
 

 

 

 

 

 

 

KIER DISCUSSION PAPER SERIES 

KYOTO INSTITUTE 

OF 

ECONOMIC RESEARCH 
 

KYOTO UNIVERSITY 

KYOTO, JAPAN 

 
Discussion Paper No.1005 

 

“Equilibrium Prices of the Market Portfolio in the CAPM 
with Incomplete Financial Markets” 

 

Chiaki Hara 
 
 

October 2018 



Equilibrium Prices of the Market Portfolio in the CAPM

with Incomplete Financial Markets

Chiaki Hara∗

Institute of Economic Research, Kyoto University

October 11, 2018 First Version: December 1998

Abstract

In the Capital Asset Pricing Model, we consider how introducing new assets will

affect the prices of the existing ones. We prove that introducing new assets into

financial markets increases the relative price of the market portfolio with respect

to the risk-free bond if the elasticity of the marginal rates of substitution of the

mean for standard deviation with respect to the latter is greater than one for every

consumer; the relative price of the market portfolio decreases if the elasticity is less

than one; and the relative price is left unchanged if the elasticity is equal to one.
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1 Introduction

1.1 Overview of the Results

In this paper, we consider how introducing new assets into financial markets will affect

the prices of the existing ones. Our exercise here is of comparative statics type, whereby

we compare two equilibria, one of which is obtained with newly introduced assets and

the other without them. For a reason that will soon become clear, we concentrate on the

Capital Asset Pricing Model (CAPM), in which, by definition, all consumers believe in

the same probability distribution over the states of nature, there is only one good, and

their utility functions all depend only on the mean and standard deviation of random

future consumptions. We further assume that:

• Consumption takes place only in one period

• There is no production

• No initial endowments for any asset by any consumer

In particular, by the “market portfolio,” we mean an asset whose payout is perfectly

correlated with the sum of all consumers’ initial endowments; and, by the “risk-free

bond,” we mean the asset that pays one unit of the good with probability one.

The CAPM admits a very strong characterization of equilibrium asset prices, called

the security market line. To be more specific, let’s index the tradeable assets by i and

denote the random payout of asset i by ai and its equilibrium price by pi. Denote by qi

the return of asset i (that is, qi = p−1
i ai and it is random) and by qi its expected return

(that is, qi = E(qi) = p−1
i E(ai)). Denote by d the payout of the market portfolio and

define pd, qd, and qd to be its price, return, and expected return. The payout of the

risk-free bond is denoted by 1. Denote its price and expected return by p1 and q1, so

that q1 = p−1
1 . Then, at equilibrium, we must have

qi − q1 = βi(qd − q1) (1)

for every asset i, where

βi =
C(qi, qd)

V (qd)
,

which is called the beta of asset i and measures how much correlated the return of asset

i is with that of the market portfolio. We emphasize here that the above equality holds
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even when the asset markets are incomplete, as long as the market portfolio and the

risk-free bond are available for trade.

It would give rise to unnecessary complications to analyze how the values in equality

(1), such as qi, qd, and βi, for existing assets are affected when some new assets are

introduced, because they are all defined in terms of returns, and the returns are defined

by dividing payouts by prices, the latter of which are endogenously determined at equi-

librium. An equivalent condition of the security market line (1) in terms of the payouts

ai is that there exist a t ∈ R++ and an r ∈ R++ such that, for every asset i,

pi = tE(ai)− rC(ai, d).
1 (2)

Since we have assumed that there is no consumption in the first period, we can normalize

asset prices pi so that t = 1:

pi = E(ai)− rC(ai, d). (3)

We can then see that the case of r = 0 corresponds to the risk-neutral pricing and that

a larger r means a larger risk premium and a larger Sharpe ratio. Moreover, in the

CAPM, equilibrium asset prices can be uniquely specified by a single positive number

r. The purpose of this paper is to find out under what conditions imposed on utility

functions we can unambiguously sign the change in the value of r in equality (3) when

new assets are introduced.

To state our main theorem, index the consumers by h and let, for each h,

Uh : R+ ×R → R

(σ, µ) 7→ Uh(σ, µ)

be the utility function of consumer h over mean µ and standard deviation σ of ran-

dom future consumptions. Besides smoothness and quasi-concavity, we assume that

D1Uh(σ, µ) ≤ 0 and D2Uh(σ, µ) > 0 for every (σ, µ) ∈ R+ × R; and D1Uh(σ, µ) < 0

if σ > 0, where D1 denotes the partial derivative with respect to the first variable σ

and D2 denotes the partial derivative with respect to the second variable µ. That is, a

higher mean and a lower standard deviation are always strictly preferred. Define

MRSh(σ, µ) = −D1Uh(σ, µ)

D2Uh(σ, µ)
.
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This marginal rate of substitution measures how much the mean of the consumption

should be increased when the standard deviation is increased by one unit, in order for

consumer h to enjoy the same utility level. Then the value

σ

MRSh(σ, µ)
D1MRSh(σ, µ) (4)

is the elasticity of the marginal rate of substitution with respect to standard deviation

σ. This elasticity is thus greater than one if and only if a 1% increase in the standard

deviation increases the marginal rate of substitution by more than 1%.

Suppose now that, in addition to the risk-free bond and the market portfolio (and

possibly others), new assets are introduced into markets and they provide increased

hedging opportunities with at least one consumer, in the sense that some portfolio of

the new assets has non-zero covariance with his initial endowment. Our main result

roughly says that if the elasticity (4) is larger than one at every (σ, µ) and for every

consumer h, then, for every equilibrium without the new assets, there is an equilibrium

with them at which the value of r in (3) is lower; if the elasticity is smaller than one,

then the value of r is higher at some equilibrium with the new assets; and if the elasticity

equals one, the value remains the same at some equilibrium with the new assets.

To see the applicability of the theorem, consider the following family of utility func-

tions Uh over mean and standard deviation parameterized by τh > −1 and δh > 0 :

Uh(σ, µ) = µ− δh
τh + 2

στh+2. (5)

It is straightforward to check that

MRSh(σ, µ) = δhσ
τh+1,

D1MRSh(σ, µ) = δh(τh + 1)στh ,

σ

MRSh(σ, µ)
D1MRSh(σ, µ) = τh + 1.

Hence if τh > 0, then introduction of new assets decreases the value of r; if τh < 0,

then it increases the value of r; and if τh = 0, then the value of r remains constant.

Recall that the utility function with τh = 0, Uh(σ, µ) = µ−(δh/2)σ
2, is obtained when a

von-Neumann-Morgenstern (vNM for short) utility function exhibits the constant coef-

ficient δh of absolute risk aversion and the random future consumptions follow Gaussian

distributions. It is well known (and was proved by Oh (1990, 1996) and others) that,
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in this case, the relative prices of existing assets among themselves are not affected by

introduction of new assets. Our main theorem thus provides an alternative proof of this

well known fact, but it shows more than that: in terms of elasticities of marginal rates

of substitution between mean and standard deviation, the well known case is the critical

case, above which introduction of new assets increases the price of the market portfolio

and below which the former decreases the latter. In particular, the parameter τh in the

functional form (5) measures the deviation from the case where the equilibrium price of

the market portfolio is invariant to the financial market structures.

We should also note that, when it comes to evaluating the effect on the prices of exist-

ing assets by introduction of new assets, the marginal rates of substitution MRSh(σ, µ),

which were shown by Lajeri and Nielsen (2000) to represent degrees of absolute risk

aversion over the choice between mean and standard deviation, are not, for themselves,

a very helpful piece of information. What is of crucial importance is how much in per-

centage they will increase as the standard deviation increases. Indeed, in the above

example, MRSh(σ, µ) can be arbitrarily increased or decreased at every (σ, µ) by vary-

ing parameter δh even when keeping τh = 0; but varying δh does not affect at all the

sign in the change in the value of r when new assets are introduced.

Another example of the unitary elasticity case is

Uh(σ, µ) = µ− (δh/2)(σ
2 + µ2)

with δh > 0. This is obtained when a vNM utility function is a quadratic function

uh(w) = w−(δh/2)w
2. It is then routine to show that the elasticity of the marginal rates

of substitution is always equal to one. Our main theorem again provides an alternative

proof of another well-known fact, which is the invariance of the relative prices of existing

assets among themselves with quadratic utility functions.

A more general example is the case when Uh is a quadratic function of σ and µ,

Uh(σ, µ) = c0hσ
2 + c1hµ+ c2hµ

2,

where c0h, c
1
h, and c2h are constants. It is again routine to show that the elasticity of the

marginal rates of substitution is always equal to one.

