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Abstract

We consider unit root tests under sequential sampling for an AR(1) process against both
stationary and explosive alternatives. We propose three kinds of test, or t type, stopping time
and Bonferroni tests, using the sequential coefficient estimator and the stopping time of Lai and
Siegmund (1983). To examine the statistical properties, we obtain their weak joint limit by
approximating the processes in D[0,∞) and using time change and a DDS (Dambis and Dubins-
Schwarz) Brownian motion. The distribution of the stopping time is characterized by a Bessel
process of dimension 3/2 with and without drift, while the esitimator is asymptotically normally
distributed. We implement Monte Carlo simulations and numerical computations to examine
their small sample properties.

1 Introduction
Consider a scalar first order autoregressive process (AR(1) herafter),

xn = βxn−1 + εn, (1)

where εn’s are independently and identically distributed random variables with mean zero and finite
variance σ2. We write it as εn ∼ i.i.d.(0, σ2). When |β| = 1 holds, {xn} is a unit root process.
If |β| < 1, it is stationary, while we shall say that it is explosive if |β| > 1. Unit root processes
are nonstationary that behave in a quite different manner from stationary series. The most notable
feature of unit root processes is that they are not mean reverting unlike stationary processes. Many
macroeconomic time series, for example, obviously do not look like explosive processes, but they also
do not appear to be stationary. Therefore, it has been one of the main issues of interest in time series
econometrics to examine if they are unit root processes. The case of β = −1 is certainly of some
theoretical interest. In the unit root literature, however, researchers have focused only on the case of
β = 1, because we can hardly find empirical data with β = −1.

Given a sample {xn}, n = 0, 1, · · · , T , the ordinary least squares (OLS) estimator β̂T =
(∑T

n=1 x
2
n−1

)−1∑T
n=1 xn−1xn

is known to be consistent and have a non-standard asymptotic distribution when the β = 1, namely,
as T →∞,

T (β̂T − 1)⇒
∫ 1

0
WtdWt∫ 1

0
W 2
t dt

=
1
2 (W 2

1 − 1)∫ 1

0
W 2
t dt

where Wt is a standard Brownian motion and ⇒ indicates the weak convergence. See White (1956)
among others. A variety of procedures testing for the existence of unit root has been proposed since
the middle of 1970’s. The most widely used unit root tests are Dicky-Fuller test (Dickey and Fuller
(1979)) and its extensions such as Chan and Wei (1988), Nabeya and Tanaka (1988), Phillips (1987a)
and Phillips and Perron (1988). To examine the statistical properties and performance of the test
under a near unit root process, many authors have considered local altenatives of β = 1− δ/T . See
e.g. Bobkoski (1983), Cavanagh (1985), Chan (1988) ,Chan and Wei (1987), Phillips (1987b) ******
among others.

The present paper considers the same testing problem under a sequential sampling scheme. Se-
quential analysis was originally considered by Wald (1947). Its principle is that we collect observations
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such that we can ensure a predetermined accuracy in statistical decision making. This approach is
particularly useful when sampling entails certain cost including opportunity cost. In a time series
setting, suppose a fund manager would like to know whether a stock market is a bubble or not. She
must want to know it as soon as possible to make decisions on her portfolio position. For simplicity,
suppose she makes a decision based on, say, daily closing price. She collects an observation everyday
and stop sampling when she has accumulated “sufficient” amount of information for a decision. The
time when she stops sampling is called the stopping time. How “sufficient” depends on her preference
to the decision accuracy and the cost of sampling. If she waits too long, she may possibly loose a lot
of money. In general, the accuracy is typically measured by the standard error of the estimator or the
power in testing. There exists a trade-off between the accuracy and the cost of sampling.

