0613) (.0645) (.0521) (.0651) (.0632) (.0521) (.0571) (.0463)
Additional controls:

ln Transportation costsijk: 7 7 7 7 7 3 3 3 3 3

Fixed effects:

Exporter×industry (i× k): 3 3 3 3 3 3 3 3 3 3

Importer×industry (j × k): 3 3 3 3 3 3 3 3 3 3

Summary statistics:

Number of observations: 26, 134 29, 066 33, 591 32, 026 47, 648 26, 134 29, 066 33, 591 32, 026 47, 648
R2 0.649 0.632 0.621 0.620 0.599 0.734 0.723 0.716 0.717 0.697

Notes: Robust standard errors are clustered at the city-pair level; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

Table 18: Inter-City Trade Decomposition for 1995-2015 (Double Demeaning Approach)

Explanatory Variable: Exports 3rd Layer Central Place → Hinterland

Dependent Variable: lnXij lnSij lnKij ln S̄ij ln R̄ij ln P̄ij ln C̄ij N
βK

EXP_3
βX

EXP_3

βS̄
EXP_3
βX

EXP_3

Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Year:

2015 1.4339∗∗∗ 0.8173∗∗∗ 0.7144∗∗∗ 0.1030∗∗∗ 0.6166∗∗∗ −0.3926∗∗∗ 1.0093∗∗∗ 15,261 49.82% 7.18%
(.2526) (.0909) (.0770) (.0311) (.2109) (.1197) (.2247)
[.08] [.14] [.13] [.03] [.05] [.05] [.10]

2010 1.9919∗∗∗ 1.0398∗∗∗ 0.8958∗∗∗ 0.1440∗∗∗ 0.9521∗∗∗ −0.6692∗∗∗ 1.6213∗∗∗ 16,184 44.97% 7.23%
(.2030) (.0816) (.0597) (.0395) (.1654) (.1342) (.1734)
[.08] [.13] [.13] [.03] [.05] [.06] [.09]

2005 2.1729∗∗∗ 0.8616∗∗∗ 0.8220∗∗∗ 0.0396 1.3113∗∗∗ −0.4740 1.7853∗∗∗ 18,098 37.82% 1.82%
(.5038) (.1414) (.1204) (.0319) (.4006) (.2884) (.3415)
[.06] [.10] [.10] [.02] [.03] [.04] [.07]

2000 1.6638∗∗∗ 0.9376∗∗∗ 0.8605∗∗∗ 0.0770∗∗ 0.7263∗∗ −0.9031∗∗∗ 1.6294∗∗∗ 17,146 51.72% 4.74%
(.4033) (.1477) (.1275) (.0369) (.2861) (.2308) (.2729)
[.06] [.10] [.10] [.02] [.04] [.04] [.08]

1995 1.2994∗∗∗ 0.7400∗∗∗ 0.6345∗∗∗ 0.1056∗∗ 0.5594∗∗∗ −0.6297∗∗∗ 1.1891∗∗∗ 22,138 48.83% 8.88%
(.2194) (.1194) (.0858) (.0449) (.1533) (.1244) (.1647)
[.07] [.11] [.11] [.02] [.04] [.05] [.08]

Double Demaning:

Demeaned by: 1
N

∑
iXij

1
N

∑
i Sij

1
N

∑
iKij

1
N

∑
i S̄ij

1
N

∑
i R̄ij

1
N

∑
i P̄ij

1
N

∑
i C̄ij

Demeaned by: 1
N

∑
j Xij

1
N

∑
j Sij

1
N

∑
ij Kij

1
N

∑
ij S̄ij

1
N

∑
j R̄ij

1
N

∑
j P̄ij

1
N

∑
j C̄ij

Notes: R2 of the underlying regression reported in squared brackets. Robust standard errors in parenthesis; significance:
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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