Our main result has a nice welfare implication of introduction of new assets. It is

often argued that whether it is beneficial to consumers is often ambiguous, because the
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negative pecuniary externality arising from the changes in the prices of existing assets

may outweigh the benefit of enhanced risk-hedging opportunities. Suppose now that

all consumers have utility functions whose elasticity is larger than one. Suppose also

that one of them has an initial risky endowment which perfectly negatively correlated

with the market portfolio. Since holding the market portfolio reduces the risk from his

initial endowment, his portfolio at equilibrium must consist of a positive amount of the

market portfolio and some amount of the risk-free bond. Since the market portfolio is

assumed to be traded even before introduction of new assets, they do not enhance his

risk-hedging opportunities in any essential way. According to our theorem, the price

of the market portfolio goes up as a consequence of introducing new assets. We can

thus conclude, with no formal calculation, that this consumer becomes worse off after

introduction of new assets.

Our main result requires all consumers to have the elasticities of marginal rates of

substitution greater than one, or all having the common elasticity equal to one, or all

having elasticities less than one. It does not allow for some consumers to have elasticities

greater than one and, at the same time, others to have elasticities less than one. It would

be nice if we could establish the same sort of predictions on the directions of the change

in r when the elasticities greater and less than one coexist. The natural candidate that

aggregates different consumers’ elasticities is the representative consumer’s counterpart.

We shall, however, show by means of an example that the representative consumer’s

elasticity may not provide a correct prediction. Indeed, it is completely possible that his

elasticity is greater than or less than one, and yet the value of r may change in either

direction depending on the types of newly introduced.

Our main theorem is not a comparative statics exercise presuming the existence

of the two equilibria to be compared. Rather, when the existence of an equilibrium is

assumed, it establishes the existence of another equilibrium having a particular property

in relation to the first one. We can thus obtain the existence of an (arbitrary) equilibrium

for a fixed collection of assets at no extra cost. The entire argument for our existence

results depends on the security market line and the “mutual fund theorem.” We shall

also state and prove them in a way that is immediately applicable for the existence

results.
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1.2 Relationship with the Literature

Weil (1992) was the first to show that, under some assumptions on vNM utility functions,

the equity premium puzzle of Mehra and Prescott (1985) can be partially solved by the

incompleteness of asset markets. More specifically, he showed that if the consumers

have the same vNM utility function exhibiting decreasing absolute risk aversion and

decreasing prudence and if the risk-free bond and the market portfolio are the only

assets available for trade, then the price of the market portfolio is lower than when the

asset markets are complete, thereby justifying the observation by Mehra and Prescott

that the price of the market portfolio is much lower than could be accounted for by a

reasonable range of coefficients of relative risk aversion with complete financial markets.

His model is different from ours in that there are two consumption periods; the consumers

are ex-ante identical; their utility function may not depend only on mean and standard

deviation (and thus does not satisfy the CAPM assumption); and, most importantly,

only the two polar cases, the complete asset markets and the asset markets consisting

only of the risk-free bond and the market portfolio, are compared. Our model, in

particular, allows for two arbitrary asset markets, as long as one can be obtained by

adding more assets to the other. Note that some economically interesting phenomena,

such as some consumers getting worse off as a result of introducing new assets, do not

occur when the comparison is restricted to the two polar cases. Thus Weil’s result, on

its own, does not really tell us whether there is anything intrinsic in the two polar cases

when it comes to comparing equity premia. Our result however shows that there is

nothing intrinsic in the polar cases.

The notion of prudence was given by Kimball (1990). It refers to the tendency that

a consumer is willing to give up more of today’s consumption when his consumption

tomorrow is random than he is so when his consumption tomorrow is certain and equal

to the expected value of the random consumption. Analogously to the Arrow-Pratt

coefficient of absolute risk aversion, the coefficient of prudence can be defined as the

ratio of the second and third derivatives. The notion of decreasing prudence can then

be given. The equivalent, differential condition of decreasing prudence involves up to

the fourth derivatives and was much earlier used by Chipman (1973), when combined

with the assumption that the consumptions follow Gaussian distributions, to obtain the

concavity of the derived utility function over the mean and variance.2
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Note that equality (3) is equivalent to

pi = E (((1 + r)1− rd) ai) ,

which is, in turn, equivalent to saying that the state price density (or pricing kernel) is

equal to (1+r)1−rd. Note that the variance of this random variable, V ((1 + r)1− rd) ,

is analogous to the volatility of the state price density, a variable of interest in Hansen

and Jaganathan (1990). It is an increasing function of r. Our main result thus says

that the volatility of the state price density decreases as new assets are introduced into

financial markets if all consumers have elasticities of marginal rates of substitution of

mean for standard deviation greater than one; and it increases if they all have the

elasticities less than one.3

Oh (1990, 1996) obtained the security market line and the mutual fund theorem

in the CAPM with incomplete financial markets. In particular, he allowed for the

case where some consumers’ initial endowments cannot be represented as any linear

combinations of the traded assets. He (and his predecessors referred to in his papers) also

proved that introducing new assets does not change the equilibrium prices of the existing

ones if the consumers have quadratic vNM utility functions or if they have negative

exponential vNM utility functions and consumptions follow Gaussian distributions. Our

comparative statics result not only covers these invariance conditions but predicts the

direction of changes in the prices of the market portfolio according to the elasticities of

the marginal rates of substitution. Dana (1999) and Hens and Loeffler (1996) established

the existence of an equilibrium in the CAPM with complete markets based on the

intermediate value theorem, without appealing to the fixed point theorem. Underlying

this approach are the security market line and the mutual theorem, because they reduce

the task of finding an equilibrium to one of solving a single equation by a single unknown.

The fact that the intermediate value theorem is sufficient for the existence proof is quite

important for our comparative statics result, because the result is of global nature and

also has an order structure, to be discussed in Section 4. We note in passing that

this comparative statics exercise based on the intermediate value theorem is a very

special case of monotone comparative statics of Milgrom and Shannon (1994). Dana

(1999), Hens and Loeffler (1996), Hens, Laitenberger, and Loeffler (2000) also provided

sufficient conditions for the uniqueness of an equilibrium, which are closely related with

the condition by Lajeri and Nielsen (2000) for decreasing (or increasing) risk aversion.
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Detemple and Selden (1991) provided a general equilibrium model similar to but

different from the CAPM, in which there are the risk-free bond and a stock (which thus

equals the market portfolio) initially traded in markets, and introduction of an option

on the stock increases the stock price. Our result, however, allows for arbitrary assets

to be introduced and still unambiguously predicts the direction of the changes in the

prices of the market portfolio.

Hara (2011) proved that if there are only finitely many states, S in number, then,

regardless of the consumers’ preferences or initial endowments, there is a sequence of S

assets such that if those S assets are introduced into markets one by one in the order of

the sequence, then:

• The asset markets eventually become complete;

• every time a new asset is introduced, the prices of the previously introduced ones

are not changed at all.

In view of this result, we can say that the main result of this paper depends crucially

on the assumption that the risk-free bond and the market portfolio are always available

for trade. While not getting into details, we can point out that the proof method of

this paper and Hara (2011) are quite different. This paper uses the intermediate value

theorem, while Hara (2011) uses the zero intersection property of a continuous section

on a vector bundle, which is even stronger than the fixed-point property.

Elul (1999) showed that if the markets are sufficiently incomplete and there are not

too many types of consumers, then it is generically possible to introduce a new security

that leads to a Pareto-improving equilibrium allocation. A key step in his proof is to

show that there generically exists a non-redundant asset whose introduction does not

change the prices of any existing assets. This property does not hold in our framework.

The genericity condition he used refers to a suitably defined set of utility functions and

initial endowments, in which utility functions depending only on mean and standard

deviation constitute a negligible set.

After some earlier versions of this paper were written, Koch-Medina and Wenzel-

burger (2018) published some results that are also included in this paper. Among

others, they claimed that their comparative statics result (Proposition 8 of their paper)

extended our comparative statics result (Theorem 4 of this paper) to the case in which
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the market portfolio is non-tradeable. In Section 6, we articulate the sense in which our

comparative statics result is extended, and give an example in which it is not extended

in the sense we deem appropriate. The example, indeed, shows that introducing a new

asset increases, rather than decreases, the risk premium and the Sharpe ratio even when

the representative consumer has a utility function (5) with τh > 0.