A number of papers examine the statistical properties of sequential OLS estimation of parameters
for both stationary and nonstationary time series. Using a stopping time τc = inf

{
N > 1 :

∑N
n=1 x

2
n−1 ≥ cσ2

}
for some predetemined constant c > 0, Lai and Siegmund (1983; LS83 hereafter) show that the se-
quential OLS estimator of (1) is asymptotically uniformly normal for |β| ≤ 1 as c→∞. This sampling
scheme collects observations until the observed Fisher information exceeds c, or equivalently the stan-
dard error of estimation becomes smaller than 1/c. Shiryaev and Spokoiny (1997) prove the same
result under the condition of normal disturbances when the absolute value of β is greater than unity.
These results are extended to the case of AR(p) for p ≥ 1 by ***. Dzhaparidze et.al. (1994) study
the statisical properties of an sequential OLS estimator when the DGP is a near unit root process
of β = 1 − δ/T . They use a diffusion approximation on D[0, 1] to study the asymptotic properties.
***other references?***

To the best of our knowledge, there exist only a few papers dealing with sequential testing for
unit root. The unit root test using T (β̂T − 1) is incovenient because the null distribution of β̂T is
non-standard as mentioned above. However, sequential OLS estimator is asymptotically normally
distributed by LS83, and thus one can test the null of unit root comparing the the estimate with a
quantile of normal distribution. Given a sample {x0, · · · , xT }, Chang and Park (2004) and Chang
(2012) take a similar approach to propose a unit root test using a part of observations, not all of them,
such that the resulting estimator of β is asympototically normally distributed. They use a subsample of
{x0, · · · , xmT } to estimate β where mT = inf

{
k > 1 : T−2

∑k
n=1 x

2
n−1 ≥ c

}
for an arbitrarily chosen

constant c. This estimator is shown to be asymptotically normally distributed when T → ∞. This
is different from LS83 which considers asymptotic theory under c → ∞. They also investigate its
statistical properties under the local altenative considered in Dzhaparidze et.al. (1994) where it is
shown that the test statistic is asymptotically normal with a mean shift and the proof uses a diffusion
approximation of the process on D[0, 1].

An important issue in sequential analysis is the operating characteristics such as the expectation
and variance of stopping times. It is because researchers would like to know how much cost they need
to pay for sampling in average. Many researchers have studied it by nonlinear renewal theory which
plays a crucial role. See for example Woodroofe (1976) and Lai and Siegmund (1977, 1979). We also
refer to the books by Woodroofe (1982) and Siegmund (1985). However, nonlinear renewal theory
strongly depends on Wald’s identity and thus works only for i.i.d. observations in principle. Without
relying on nonlinear renewal theory, LS83 obtain the marginal stochastic limit of the stopping time
using diffusion approximation of the process.

This paper proposes a sequential counterpart of Dicky-Fuller test possessing a standard normal
limits. We also show that one can use the stopping time for the test. We derive the joint stochastic
limit of the sequential OLS estimator by LS83 and the stopping time, where we approximate the unit
root AR(1) time series with a diffusion process on D[0,∞) plays a crucial role. To prove the results,
using the diffusion approximation on D[0,∞), we apply DDS (Dambis and Dubins-Schwarz hereafter)
time change and Itô’s Lemma. The joint limiting distribution is characterized by a DDS Brownian
motion and a Bessel diffusion of dimension 3/2 with driven by the same Brownian motion under the
null of unit root. We consider the local alternative of β = 1−δ/c when the process is approximated by
an Ornstein-Uhlenbeck (OU) process, the asymptotic distribution of estimator is a Brownian motion
subtracted by δ and the stopping time has a limit of Bessel process of the same dimension with a shift.

The following section explains the model and the testing hypotheses. Then we also define the
stopping time and parameter estimation, and briefly discuss testing procedures based on them. We
provide the joint asymptotic distribution of the estimator and the stopping time under the null in
Section 3, while Section 4 gives the results under local alternatives. In Section 5, we report Monte
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Carlo results to see the size and power of the tests. Section 5 concludes.

2 Sequential unit root test for AR(1) process

2.1 Model and hypotheses
Suppose a time series {xn, n = 1, 2, · · · } is generated from the following AR(1) process with initial
value x0;

(1− βL)xn = εn (2)

where εn ∼ i.i.d(0, σ2). x0 can be any value for now, but we shall discuss about ot later. We would
like to test the null hypothesis of

H0 :β = 1.