1.3 Organization of the Paper

Section 2 formulates the model. Section 3 establishes the existence and characteriza-

tion of an equilibrium in the CAPM, that is, the security market line and the mutual

fund theorem. These results are concerned with the case where a collection of assets is

fixed. Section 4 is the central part of this paper. It provides the comparative statics

result regarding introduction of new assets are introduced and an intuitive account on

it. Section 5 shows that it is impossible to use the utility function of the representative

consumer to predict the direction of changes in the prices of the market portfolio in-

duced by introduction of new assets. Section 6 concludes, mentioning the possibility of

extending the results in this paper to other versions of the CAPM. Appendix A contains

the proof of the characterizations of an equilibrium the CAPM. Appendix B proves the

existence of an equilibrium in the CAPM. Appendix C proves our main result.

2 The Model

The uncertainty of the economy is described by a probability space Ω. There is only

one physical good available in every state and the commodity space X is taken to be

the L2 space over Ω. For simplicity of exposition, throughout this paper, we identify an

element of the L2 space, which is defined to be an equivalent class of random variables

that are equal to one another with probability one, with a random variable itself in

the equivalent class. The mean E : X → R, variance V : X → R, standard deviation

S : X → R, and covariance C : X ×X → R are defined in the standard way.

Each consumer, indexed h ∈ {1, · · · ,H}, has a utility function Uh : R+ × R over

the standard deviations and the means of random consumptions. We assume that Uh

is twice continuously differentiable, strictly quasi-concave, and satisfies D1Uh(σ, µ) ≤ 0

and D2Uh(σ, µ) > 0 for every (σ, µ) ∈ R+ × R; and D1Uh(σ, µ) < 0 if σ > 0. Define
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Wh : X → R by Wh(xh) = Uh(S(xh), E(xh)) for every xh ∈ X. Then Wh assigns the

utility level he obtains from a random consumption xh ∈ X. The initial endowment

vector of consumer h is denoted by dh ∈ X. In the language of finance, Uh represents

the consumer’s attitude towards risk and dh represents his initial risk exposure, which

he would like to hedge against by participating in market transactions.

For simplicity of exposition, we define a consumer’s utility maximization problem

and an equilibrium of asset markets directly in terms of market spans and state price

functions. A market span is a linear subspace M of X, to be understood as the lin-

ear subspace spanned by the traded assets; the vectors on M are thus understood as

representing the payouts of portfolios. If M ̸= X, then not all risks can be hedged by

asset trades, in which case we say that the asset markets are incomplete. A state price

function is a real-valued linear function p : M → R on a given market span M, to

be understood as coinciding with the arbitrage-free prices of the payouts of portfolios,

where R denotes the set of real numbers. The utility maximization problem of consumer

h is then:

Maxxh∈X Wh(xh),

s.t. xh − dh ∈ M,

p(xh − dh) ≤ 0.

(6)

Note that the linearity of M and p means that there are no transaction costs or short-

sales constraints.

We say that a state price function p and a consumption allocation (x∗h)h∈{1,··· ,H}

constitute an equilibrium for the market span M if, for every h, x∗h is a solution to the

above maximization problem and
∑H

h=1 x
∗
h =

∑H
h=1 dh.

3 CAPM with a Fixed Market Span

In this section we present the existence and characterization of an equilibrium when

a single market span is fixed. This is an intermediate step toward our main theorem,

where we compare equilibria for two market spans.

We start off with the characterization result, which consists of the security market

line and the mutual fund theorem, and then move on to the existence result. Although

both results are more or less well known, we here present them, as well as their proofs, for

two reasons. The first one is internal consistency of our exposition: The characterization
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results form the basis for the subsequent analysis. The second one is that the existence

result covers the case of incomplete asset markets, which has its own interest because

Dana (1996) and Hens and Loeffler (1996) assumed complete markets.

3.1 Characterization

We first introduce some notation. Denote by 1 the element of X that takes value 1

at every ω ∈ Ω. We can think of this as representing the payout of the risk-free bond.

Write d =
∑H

h=1 dh ∈ X. This is nothing but the aggregate initial endowment, but we

call it the market portfolio, following the tradition of the CAPM. For each subspace

M of X, denote by orthM the orthogonal complement of M , by πM the orthogonal

projection from X onto M, and by PM the set of all state price functions defined on M.

Let N = {x ∈ X| E(x) = 0}. Then πN (d) is the “de-meaned” market portfolio. Denote

by M the set of all market spans that contain 1 and d.

The following characterization theorem is essentially due to Oh (1990, 1996).

Proposition 1 Let M ∈ M and suppose that p ∈ PM and (x∗h)h∈{1,··· ,H} ∈ XH consti-

tute an equilibrium for M.

1. Assume that S(d) > 0. Then there exist a t ∈ R++ and an r ∈ R++ such that

p(m) = E((t1− rπN (d))m) (7)

for all m ∈ M.

2. For every h, there exist an a∗h ∈ R+ and a b∗h ∈ R such that

x∗h = a∗hπN (d) + b∗h1+ πorthM (dh).

Part 1 of this proposition provides the security market line. It implies that the state

price density is a strictly positive combination of the risk-free bond 1 and the negative

of the de-meaned market portfolio, −πN (d). Note that the relative prices of assets on

N is invariant to the choice of M. If p(d) ̸= 0, then, for those m ∈ M with p(m) ̸= 0,

equality (7) can be equivalently written in the return form as:

p(m)−1E(m)− p(1)−1 = β(m)(p(d)−1E(d)− p(1)−1), (8)

where

β(m) =
C(p(m)−1m, p(d)−1d)

V (p(d)−1d)
,
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which is the beta of the asset m. Equality (8) says that the expected rate of return of

the asset in excess of the risk-free rate of return must be proportional to the covariance

between its rate of return and the rate of return on the market portfolio d.

The condition that t be positive is equivalent to saying that the risk-free bond must

have a positive price. The condition that r be positive is equivalent to saying that the

de-meaned market portfolio πN (d) must have a negative price. This is equivalent to

p(d)−1E(d) > p(1)−1 if p(d) > 0 : hence the presence of the equity premium. When the

expected rates of return p(m)−1E(m) is regarded as a linear function of beta β(m), the

positivity of r is also equivalent to saying that this linear function has a positive slope.

Part 2 of Proposition 1 is nothing but the mutual fund theorem, with a modification

due to incomplete asset markets. It says that every consumer’s equilibrium consumption

must consist of three terms. The first one is made of the risk-free bond and the second

one is made of the market portfolio. Note that everyone holds a non-negative amount

of the market portfolio, while some consumers may take a negative amount of (that

is, sell short of) the risk-free bond. The third term represents the initial endowment

risk that a consumer cannot hedge by trading in the asset markets; this would be zero

were the asset markets to be complete. Recall that a payout x ∈ M is on the mean-

variance efficient frontier in terms of returns if and only if there exist an a ∈ R+ and

b ∈ R such that x = aπN (d) + b1 (under the assumption that the required mean b

is sufficiently large so that if E(x) ≥ b then p(x) > 0 for every x ∈ M). Hence our

mutual fund theorem says that, even with incomplete asset markets, once subtracted by

the unhedgeable endowment risk, every consumer’s equilibrium consumption is on the

mean-variance efficient frontier.

A proof of Proposition 1 is given in Appendix A.

3.2 Existence

Proposition 2 For every M ∈ M, there exists an equilibrium for M .

It is worthwhile to note that, regardless of the dimension of the market span M,

the proposition can be proved by the intermediate value theorem; the fixed point the-

orem, which is the basic tool to equilibrium existence theorems, is not necessary. The

reason can be easily found in Proposition 1. All state price functions that can arise at

equilibrium are parameterized by two variables, t and r. Since they are homogeneous of
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degree zero, we can take t = 1 and all relevant prices can be parameterized by a single

parameter r. One the other hand, the consumers’ utility maximization problem involves

two variables, ah and bh, for which the market clearing conditions are
∑H

h=1 a
∗
h = 1 and∑H

h=1 b
∗
h = E(d). By Walras law, the first market clearing condition implies the second.

Hence, in the CAPM, searching for an equilibrium is nothing but satisfying a single

equation
∑H

h=1 a
∗
h = 1 by choosing a single unknown r. The intermediate value theorem

is therefore sufficient for this task. The only caveat here is that, with the unbounded

consumption set X, those values of r under which the aggregate demand function is

well defined may not constitute an interval. We thus need to be careful about on which

interval we apply the theorem. All of these are done in Appendix B.

4 Comparative Statics with Variable Market Spans

In this section, we present our main theorem regarding the effect of introducing new

assets on the price (and thus the expected rate of return) on the market portfolio. To

begin, define MRS (·|Uh) : R++ ×R → R++ by

MRS (σ, µ|Uh) = −D1Uh(σ, µ)

D2Uh(σ, µ)
.

This marginal rate of substitution measures how much the mean of the consumption

should be increased when the standard deviation is increased by one unit, in order

to keep the consumer on the same utility level as before. Note that MRS (·|Uh) is

defined only for strictly positive standard deviations (and hence takes positive values)

and continuously differentiable.