As the alternative hypothesis, we can consider two possibilities |β| < 1 and β 6= 1. The former is
the stationary cases that most unit root tests consider in econometrics, while the latter includes the
exclusive cases |β| > 1 as well as stationarity. Most literature do not look at the exclusive cases simply
because such series are hardly found in practice. We also take this framwork in this paper. In view
that many practical examples obtain parameter esimates close to unity, we also deal with the near
unit root case. It is formally written as local alternatives,

H0 :β = 1

H1 :β = 1− δ√
c
,

for δ > 0 or δ 6= 0 and some positive c → ∞. In standard sampling theory, c is typically the sample
size, then the H1 is called Pitman local alternatives. In the present sequential framework, the sample
size turns out to be random so that it is inappropriate. We shall explain about c in the following
section. This local alternative setting is also useful to scrutinize the statistical properties of the test.

For the purpose of exposition, we consider the following null and alternative hypotheses for now.

H0 :β = 1

H1 :|β| < 1,

namely the null is a unit root process and the alternative is stationarity. A natural approach is to
estimate β and compare it with 1. As in Dickey=Fuller unit root test, we estimate the following
tranformed model,

∆xn = φxn−1 + ε

instead of directly estimating β, where φ ≡ β − 1. Correspondingly, the testing hypotheses in terms
of φ are

H0 :φ = 0

H1 :− 2 < φ < 0.

2.2 Stopping time and sequential parameter estimation
We now explain how we stop sampling and test the hypothesis using the observations. Suppose we
observe x0, x1, x2, . . . sequentially and σ2 is known for now. We propose to stop sampling at time

τc = inf

{
N > 1 :

1

σ2

N∑
n=1

x2
n−1 ≥ c

}
, (3)

for some predetermined c > 0. This is the same stopping time considered in LS83. If εn are normally
distributed, the left side of the inequality in the wave brackets coincides with the observed Fisher
information for φ. Therefore we can interprete that this stopping time guarantees the estimation
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accuracy c. Given a sample x0, x1, x2, · · · .xτc in hand, we obtain its ordinary least squares (OLS
hereafter) estimator φ̂τc of φ, where

φ̂N =

N∑
n=1

xn−1∆xn

N∑
n=1

x2
n−1

(4)

for N ≥ 1. LS83 show that this estimator is asymptotically normally distributed as c→∞ uniformly
on [0, 2]. It can be used to test if φ = 0. Because σ2 is unknown in practice, we need to estimate it
for a feasible stopping time. Letting

s2
N =

1

N

N∑
n=1

(
∆xn − φ̂Nxn−1

)2

, (5)

and

τ̂c = inf

{
N > 1 :

1

s2
N

N∑
n=1

x2
n−1 ≥ c

}
, (6)

we obtain a feasible OLS estimator

φ̂τ̂c =

τ̂c∑
n=1

xn−1∆xn

τ̂c∑
n=1

x2
n−1

. (7)

3 Sequential unir root tests and asymptotic properties of the
estimator and stopping time under H0

We show the asymptotic properties of the estimator φ̂τ̂c and stopping time τ̂c under the null of β = 1,
namely

(1− L)xn = εn n = 1, 2, . . . , (8)

where εn ∼ i.i.d.(0, σ2) with σ2 ∈ (0,∞). We first show in section 3.1 a result of diffusion approxima-
tion of the series for a unit root process. The proof is provided in Appendix 1. Section 3.2 states the
main results, whose proofs are collected in Appendix 2.

3.1 Convergence to a Brownian motion on D[0,∞)

Diffusion approximation on D[0, 1], the space of right continuous functions on [0, 1] with left limits, is
a common approach to study the statistical properties of estimation and testing procedures associated
with unit root processes. Some authors such as Chang (2012) and Chang and Park (2004) approximate
the process on D[0, 1], where they consider statistical procedures given a sample of size T but use a
part of the data such that the information of observations used exceeds certain predetermined level.
There, they obtain the asymptotic properties when T → ∞. For the present purpose, however, we
believe that it is more appropriate to approximate the process on the space of D[0,∞), the set of
the right continuous functions on [0,∞) with left limits, to characterize the limiting behavior of the
sequential estimator and the stopping time. We do not assume that we have a sample of size T in our
hand and use a part of it, but we observe data online and stop sampling when we obtain sufficient
information.

Approximation on D[0, 1] is the most frequently used approach in discussing the asymptotic prop-
erties of unit root processes in standard sampling. However in a sequential sampling scheme, it is
appropriate to consider the functional space D[0,∞) to characterize the limiting behavior since the
sample size is determined by a stopping time whose value is arbitrary in N = {1, 2, 3, . . .}.

********* Do we need more discussion why we have to consider D[0,infty) instead of D[0,1]?
***************
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Suppose x1, x2, . . . are generated by the model (8) with an initial value x0 independent of εn, n ≥ 1.
Let

Xc(t) =
xb√ctc
c1/4σ

, (9)

with W being a standard Brownian motion. Then, Theorem 18.3 of Billingsley (1999) yields the
following diffusion approximation in D[0,∞) under the null.

Xc ⇒W, (10)

as c ↑ ∞ in the sense of D[0,∞) where ⇒ indicates weak convergence.
This result plays an essential role to prove the asymptotic properties of the estimator and stopping

time under the null.

3.2 Asymptotic properties of τ̂c, φ̂τ̂c , and s2τ̂c .

In this section we show the asymptotic properties of τ̂c, φ̂τ̂cand s2
τ̂c

under the null of (8) when c goes
to ∞. We use the diffusion approximation shown in (10). We omit the parentheses of W (t) to write
Wt for the brevity of expressions.

To state the main theorem of this section, we define a martingale Mt and its quadratic variation
as

Mt =

∫ t

0

WudWu, (11)

〈M〉t =

∫ t

0

W 2
udu (12)

and let

Us = 〈M〉−1
s = inf

{
t ≥ 0 :

∫ t

0

W 2
udu = s

}
, (13)

where Wu and Xu are respectively Brownian motion and Brownian motion with an initial value in
(??). By DDS Theorem (Theorem 1.6 in Revuz and Yor (1999), pp181),

Bs = MUs (14)

is a Brownian motion with respect to the filtration Gs = FUs and this is called a DDS Brownian
motion.
Remark 1. LS83 prove the same result but the proofs are substantially different. We use a diffusion
approximation and the DDS theorem, which can be directly extended to the case of local alternatives
as we show later, but it is not clear if their approach is applicable to the local alternative cases.

Theorem 2. Suppose xn is generated by the model (8) with an initial value x0 independent of εn, n ≥ 1
. Then, if we put

ρs = W 2
Us/2,

ρt is a 3/2-dimensional Bessel process;

ρt = Bt +

∫ t

0

1

4ρs
ds. (15)

The asymptotic behavior of the stopping time τ̂c in (6) and the sequential estimators φ̂τ̂c in (7) is
given as follows:

τ̂c →p ∞,

φ̂τ̂c−φ→p 0,

s2
τ̂c →p σ2,(√

cφ̂τ̂c ,
τ̂c√
c

)
⇒

(∫ U1

0

WudWu, U1

)
(16)

=

(
B1,

∫ 1

0

1

2ρs
ds

)
.
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Remark 3. We remark that LS83 also examine the limiting behavior of τ̂c/
√
c, where they obtain the

limit as inf{t :
∫ t

0
W 2
s ds = 1}. In the theorem above, we derive an alternative representation of the

limit of the stopping time using a Bessel process. In the following section, we will see that pallarel
results hold under the local alternatives.

Corollary 4. Under the same assumptions as in Theorem 2, we get the asymptotic expectation

E(τ̂c/
√
c)→ 2E (ρ1) = 2

√
2Γ(5/4)

Γ(3/4)
= 2.0921,

using the following density of the Bessel process,

pαt (0, y) = 2−νt−(ν+1)Γ(ν + 1)−1y2ν+1 exp(−y2/2t),

where t = 1, α = 3/2,ν = (α/2)− 1 = −1/4.