Definition 3 We say that Uh has elastic marginal rates of substitution (EMRS for

short) if, for every (σ, µ) ∈ R++ ×R,

σ

MRS (σ, µ|Uh)
D1MRS (σ, µ|Uh) > 1.

We say that Uh has inelastic marginal rates of substitution (IMRS for short) if, for every

(σ, µ) ∈ R++ ×R,
σ

MRS (σ, µ|Uh)
D1MRS (σ, µ|Uh) < 1.

We say that Uh has unitarily elastic marginal rates of substitution (UMRS for short)
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if, for every (σ, µ) ∈ R++ ×R,

σ

MRSh(σ, µ|Uh)
D1MRS (σ, µ|Uh) = 1.

The definition should be clear. The left hand side is the elasticity of the marginal

rates of substitution with respect to standard deviations, when the mean is fixed. If

the elasticity is larger than one, then a 1% increase in the standard deviation increases

the marginal rate of substitution by more than 1%, in which case we say that Uh has

elastic marginal rate of substitution. Inelastic and unitarily elastic marginal rates of

substitutions are defined analogously.

Assume that S(d) > 0 and define d̂ = S(d)−1πN (d). This is the “normalized” market

portfolio with zero mean and unit standard deviation. According to Part 1 of Proposition

1, for every M ∈ M, every equilibrium price function is a positive scalar multiple of a

p ∈ PM for which there exists an r ∈ R++ such that p(m) = E((1 − rd̂)m) for every

m ∈ M. So, for each r ∈ R++, define φ(r) ∈ PX by φ(r)(m) = E((1− rd̂)m). Note that

φ(r)(d) = E(d)− rS(d). Hence, if r′ < r, then the relative price of the market portfolio

with respect to the risk-free bond is higher when the state price function equals φ(r′)

than when it equals φ(r). In other words, the risk premium is lower with r′ than with

r. Define P ∗
M = {r ∈ R++| φ(r) is an equilibrium state price function for M}.

Theorem 4 Assume that S(d) > 0 and that D1Uh(0, µ) = 0 for every h ∈ {1, · · · ,H}

and µ ∈ R. Let M ∈ M, L ∈ M, and M ⊂ L. Assume also that there exists an h such

that S(πorthM (dh)) > S(πorthL(dh)).

1. If every Uh has EMRS, then, for every rM ∈ P ∗
M , there exists an rL ∈ P ∗

L such

that rM > rL.

2. If every Uh has EMRS, then, for every rL ∈ P ∗
L, there exists an rM ∈ P ∗

M such

that rM > rL.

3. If every Uh has IMRS, then, for every rM ∈ P ∗
M , there exists an rL ∈ P ∗

L such

that rM < rL.

4. If every Uh has IMRS, then, for every rL ∈ P ∗
L, there exists an rM ∈ P ∗

M such

that rM < rL.

5. If every Uh has UMRS, then P ∗
M = P ∗

L.

The first assumption of the theorem, S(d) > 0, is indispensable because E|M ∈ P ∗
M∩

P ∗
L if S(d) = 0, which is shown in Appendix B. The next assumption, D1Uh(0, µ) = 0
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for every h ∈ {1, · · · ,H} and µ ∈ R, implies that every consumer has a positive demand

for the market portfolio at every equilibrium. This assumption is satisfied if the Uh are

derived from a vNM utility function in the expected utility form. The expansion from

M to L is of course interpreted as a consequence of introduction of new assets. The

inequality S(πorthM (dh)) > S(πorthL(dh)) is equivalent to the existence of an z ∈ L\M

for which C(z, dh) ̸= 0. Hence the existence of an h with S(πorthM (dh)) > S(πorthL(dh))

means that the new assets have indeed enhanced the risk-hedging opportunities for some

consumer. Part 1 then claims that if every Uh has EMRS, then, for every equilibrium

before the introduction of the new assets, there exists an equilibrium after the introduc-

tion at which the price of the market portfolio is higher. Part 2 claims that, with EMRS,

for every equilibrium after the introduction, there exists an equilibrium before the intro-

duction at which the price of the market portfolio is lower. Parts 1 and 2 are equivalent

if the equilibria for M and L are both unique. If both P ∗
M and P ∗

L are compact, then

Part 1 is equivalent to minP ∗
M > minP ∗

L and Part 2 is equivalent to maxP ∗
M > maxP ∗

L.

In other words, the interval of equilibrium prices, [minP ∗
M ,maxP ∗

M ] , is a strictly de-

creasing function of the market span M with respect to the standard order ≥ on R. The

symmetric interpretation can be given to Parts 3 and 4. Part 5 says that the set of the

equilibrium price functions are not affected by market spans under the assumption of

UMRS.

Although the proof of Theorem 4 is given in Appendix C, it will be helpful to give an

informal account on it, ignoring certain technical points to be taken care of in Appendix

C. We concentrate on Part 1.

It is shown in Appendix B that the utility maximization problem is reduced to a

two-variable one:4

Max(ah,bh)∈R2 Wh(ahd̂+ bh1+ πorthM (dh)),

s.t. −rah + bh ≤ −rC(dh, d̂) + E(dh).
(9)

We can interpret this utility maximization problem as the one where the utility function

is

UM
h (ah, bh) ≡ Wh(ahd̂+ bh1+ πorthM (dh)), (10)

which is subordinated toM, the budget is derived from the initial endowment (C(dh, d̂), E(d)),

which is not subordinated toM, and the price vector is (−r, 1).Denote by (aMh (r), bMh (r)) ∈

R2 the solution to the above maximization problem. To prove Part 1, it suffices to show
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that aMh (rM ) ≤ aLh (r
M ) for every h, with strict inequality for some h. In fact, then,∑H

h=1 a
M
h (rM ) <

∑H
h=1 a

L
h (r

M ). Since φ(rM ) is an equilibrium price function for M,∑H
h=1 a

M
h (rM ) = S(d) and the inequality implies that there is an excess demand for

the market portfolio at φ(rM ) when the market span is L. On the other hand, we must

have
∑H

h=1 a
L
h (0) = 0, because the consumers do not demand the market portfolio in

the absence of risk premium. So there is an excess supply of the market portfolio at

φ(0). By the intermediate value theorem, there must exist an rL ∈
(
0, rM

)
such that∑H

h=1 a
L
h (r

L) = S(d). Part 1 of Theorem 4 would then follow.

The inequality aMh (rM ) ≤ aLh (r
M ) follows if the indifference curve going through

(aMh (rM ), bMh (rM )) becomes less steep as the market span expands from M to L; and

this is the point where the assumption of EMRS is used. In fact, the slope of the

indifference curve going through any (ah, bh) is

MRS (ah, bh|UM
h ) = −

D1U
M
h (ah, bh)

D2UM
h (ah, bh)

,

which is the marginal rate of substitution of UM
h that measures how much of the risk-

free bond should be increased when the normalized market portfolio is increased by one

in order to keep the consumer on the same utility level as before, in the presence of

the unhedgeable initial endowment risk πorthM (dh). The smaller MRS (ah, bh|UM
h ), the

flatter the indifference curve at (ah, bh). Write θMh = S(πorthM (dh)). Then E(ahd̂ +

bh1 + πorthM (dh)) = bh and S(ahd̂ + bh1 + πorthM (dh)) = (a2h + (θMh )2)1/2 because

S(d̂) = 1 and C(d̂, πorthM (dh)) = 0. Thus UM
h (ah, bh) = Uh((a

2
h + (θMh )2)1/2, bh). Since

the derivative of the function ah 7→ (a2h+(θMh )2)1/2 equals ah(a
2
h+(θMh )2)−1/2, the chain

rule differentiation implies that

MRS (ah, bh|UM
h ) = ah

MRS ((a2h + (θMh )2)1/2, bh|Uh)

(a2h + (θMh )2)1/2
. (11)

The same expression can be obtained for L. Since M ⊂ L, θMh ≥ θLh . If θ
M
h = θLh , then

MRS (ah, bh|UM
h ) = MRS (ah, bh|UL

h )

and thus aMh (rM ) = aLh (r
M ). If θMh > θLh , where such an h indeed exists by the assump-

tion of the theorem, then (a2h + (θMh )2)1/2 > (a2h + (θLh )
2)1/2. Note that the square root

appears in two places on the right hand side of equality (11). First, as the denominator

of the fraction. Second, as the σ-variable for the function MRS (·|Uh) in the numerator
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of the fraction. The whole fraction decreases if the elasticity of MRS (·|Uh) with respect

to σ is greater than one, which is nothing but our EMRS assumption. We thus obtain

MRS (ah, bh|UM
h ) > MRS (ah, bh|UL

h ), (12)

that is, the indifference curve becomes flatter as the market span expands. Therefore

aMh (rM ) > aLh (r
M ). It is important to note that the condition that MRS (·|Uh) is an

increasing function of σ is not sufficient to guarantee inequality (12). The reason is

that when ah increases by one unit, the standard deviation of the consumption ahd̂ +

bh1+ πorthM (dh) increases only by ah(a
2
h +(θMh )2)−1/2, which is less than one if θMh > 0

and a decreasing function of θMh . To guarantee that the indifference curve becomes

flatter as θMh decreases, therefore, we need to assume that the decrease in MRSh((a
2
h +

(θMh )2)1/2, bh|Uh) caused by the decrease in (a2h+(θMh )2)1/2 is sufficiently large in absolute

value. This is what is done by our EMRS assumption. In the language of contract

theory, we can say that the parameter θMh generates the single-crossing property among

the utility functions UM
h for various M ∈ M. The consequence of this property is the

monotonicity of the interval [minP ∗
M ,maxP ∗

M ] .