Next we consider the asymptotic behavior of s2
τ̂c
.

Theorem 5. Suppose xn is generated by the model (8) with εn having a finite fourth moment. Put
µ4 = E(ε4n) , µ3 = E(ε3n) and

σ2
ε2 = E

[(
ε2n − σ2

)2]
= µ4 − σ4. (17)

Then as c ↑ ∞,
c1/4

σε2

(
s2
τ̂c − σ

2
)
⇒ 1

U1
W ′ (U1)

where W ′ is a Brownian motion satisfying 〈W ′,W 〉1 = µ3/σε2σ with W being the Brownian motion
in (??). Furthmore, if µ3 = 0, then W and W ′ are independent and

c1/2

σε2 τ̂
1/2
c

(
s2
τ̂c − σ

2
)
⇒ N(0, 1).

3.3 Testing procedures
Using the results above, we propose three testing procedures of β = 1 or φ = 0, namely, t test, stopping
time test, and Bonferroni test combining them described in the following. We explain the procedures
only for one sided test considering the alternatives of β < 1 (φ < 0) or β > 1 (φ > 0). Obviously, we
straightforwardly change the critical region when we would like to implement a two sided test.

First, t test (T hereafter) uses the asymptotic normality of φ̂τ̂c . Since the null hypothesis is φ = 0

and its asymptotic variance equals to unity, the T simply looks at
√
cφ̂τ̂c . Let zα be the α quantile of

the standard normal distribution. We reject the null if
√
cφ̂τ̂c < zα

for left sided test with the alternative of β < 1, and if
√
cφ̂τ̂c > z1−α

for the right sided test. Second, it is also possible to construct a test using the stopping time τ̂c/
√
c

whose asympototic limit is U1 under the null. We call it ST . Its distribution is not standard, but
we can easily obtain its quantiles from (13) by numerical computation or simulation. Under the
stationary alternatives, the stopping time tends to be large as shown in the section 5, while if the
GDP is explosive or β > 1, the sequential procedure stops earlier than unit root case. Therefore,
letting uα be the α quantile of U1, we rejct the null if

τ̂c/
√
c > u1−α

against the alternative of β < 1. If
τ̂c/
√
c < uα
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we reject the null against β > 1. Third, we can combine both statistics by Bonferroni test as follows,
which we call BON . When we want to test the existence of unit root against the alternative of
stationarity, we reject the null when

√
cφ̂τ̂c < zα/2 or τ̂c/

√
c > u1−α/2.

Obviously, it will be a conservative test as is always the case with Bonferroni tests. We shall show
some empirical performances by simulation in Section 5.

4 Asymptotic properties of the test statistics under a near unit
root AR(1)

In this section, we examine the properties of the test statistics under the local alternatives(
1− (1− δ√

c
)L

)
xn = εn (18)

n = 1, 2, . . ., where c > 0, εn ∼ i.i.d.(0, σ2) and are independent of the initial value x0. We obtain
parallel results to the null case shown in the previous section. We use a diffusion approximation on
D[0,∞) again.

In this setup, we test H0 : δ = 0 vs H1 : δ > 0 or H0 : δ = 0 vs H1 : δ < 0 . The alternative
hypothesis we consider here is stationarity in the former case, while explosive in the latter. Let
φc = −δ/

√
c, then (18) can be rewritten as

∆xn = φcxn−1 + εn. (19)

The stopping time and estimator are as in (5), (6) and (7). The only difference from the null case is
the data generating process.

4.1 Convergence to an Orstein=Uhlenbeck process on D[0,∞)

Now we provide a result on the diffusion approximation under the null. Bobkoski (1983) proved the
following theorem in C[0, 1], but we provide the theorem in D[0,∞).