Note finally that the unhedgeable parts of initial endowments, πorthM (dh), plays the

same role in the proof as the background risks of Ross (1981) and Pratt and Zeckhauser

(1987). The difference is that we applied the zero correlation property, while Ross used

mean-preserving spreads and Pratt and Zeckhauser assumed stochastic independence.

5 Representative Consumer

In this section we show by means of an example that when some consumers have EMRS

and others IMRS, the equilibrium price of the market portfolio may increase or decrease

by the introduction of new assets into financial markets, depending on the payout struc-

ture of the newly introduced assets. This example also shows that, while the elasticity

of marginal rate of substitution of mean for standard deviation is a well defined con-

cept even for the representative consumer, it cannot be used to predict the directions of

changes in the equilbrium prices of the market portfolio.

To be specific, we consider the parameteric family of utility functions that appeared

in the introduction (5):
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Uh(σ, µ) = µ− δh
τh + 2

στh+2. (13)

Since the utility function is quasi-linear with respect to mean, the equilibrium is

unique and equilibrium allocation is a solution to the optimization problem of max-

imizing the (non-weighted) sum
∑

Wh(xh) subject to xh − dh ∈ M for every h and∑
xh =

∑
dh. Denote the value function of this maximization problem with M = X by

W .

It is not difficult to show that W depends only on mean and standard deviation, and

quasi-linear with respect to mean. We can thus write

W (x) = E(x)− u(S(x))

for some increasing and convex function u defined over R+. Thus, if we define a utility

function U over mean µ and standard deviation σ by U(σ, µ) = µ− u(σ), then W (x) =

U(S(x), E(x)) and, thus, U represents the representative consumer’s utility in terms of

mean and standard deviation. Denote the marginal rate of substitution derived from U

by MRS, then it depends on σ but not on µ and satisfies MRS(σ) = u′(σ). Thus

σ

MRS(σ)
MRS′(σ) =

u′′(σ)σ

u′(σ)
, (14)

that is, the elasticity of the marginal rate of substitution of U equals the Arrow-Pratt

measure of relative risk aversion of u, except that there is no −1 multiplied, because u

is convex. The same can be said of for the individual consumers’ utility functions Uh.

We can thus apply part 2 of Corollary 7 and part 2 of Proposition 15 of Hara, Huang,

and Kuzmics (2007) to show that ERC is a decreasing function, starting the maximum

τh and converging to the minimum τh. This implies that if the standard deviation of

the market portfolio is small, then (14) takes a value close to the maximum τh, and if

the standard deviation of the market portfolio is large, then (14) takes a value close to

the minimum τh.

Now consider the following example. There are four states and four consumers. Let

d̂, y1, y2 constitute an orthonormal basis of N . Their initial endowments are
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d1 = c(d̂+ y1),

d2 = c(d̂− y1),

d3 = c(d̂+ y2),

d4 = c(d̂− y2),

where c is a positive constant. The market portfolio equals cd̂. Consumers h = 1, 2 have

the same value of τh, which is greater than one. Consumers h = 3, 4 have the same

value of τh, which is less than one. Assume that the market portfolio and the risk-free

bond are initially the only asset available for trade.

If c is small, then the representative consumer’s elasticity is greater than one; if c

is large, then the representative consumer’s elasticity is less than one. If we predicted

the direction of changes in the equilibrium prices of the market portfolio based on the

elasticity, then we would conclude that the introduction of new assets will decrease the

price of the market portfolio when c is small, and it will increase the price if c is large.

However, if an asset with payout y1 is introduced, only the first two consumers will

trade it; hence, by τh > 1, the price of the market portfolio goes up. On the other hand,

if an asset with payout y2 is introduced, only the last two consumers will trade it; hence,

by τh < 1, the price of the market portfolio goes down. This is regardless of the values

of c. Thus the prediction based on the representative consumer’s elasticity is incorrect.

6 Conclusion

We have established sufficient conditions in terms of utility functions under which intro-

ducing new assets increases or decreases the risk premium at equilibrium in the CAPM.

Those conditions are sufficient to derive the direction of changes in the risk premium

unambiguously regardless of what the new assets under consideration are like. It is also

noteworthy that these conditions are on the elasticity of the marginal rates of substi-

tution between mean and standard deviation, not on the marginal rate of substitution

itself.

There are a couple of possible directions of future research. Although we assumed

that the market portfolio and the risk-free bond are available for trade from the be-

ginning, there are many situations of practical importance where this is not really the
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case. One is the case where the bond pays in nominal amounts (in dollars, say) and

not indexed to inflation. Another is where the traded assets reflects the random divi-

dends of the firms and the consumers as a whole suffer from labor income risk which

is not reflected by the firms’ dividends. It is therefore interesting to see whether the

same elasticity conditions remain to be sufficient for our comparative statics result when

we no longer assume that the market portfolio and the risk-free bond are both in the

market span. We will argue in the sequel that if either of the risk-free bond or the

market portfolio is not traded, then anything like the conditions in Theorem 4, which

restrict the elasticities with respect to standard deviations alone of the marginal rates

of substitution is not sufficient to unambiguously sign the change in the prices of the

market portfolio.

First, it is easy to extend Proposition 1 to the case where the market portfolio or

the risk-free bond (or both) is not traded. Namely:

LetM be a linear subspace ofX. Suppose that p ∈ PM and (x∗h)h∈{1,··· ,H} ∈

XH constitute an equilibrium for M and that, for every h, there exists an

xh ∈ X such that xh − dh ∈ M and Wh(xh) > Wh(x
∗
h). Then:

1. If S(d) > 0, then there exist a t ∈ R++ and an r ∈ R++ such that

p(m) = E((t1− rπN (d))m) (15)

for all m ∈ M.

2. For every h, there exist an a∗h ∈ R+ and a b∗h ∈ R such that

x∗h = a∗hπN∩M (d) + b∗hπM (1) + πorthM (dh). (16)

Since the state price function p is homogeneous of degree zero, we can assume with-

out loss of generality that t = 1. We then investigate how the value of r would be affected

when the market span is expanded from M. We, however, need to take some additional

care for this task. Note that E((1− rπN (d))m) = E((πM (1)− rπN∩M (d))m) for every

m ∈ M. Hence, if πM (1) and πN∩M (d) are linearly dependent, then a continuum of val-

ues of r is consistent with the given equilibrium. This implies that a deviation from the

original value of r as a consequence of an expanded market span may have no economic

significance. In any attempt to extend our comparative statics result (Theorem 4),

therefore, it is necessary to assume that πM (1) and πN∩M (d) are linearly independent.
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This assumption implies two things: First, πM (1) ̸= 0, which is equivalent to M ⊈ N,

that is, there must be an asset with non-zero expected payout. Second, πN∩M (d) cannot

be a scalar multiple of πM (1), which is equivalent to saying that both the risk-free bond

and the market portfolio cannot be best hedged on M by the same portfolio.

It is clear that there is no obvious extension of our main comparative statics result to

the case where 1 /∈ M : the marginal rates of substitution between πN∩M (d) and πM (1)

have no immediate relation with the marginal rates of substitution between mean µ and

standard deviation σ.

No obvious extension is available when 1 ∈ M but d /∈ M either, as we now show

with an example of a single-consumer economy. Let the commodity space X be spanned

by three elements 1, d0, and d1, where d0 and d1 have zero means, unit variances, and

zero covariance. In other words, {1, d0, d1} is an orthonormal basis of X. Suppose that

the single consumer’s utility function U1 satisfies (5), where δ1 = 1 but τ1 is arbitrary.

His initial endowment vector is d1 (or it can be d1 plus a positive multiple of 1 to

guarantee its positive expected return), which is also the market portfolio. Let η ∈]0, 1[

and define dη = (1 − η2)1/2d0 + ηd1. Then E(dη) = 0, V (dη) = 1, and C(d1, dη) = η.

Let M be the linear subspace of X that is spanned by 1 and dη, and L be the linear

subspace that is spanned by 1, dη, and d1. Then, both M and L contain the risk-free

bond 1; L contains the market portfolio d1 but M does not; M is included in L; and

L = X, that is, the asset markets are complete with market span L.

Since the market portfolio d1 is contained in the market span L, the set P ∗
L can be

defined as in Section 4. On the other hand, the corresponding set for M needs to be

carefully defined, because d1 is not contained in M . Here, we define P ∗
M as the set of

r ∈ R++ such that the state price function defined by E((1− rdη)m) is an equilibrium

state price function for M . We have chosen dη, not d1, in the definition of the state price

functional because r is then equal to the market price of risk on M . More precisely,

when the state price function is E((1 − rdη)m), the highest Sharpe ratio that can be

attained by the portfolios on M is equal to r, but, when the state price function is

E((1− rd1m), the highest Sharpe ratio that can be attained by the portfolios on M is

equal to ηr. Thus the coefficient r in the former gives the correct market price of risk.

We now claim that P ∗
M = {η} and P ∗

L = {1}, that is, writing rM = η and rL = 1, we

have rM < rL regardless of the value of τ1. If Theorem 4 were valid for this comparison,
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then, according to its part 1, we would have rM > rL whenever τ1 > 0. However, we

in fact have rM < rL. This shows that Theorem 4, without additional assumptions,

cannot be extended to the case where the market portfolio is outside the market span,

contrary to the claim by Koch-Medina and Wenzelburger (2018). The difference in the

claims is due to the fact that they consider the change in background risks that would

not affect the proxy of the market portfolio (dη in M and d1 in L in our case), as they

considered an individual change in background risks, while in our setting the change in

the background risks arises only from a change in market spans, and a change in market

span typically changes the proxy of the market portfolio, if not on the market span,

which was not taken into consideration in their analysis.

The proof of P ∗
M = {η} and P ∗

L = {1} is easy. First, note that the solution to

the single consumer’s utility maximization problem (6) coincides with d1, and that

D1U(S(d1), E(d1)) = −1 and D2U(S(d1), E(d1)) = 1. Second, for every α ∈ R close to

0, S(d1+αdη) = (1+2ηα+α2)1/2 and E(d1+αdη) = 0. Their derivatives with respect

to α evaluated at α = 0 are equal to η and 0. Third, since (−1, 1) · (η, 0) = −η, the

equilibrium price of dη is equal to −η, which implies that rM = η. We can similarly

show that rL = 1. The proof also shows the logic behind our example: the proxy of the

market portfolio becomes a better one as the market span expands; and since the single

consumer consumes the market portfolio, the better the proxy, the lower its price. Since

the market price of risk is nothing but the price of the proxy, multiplied by −1, the

market price increases as the market span expands, regardless of the single consumer’s

utility function.

It would be very nice if we could include the non-random first-period consumption

in our model and find out conditions under which how the relative price between the

first-period consumption and the risk-free bond is affected by introduction of new assets:

this is the way Weil (1992) considered his own “risk-free rate puzzle”, in addition to the

equity premium puzzle. This task, however, seems a rather difficult one when dealing

with arbitrary market spans, because we can no longer apply the intermediate value

theorem for a comparative statics result; this is, in turn, because there are two relative

prices involved, that between the first-period consumption and the risk-free bond and

that between the risk-free bond and the market portfolio. To extend our results to

the case with the first-period consumption, therefore, it will be necessary to assume
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that the utility function is separable among the first-period consumptions, the mean

of the second-period consumption, and the standard deviation of the second-period

consumption; and also that the aggregate demand function has the gross substitute

property.

7 Appendix A: Proof of the Characterization Result

We prove Proposition 1 in this appendix. The following lemma is the crucial implication

of the assumption that the consumers’ preferences depend only on mean and standard

deviation.

Lemma 5 Let M ∈ M, p ∈ PM , and x∗h ∈ X. Suppose that S(x∗h) > 0 and x∗h is a

solution to the utility maximization problem (6). Then there exist a th ∈ R++ and an

rh ∈ R++ such that p(m) = E((th1− rhπN (x∗h))m) for every m ∈ M.

Proof of Lemma 5. By S(x∗h) > 0 and the chain rule differentiation, Wh is

differentiable at x∗h and

DWh(x
∗
h)(x) = E((D2Uh(S(x

∗
h), E(x∗h))1+ 2D1Uh(S(x

∗
h), E(x∗h))πN (x∗h))x)

for every x ∈ X. By the first-order necessary condition for a maximum, there must exist

a λh > 0 such that

p(m) = λhDWh(x
∗
h)(m)

for everym ∈ M. By defining th = λhD2U(S(x∗h), E(x∗h)) and rh = −2λhD1U(S(x∗h), E(x∗h)),

we complete the proof. ■

Proof of Proposition 1. 1. Define H = {h ∈ {1, · · · ,H}| S(x∗h) > 0}. Since∑H
h=1 x

∗
h = d and S(d) > 0, H is non-empty. For each h ∈ H, let th and rh be as in

Lemma 5. Then

r−1
h p(m) = E((r−1

h th1− πN (x∗h))m).

Since
∑

h∈H πN (x∗h) = πN (d), if we add both sides of the above equality over h ∈ H,

then (∑
h∈H

r−1
h

)
p(m) = E

(((∑
h∈H

r−1
h th

)
1− πN (d)

)
m

)
.
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By defining t = (
∑

h∈H r−1
h )−1(

∑
h∈H r−1

h th) and r = (
∑

h∈H r−1
h )−1, we complete the

proof of Part 1.

2. Suppose first that S(d) = 0. Define xh = E(x∗h)1+πorthM (dh). Then xh−dh ∈ M

and
∑H

h=1 xh =
∑H

h=1 dh. Moreover, E(xh) = E(x∗h) and S(xh) ≤ S(x∗h), with strict

inequality if xh ̸= x∗h. Thus Wh(xh) ≥ Wh(x
∗
h), with strict inequality if xh ̸= x∗h. The

first welfare theorem, applied to the market span M, therefore implies that x∗h = xh =

E(x∗h)1 + πorthM (dh) for every h. By letting a∗h = 0 and b∗h = E(x∗h), we establish Part

1 for the case of S(d) = 0.

Suppose next that S(d) > 0. For those h with S(x∗h) = 0, we have πorthM (dh) = 0

and thus the claim is true with a∗h = 0. So take an h with S(x∗h) > 0. By Part 1 and

Lemma 5, E((t1− rπN (d))m) = E((th1− rhπN (x∗h))m) for every m ∈ M. Hence

πM (t1− rπN (d)) = πM (th1− rhπN (x∗h)). (17)

Since 1 ∈ M, πM (1) = 1. Since πN (d) ∈ M, πM (πN (d)) = πN (d). Thus, together with

πM ◦ πN = πM∩N , equality (17) is equivalent to

πM∩N (x∗h) = r−1
h rπN (d) + r−1

h (th − t)1.

Since M ∩ N is the orthogonal complement in M of the line spanned by 1, πM (x∗h) =

πM∩N (x∗h) + ch1 for some ch ∈ R. Hence

πM (x∗h) = a∗hπN (d) + b∗h1, (18)

where a∗h = r−1
h r and b∗h = r−1

h (th− t)+ch. Since x
∗
h−dh ∈ M, πorthM (dh) = πorthM (x∗h).

Thus πM (x∗h) = x∗h − πorthM (dh). Hence, by equality (18), x∗h = a∗hrπN (d) + b∗h1 +

πorthM (dh). ■

8 Appendix B: Proof of the Existence Result

In this appendix, we establish two important lemmas, Lemmas 8 and 9. These are

powerful enough to be used in the proof of our main theorem in Section 4, as well as to

immediately imply the mere existence of an equilibrium, stated as Proposition 2.