Theorem 6. Suppose x1, x2, . . . are generated by the model (18);(
1− (1− δ√

c
)L

)
xn = εn n = 1, 2, . . . (20)

where εn ∼ i.i.d.(0, σ2) with σ2 ∈ (0,∞). We assume that the initial value x0 is independent of
εn, n ≥ 1. Let

Xc(t) =
xb√ctc
c1/4σ

, (21)

and Xδ be the Ornstein-Uhlenbeck (OU) process;

Xδ(t) = −δ
∫ t

0

Xδ(s)ds+W (t), (22)

where W (t) is a Brownian motion. Then,

Xc ⇒ Xδ,

as c ↑ ∞ in the sense of D[0,∞).

Remark 7. X of 10 in the previous section coincides with X0, or Xδ with δ = 0. Comparing the
result 10 and 6, we immediately know that the contiguity holds in the present setting. That is, 10 is
a special case of this theorem with δ = 0.
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4.2 Asymptotic properties of τc, τ̂c, φ̂τ̂c , and s2τ̂c under the local alternatives

To present the main theorem, write Xδ
t = Xδ(t) for brevity hereafter. Define the following martingale

Mt and its quadratic variation,

Mt =

∫ t

0

Xδ
udWu (23)

〈M〉t =

∫ t

0

(Xδ
u)2du. (24)

and put

Uδs = 〈M〉−1
s = inf

{
t ≥ 0 :

∫ t

0

(Xδ
u)2du = s

}
(25)

where W and Xδ are respectively the Brownian motion and OU process in (22). By DDS Theorem
(Theorem 1.6 in Revuz and Yor (1999) pp181) again,

Bs = MUδs
(26)

is a Brownian motion with respect to the filtration Gs = FUδs and this is also a DDS Brownian motion.
Here is the main theorem of this section.

Theorem 8. Suppose xn is generated by the model (18) with an initial value x0 independent of
εn, n ≥ 1 . Then

ρδs = (Xδ
Us)

2/2,

ρδt is a 3/2-dimensional Bessel process with drift −δ;

ρδt = Bt +

∫ t

0

(
1

4ρδs
− δ
)
ds. (27)

The asymptotic behavior of the stopping time τ̂c in (6) and the sequential estimators φ̂τ̂c in (7) is
given as follows:

τ̂c →p ∞,

φ̂τ̂c − φc →p 0,

s2
τ̂c →p σ2,(√

cφ̂τ̂c ,
τ̂c√
c

)
⇒

(
−δ +

∫ Uδ1

0

Xδ
udWu, U

δ
1

)
(28)

=

(
−δ +B1,

∫ 1

0

1

2ρδs
ds

)
as c ↑ ∞.

Remark 9. Here again, we immediately know that this theorem includes Theorem 2 in the previous
section as a special case when δ = 0.
Remark 10. Figure ** shows the contour of the joint distribution of (

√
cφ̂τ̂c , τ̂c/

√
c) obtained by

simulation when the DGP is
xi = (1− delta

10000
)xi−1 + εi

for delta = 0, 1. Obviously, delta = 0 and 1 respectively correspond to the null and the alternative
of β = 0.9999. The red line is the null distribution and blue line is the stationary alternative. We
see that φ̂τ̂c and τ̂c are obviously dependent. The stopping time tends to be larger for stationary case
than the unit root case.
Remark 11. Local asymptotic normality (LAN).

Suppose that the disturbances are normally independently distributed, εn ∼ i.i.d.N(0, σ2). Then
the log likelihood ratio of the observations is

Λ(x0,x1, . . . , xτc ; δ/
√
c) = − δ√

cσ2

τc∑
n=1

(xn − xn−1)xn−1 −
δ2

2
+
δ2

2c
(c− 1

σ2

τc∑
n=1

x2
n−1).
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Figure 1: Contour of the joint distribution of (
√
cφ̂τ̂c , τ̂c/

√
c)

../Dropbox/HNN/surt/draft/Local-AR(1)/joint-density-d0-d1.pdf

The first term on the right is asymptotically N(0, 1) under the null as proved in Lai and Siegmund
(1983) and the third term converges in probability to zero as c→∞. Therefore, this model possesses
a LAN property and the first term on the right is asymptotically N(δ, 1) under the alternative by
LeCam’s third lemma.