Let M ∈ M. If S(d) = 0, then it is easy to check that the state price function

E|M ∈ PM and the consumption allocation (E(dh)1 + πorthM (dh))h∈{1,··· ,H} ∈ XH
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constitute an equilibrium. In the rest of this appendix, therefore, we thus assume that

S(d) > 0. We define d̂ = S(d)−1πN (d). This is the normalized market portfolio with

zero mean and unit standard deviation. According to Part 1 of Lemma 5, to establish

existence of an equilibrium, we can restrict our attention to those p ∈ PM for which

there exists an r ∈ [0, 1] such that p(m) = E((1 − r)1 − rd̂)m). Part 2 of the lemma

implies that we can restrict our attention to those consumption bundles xh ∈ X such

that xh = ahd̂ + bh1 + πorthM (dh) for some (ah, bh) ∈ R2. For such p and xh, we have

p(xh − dh) = −r(ah − C(dh, d̂)) + (1 − r)(bh − E(dh)). Hence the utility maximization

problem (6) is equivalent to

Max(ah,bh)∈R2 Wh(ahd̂+ bh1+ πorthM (dh)),

s.t. −rah + (1− r)bh ≤ −rC(dh, d̂) + (1− r)E(dh).
(19)

Since Wh is strictly quasi-concave, this maximization problem has at most one solution.

For each h, let TM
h be the set of those r for which the maximization problem (19) has

a solution and, for each r ∈ TM
h , denote the solution by (aMh (r), bMh (r)) ∈ R2. We have

thus defined a function aMh : TM
h → R+.

Lemma 6 1. 0 ∈ TM
h and 1 /∈ TM

h .

2. aMh (0) = 0.

3. The graph {(r, ah) ∈ [0, 1] × R+| r ∈ TM
h and aMh (r) = ah} is a closed subset of

[0, 1]×R+

4. If (rn)n is a sequence in TM
h converging to an r ∈ [0, 1]\TM

h , then aMh (rn) → ∞.

5. If (rn) is a sequence in TM
h converging to an r ∈ TM

h , then the set {aMh (rn)|

n ∈ {1, 2, · · · }} is bounded.

6. aMh is continuous.

7. TM
h is an open subset of [0, 1].

Proof of Lemma 6. 1. If r = 0, then (ah, bh) = (0, E(dh)) solves (19). Hence 0 ∈

TM
h . If r = 1, then bh can always be increased without violating the budget constraint,

which implies that there is no solution. Hence 1 /∈ TM
h .

2. This follows from the assertion above that (ah, bh) = (0, E(dh)) solves (19) when

r = 0.

3. This is standard.

4. This is an immediate consequence of Part 3 and the non-negativity of aMh .
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5. Suppose not. Then, without loss of generality, we can assume that aMh (rn) → ∞.

Suppose that (an, bn) satisfies the budget constraint of (19) when r = rn and (an, bn) →

(aMh (r), bMh (r)). Define

(αn, βn) = (|aMh (rn)− an|+ |bMh (rn)− bn|)−1(aMh (rn)− an, bMh (rn)− bn) ∈ R2.

We can assume the sequence ((αn, βn))n in R2 converges, say, to (α, β). Note that

|α|+ |β| = 1. By quasi-concavity,

Wh((α
n + an)d̂+ (βn + bn)1+ πorthM (dh)) ≥ Wh(a

nd̂+ bn1+ πorthM (dh)).

Taking the limits of both sides, we obtain

Wh((α
n+aMh (r))d̂+(βn+bMh (r))1+πorthM (dh)) ≥ Wh(a

M
h (r)d̂+bMh (r)1+πorthM (dh)),

which implies that (α+aMh (r), β+ bMh (r)) is also a solution. But this is a contradiction.

The proof of Part 5 is thus completed.

6. This follows from Parts 3 and 5.

7. Suppose not. Then there exists a sequence (rn) in [0, 1]\TM
h that converges to

an r ∈ TM
h . Suppose (an, bn) satisfies the budget constraint of (19) when r = rn and

(an, bn) → (aMh (r), bMh (r)). Then, by rn /∈ TM
h , there exists an (ân, b̂n) such that

Wh(â
nd̂+ b̂n1+ πorthM (dh)) > Wh(a

nd̂+ bn1+ πorthM (dh)).

Moreover, we can take (ân, b̂n) such that |ân − an|+ |̂bn − bn| ≥ 1. Define

(αn, βn) = (|ân − an|+ |̂bn − bn|)−1(ân − an, b̂n − bn) ∈ R2.

We can assume the sequence ((αn, βn))n in R2 converges, say, to (α, β). Note that

|α|+ |β| = 1. By quasi-concavity,

Wh((α
n + an)d̂+ (βn + bn)1+ πorthM (dh)) ≥ Wh(a

nd̂+ bn1+ πorthM (dh)).

Taking the limits of both sides, we obtain

Wh((α
n+aMh (r))d̂+(βn+bMh (r))1+πorthM (dh)) ≥ Wh(a

M
h (r)d̂+bMh (r)1+πorthM (dh)),

which implies that (α+aMh (r), β+ bMh (r)) is also a solution. But this is a contradiction.

The proof of Part 7 is thus completed. ■
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Define TM = ∩H
h=1T

M
h . Then TM consists of those r ∈ [0, 1] for which the aggregate

demand
∑H

h=1 a
M
h (r) is well defined. So we define the aggregate demand function aM :

TM → R+ by aM (r) =
∑H

h=1 a
M
h (r). For each r ∈ TM , r corresponds an equilibrium

state price function if and only if aM (r) = S(d).

Lemma 7 1. 0 ∈ TM and 1 /∈ TM .

2. aM (0) = 0.

3. If (rn)n is a sequence in TM converging to an r ∈ [0, 1]\TM , then a(rn) → ∞.

4. aM is continuous.

5. TM is an open subset of [0, 1].

Proof of Lemma 7. These are all immediate consequences of Parts 1, 2, 4, 6, and

7 of Lemma 6. ■

Lemma 8 Let r ∈ TM and bM (r) < S(d). Then there exists an r∗ ∈ (r, 1) ∩ TM such

that aM (r∗) = S(d).

Lemma 9 Let r ∈ [0, 1]. Assume either that [0, r] ⊆ TM and bM (r) > S(d) or that

[0, r] ⊈ TM . Then there exists an r∗ ∈ (0, r) ∩ TM such that aM (r∗) = S(d).

Proof of Lemma 8. By Part 5 of Lemma 7, there exists an r ∈]r, 1] such that

[r, r[⊆ TM and r /∈ TM . By Part 3 of Lemma 7, there exists an r′ ∈ [r, r[ such that

aM (r′) > S(d). By Part 4 of Lemma 7, we can apply the intermediate value theorem to

aM on [r, r′] to show that there is an r∗ ∈]r, r′[ such that aM (r∗) = S(d). The proof is

thus completed. ■

Proof of Lemma 9. Suppose first that [0, r] ⊆ TM and bM (r) > S(d). Then, by

Parts 2 and 4 of Lemma 7, we can apply the intermediate value theorem to aM on [0, r]

to show that there is an r∗ ∈]0, r[ such that aM (r∗) = S(d).

Suppose next that [0, r] ⊈ TM . Then, by Part 5 of Lemma 7, there exists an r ∈]0, r]

such that [0, r[⊆ TM and r /∈ TM . By Part 3 of Lemma 7, there exists an r′ ∈]0, r[ such

that aM (r′) > S(d). By Parts 2 and 4 of Lemma 7, we can apply the intermediate value

theorem to aM on [0, r′] to show that there is an r∗ ∈]0, r′[ such that aM (r∗) = S(d).

The proof is thus completed. ■

Proof of Proposition 2. This follows from Part 2 of Lemma 7 and Lemma 8. ■
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9 Appendix C: Proof of the Comparative Statics Result

In this appendix, we give a formal proof of Theorem 4. It is more or less along the same

lines as the intuitive explanation immediately after the theorem, except for three points.

First, we use the same normalization for state price functions, p(m) = E(((1−r)1−rd̂)m)

for r ∈ [0, 1], as in Appendix B; the notation therein will be used here as well. Second,

we take into consideration the possibility that the set TL of the price functions for which

the aggregate demands are well defined may not be an interval. Third, we prove here

that flatter indifference curves imply higher demands for the market portfolio.

Lemma 10 If D1Uh(0, µ) = 0 for every µ ∈ R, then aMh (r) > 0 for every M ∈ M and

r ∈ TM
h ∩]0, 1[.

Proof of Lemma 10. Since D1Uh(0, µ) = 0, the induced utility function UM
h

defined in (10) is differentiable at (0, µ) and DUM
h (0, µ) = (0, D2Uh(0, µ)) for µ ∈ R.

On the other hand, the first-order condition for the modified maximization problem (9)

is that there exists an λh > 0 such that DUM
h (aMh (r), bMh (r)) = λh(−r, 1− r). Hence, if

r > 0, then we must have aMh (rM ) > 0. ■

Proof of Theorem 4. 1. If [0, rM ] ⊈ TL, then Part 1 can easily be established

by applying Lemma 9 to M = L and r = rM . So suppose that [0, rM ] ⊆ TL. Then

rM ∈ TM
h ∩ TL

h for every h. By Lemma 10, aMh (rM ) > 0 for every h. Hence

S(aMh (rM )d̂+ bMh (rM )1+ πorthM (dh)) ≥ S(aMh (rM )d̂+ bMh (rM )1+ πorthL(dh)) > 0

for every h, with strict inequality for some h. Writing θMh = S(πorthM (dh)) and similarly

for θLh , we obtain

(aMh (rM )2 + (θMh )2)1/2 ≥ (aMh (rM )2 + (θLh )
2)1/2 > 0

for every h, with strict inequality for some h.HenceMRS ((aMh (rM )2+(θMh )2)1/2, bMh (rM )|Uh)

and MRS ((aMh (rM )2 + (θLh )
2)1/2, bMh (rM )|Uh) are both defined. By the first-order con-

dition for a maximum,

rM

1− rM
= MRS (aMh (rM ), bMh (rM )|UM

h ).

The right hand side equals MRS ((aMh (rM )2+(θMh )2)1/2, bMh (rM )|Uh). By the assumption

of EMRS,

MRS ((aMh (rM )2 + (θMh )2)1/2, bMh (rM )) ≥ MRS ((aMh (rM )2 + (θLh )
2)1/2, bMh (rM ))
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for every h, with strict inequality for some h. The right hand side equalsMRS (aMh (rM ), bMh (rM )|UL
h ).

Hence
rM

1− rM
≥ MRS (aMh (rM ), bMh (rM )|UL

h )

for every h, with strict inequality for some h. It is then standard to check that

aMh (rM ) ≤ aLh (r
M )

for every h, with strict inequality for some h. Thus, by summing over h, we obtain

S(d) = aM (rM ) < aL(rM ). Lemma 9 now establishes Part 1.

2. We first prove that rL ∈ TM
h for every h. By Lemma 10, aLh (r

L) > 0 for every h

and the assumption of EMRS implies that

rL

1− rL
≤ MRS (aLh (r

L), bLh (r
L)|UM

h ) (20)

for every h, with strict inequality for some h. If the equality holds, then rL ∈ TM
h and

aMh (rL) = aLh (r
L). So suppose that the strict inequality holds and define rh ∈]0, 1[ so

that rh = MRS (aLh (r
L), bLh (r

L)|UM
h ). Define also a polyhedral subset Kh of R2 as the

area bounded by three inequalities:

ah ≥ 0,

−rLah + (1− rL)bh ≤ −rLC(dh, d̂) + (1− rL)E(dh),

−rhah + (1− rh)bh ≥ −rha
L
h (r

L) + (1− rh)b
L
h (r

L).

Then (aLh (r
L), bLh (r

L)) ∈ Kh and Kh is compact because rL < rh. So let (a∗h, b
∗
h) be a

solution to the maximization problem

Max(ah,bh)∈R2 UM
h (ah, bh),

s.t. (ah, bh) ∈ Kh.

Note that UM
h (a∗h, b

∗
h) ≥ UM

h (aLh (r
L), bLh (r

L)). We now show that (a∗h, b
∗
h) is also the

solution to the maximization problem (9). In fact, let (ah, bh) ∈ R2 and −rLah + bh ≤

−rLC(dh, d̂) + (1 − rL)E(dh). If ah ≥ 0 and UM
h (ah, bh) ≥ UM

h (aLh (r
L), bLh (r

L)), then

−rhah + (1− rh)bh ≥ −rhC(dh, d̂) + (1− rh)E(dh) and hence UM
h (ah, bh) ≤ UM

h (a∗h, b
∗
h).

If ah < 0, then −rL(−ah) + (1 − rL)bh ≤ −rLC(dh, d̂) + (1 − rL)E(dh). Thus, by

the preceding result, UM
h (−ah, bh) ≤ UM

h (a∗h, b
∗
h). Since UM

h (ah, bh) = UM
h (−ah, bh),

UM
h (−ah, bh) ≤ UM

h (a∗h, b
∗
h). We have therefore shown that (a∗h, b

∗
h) is also the solution

to the maximization problem (9). Hence rL ∈ TM
h for every h.
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Hence aMh (rL) is defined and we can show that (20) implies that

aMh (rL) ≤ aLh (r
L)

for every h, with strict inequality for some h. Thus, by summing over h, we obtain

aM (rL) < aL(rL) = S(d). Lemma 8 now establishes Part 2.

3. This can be proved in the same way as for Part 2.

4. This can be proved in the same way as for Part 1.

5. The assumption of UMRS implies that if rM ∈ P ∗
M , then

MRS (aMh (rM ), bMh (rM )|UM
h ) = MRS ((aMh (rM ), bMh (rM )|UL

h ).

Hence aLh (r
M ) = aMh (rM ) and rM ∈ P ∗

L. Thus P
∗
M ⊆ P ∗

L. The reversed inclusion can also

be shown in the same way. ■

10 Footnotes

1. By plugging ai = 1 and ai = d and solving the system of two linear equations,

we can find that t = p1 and r = (p1E(d) − pd)V (d)−1. The equivalence of the two

representations of the security market line is stated in Duffie (1987).

2. The concavity in term of the mean and standard deviation follows immediately

from that of the vNM utility function.

3. Recall that there are multiple equivalent state price densities in incomplete mar-

kets. All that we mean here is that if we use those spanned by the market portfolio and

the risk-free bond, the volatility will change in the directions predicted by our theorem.

The volatility may change in opposite directions if some state prices to be compared are

spanned by these two assets.

4. The price functions under consideration in the present context are of the form

E((1 − rd̂)m) for r ∈ R++, while the prices function in Appendix B are of the form

E(((1 − r)1 − rd̂)m) for r ∈ [0, 1]. The difference is trivial, so we use the same symbol

(aMh (r), bMh (r)) to denote the solutions to the two maximization problems.

References

[1] J. S. Chipman, The ordering of portfolios in terms of means and variance, Review

of Economic Studies, 40 (1973), 167-190.

31



[2] R.-A. Dana, Existence, uniqueness and determinacy of equilibrium in C.A.P.M.

with a riskless asset, Journal of Mathematical Economics,.32 (1999), 167-175.

[3] J. Detemple and L. Selden, A general equilibrium analysis of option and stock

market interactions, International Economic Review, 32 (1991), 279-303.

[4] D. Duffie, Security Markets: Stochastic Models, 1987, Academic Press, San Diego.

[5] R. Elul, Welfare-improving financial innovation with a single good, Economic The-

ory, 13 (1999), 25-40.

[6] C. Hara, Pareto improvement and agenda control of sequential financial innovations,

Journal of Mathematical Economics, 47 (2011), 336-345.

[7] C. Hara, J. Huang, and C. Kuzmics, Representative consumer’s risk aversion and

efficient risk-sharing rules, manuscript, Journal of Economic Theory, 137, (2007),

652-672.

[8] Th. Hens and A. Loeffler, Existence and uniqueness of equilibria in the CAPM with

a riskless asset, manuscript, August 1996.

[9] Th. Hens, J. Laitenberger, and A. Loeffler, Two remarks on the uniqueness of

equilibria in the CAPM, Journal of Mathematical Economics, 37, (2002), 123-132.

[10] M. S. Kimball, Precautionary saving in the small and large, Econometrica, 58

(1990), 53-73.

[11] P. Koch-Medina and J. Wenzelburger, Equilibria in the CAPM with non-tradeable

endowments, Journal of Mathematical Economics, 75, (2018), 93-107.

[12] F. Lajeri and L. T. Nielsen, Parametric characterizations of risk aversion and pru-

dence, Economic Theory, 15 (2000), 469-476.

[13] R. Mehra and E. C. Prescott, The equity premium: a puzzle, Journal of Monetary

Economics, 15 (1985), 145-161.

[14] P. Milgrom and C. Shannon, Monotone comparative statics, Econometrica; 62

(1994), 157-180.

32



[15] G. Oh, A general equilibrium with incomplete asset markets approach to the cap-

ital asset pricing model, manuscript, Department of Economics, Yale University,

October 1990.

[16] G. Oh, Some results in the CAPM with non-traded endowments, Management

Science, 42 (1996), 286-293.

[17] J. W. Pratt and R. J. Zeckhauser, Proper risk aversion, Econometrica, 55 (1987),

143-154.

[18] S. A. Ross, Some stronger measures of risk aversion in the small and the large with

applications, Econometrica, 49 (1981), 621-638.

[19] P. Weil, Equilibrium asset prices with undiversifiable labor income risk, Journal of

Economic Dynamics and Control, 16 (1992), 769-790.

33


	1005 DP表紙
	Capm4