We discuss the relationship between the joint density function of (φ̂τ̂c , τ̂c) under the null and the
local alternative. From Theorems 2 and 8, we can establish the following corollary, which can be
regarded as LAN in terms of the joint limit.

Corollary 12. Let f0(z, u) be the joint density of the normalized estimator and stopping time under
the null obtained in Theorem 2. The joint density function of (−δ + B1,

∫ 1

0
1

2Xδs
ds) under the local

alternative above is given by

fδ(z, u) = exp(−δz − 1

2
δ2)f0(z, u).

This corollary implies that the log likelihood ratio turns out

log
fδ(z, u)

f(z, u)
= −δz − 1

2
δ2,

which indicates that this is LAN, and it only depends on φ̂τ̂c .
The following theorem gives the asymptotic distribution of s2

τ̂c
.

Theorem 13. Suppose εn has a finite fourth moment. Put µ4 = E(ε4n) , µ3 = E(ε3n) and

σ2
ε2 = E

[(
ε2n − σ2

)2]
= µ4 − σ4. (29)

Let W be the Brownian motion in (34). Then as c ↑ ∞,and

c1/4

σε2

(
s2
τ̂c − σ

2
)
⇒ 1

U δ1
W ′
(
U δ1
)

where W ′ is a Brownian motion satisfying 〈W ′,W 〉1 = µ3/σε2σ with W being the Brownian motion
in (22). Furthmore, if µ3 = 0, then W and W ′ are independent and

c1/2

σε2 τ̂
1/2
c

(
s2
τ̂c − σ

2
)
⇒ N(0, 1).

4.3 Power against local alternatives
From the above theorems, we easily know that the test using φ̂τ̂c has a nontrivial power against the
local alternatives because

√
cφ̂τ̂c ⇒ B1 under H0
√
cφ̂τ̂c ⇒ B1 − δ under H1
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asympototically. This is a standard result. We can also use the stopping time τ̂c to test the null using

τ̂c√
c
⇒
∫ 1

0

1

2ρs
ds under H0

τ̂c√
c
⇒
∫ 1

0

1

2ρδs
ds under H1.

The distribution of the two integrals differ in such a way that the stopping time tends to be larger
when DGP follows a local alternatives with δ > 0. If δ < 0, it becomes smaller. Therefore, if the
stopping time exceeds (1− α) quantile of

∫ 1

0
1

2ρs
ds, we may stop sampling and reject the null against

the stationary alternative, and vice versa. By this procedure, the test again has a non-trivial power.
Both procedures work as unit root tests, but it is not so clear which possesses more power. One
advatage of the latter is that we can stop sampling earlier than the former when the alternative is
statinary. In this sense, it may be favourable if sampling cost is extremely high.

5 Simulation

5.1 Simulation settings
We conduct simulation to examine the performance of the three tests T , ST and BON explained in
Section 3.3. We provide the performance of test for the null versus stationary alternatives in section
5.2 and that for explosive alternatives in section 5.3. We consider local (near unity) alternatives as
well as non-local alternatives to see the power of the tests.

The data generation process is
xn = βxn−1 + εi

where εn ∼ i.i.d.N(0, 1) and x0 = 0. We compare three tests under two kinds of alternative hypothesis.
The first hypotheses setting is unit root v.s. stationary alternatives,

H0 :β = 1

H1 :β < 1

which is considered in section 5.2, while the second is unit root v.s. explosive alternatives,

H0 :β = 1

H1 :β > 1

which is dealt in section 5.3. The critical region is different depending on which alternative is consid-
ered either β < 1 or β > 1. Therefore, not only the power but the size depends on the alternative
setting. It is also possible to consider two-sided tests(***??***). The size must be informative, but
the power properties are totally different depending on the true DGP. As the statinary alternatives,
we take β = 0.95, 0.99 while we set β = 1.01, 1.05 as the explosive cases. We prove Theorems in the
previous section under local alternatives, however we also report simulation results for a stationary
case of β = 0.80 as a reference.

For testing against the stable alternatives with size α = 0.05, T , ST and BON reject the null
respectively when

√
cφ̂c < z0.05 , τ̂c/

√
c > u0.95 , and

√
cφ̂c < z0.025 or τ̂c/

√
c > u0.975. Note that

if the DGP is a stationary process, the ST can possibly reject the null before the sampling hits the
stopping time. Then it requires a shorter time to make a decision than the other tests, which may
be favorable under a large sampling cost. For explosive alternatives, all the three testing schemes
conclude at the same time after the sampling is stopped by the stopping rule. Note that ST uses
the information only of the stopping time, while T and BON make use of both the estimate and the
stopping time.

We take three predetermined values, c = 600, 2500, 10000 and the number of replication is 10000.
Since we employ the asymptotic theory as c ↑ ∞, we expect a larger value of c provides better
asymptotic approximation.
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Table 1: Size of tests when alternative hypothesis is stationary
β = 1

c = 600 rejection rate mean of τ̂c/
√
c

T 0.0518 2.0748770
ST 0.0442 2.0453525
BON 0.0297 2.0624663
c = 2500 rejection rate mean of τ̂c/

√
c

T 0.0465 2.0693040
ST 0.0438 2.0399180
BON 0.0296 2.0571760

c = 10000 rejection rate mean of τ̂c/
√
c

T 0.0488 2.0932680
ST 0.0463 2.0628650
BON 0.0300 2.0801700

5.2 Stationary alternatives
Table 1 reports the size of tests. The nominal size is 5%. The first column indeicates the tests,
the second and third columns show respectively the rejection rate and the average of standardized
stopping time τ̂c/

√
c. The size of T and ST appears slightly conservative for all c, but mostly closer

to the nominal than BON as expected. The size distortion ofBON is about 2% for all c. Average
time to make a decision of ST is slightly shorter than the other tests as expected. Linetsky derive
the density of Bessel processes which gives the expectation of the limit of τ̂c/

√
c under the null as

E(U1) = 2.0921. The mean of τ̂c/
√
c mostly close to this value, especially in the case of c = 10000.

Table 2 shows power of the tests and the standardized average stopping time. T has the highest
power with the longest stopping time for all values of β and c. When β = 0.99 and c = 10000, T
possesses a higher power by 3% than the ST with 8% larger stopping time. When β = 0.95 and
c = 10000, the power of both S and ST are almost unity, but the stopping time is significantly
different. T requires about 1000 observations to make a decision in average, while ST needs only
around 420 observations. We also report the results when β = 0.80 which is not regarded as a local
alternative. For c = 10000, the stopping time of ST test in this case is 424 in average. This is
significantly smaller than that for T test which is more than 3600. BON has the lowest power among
the three tests for all cases partly because of a conservative size.

If the sampling cost is expensive, one may be willing to employ the ST test. Otherwise s/he can
choose the T test.

5.3 Explosive alternatives
In this subsection, we examine the small sample properties of the tests when the alternative hypothesis
is an explosive AR(1) process or β > 1. Table 3 gives the size of the tests and the average standardized
stopping time. The size of T and the ST are close to the nominal value when c = 10000, while it is
slightly larger for c = 600. BON is conservative by about 0.8− 0.9% for all values of c though larger
c appears to give slightly smaller size distortion. As explained above, the stopping time is exactly
the same for all three tests because all tests make decisions after the sampling is stopped unlike the
stationary alternative case.

Table 4 provides the power of tests for β = 1.01 and β = 1.05. As shown in the table, T has the
highest power in all settings. T outperforms ST because when ST rejects the null, T also rejects
the null in most cases, while T often rejects the null even if ST does not. BON has a higher power
than ST except the case of c = 600 and β = 1.01. It might be the effect of smaller size distortion of
BON than the stable alternative case (???). T always outperforms ST and BON for the explosive
alternative case, thus we should employ T .
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Table 2: Power of tests when alternative hypothesis is stationary

β = 0.99
c = 600 rejection rate mean of τ̂c/

√
c

T 0.0865 2.3023081
ST 0.0694 2.2514526
BON 0.0553 2.2797115
c = 2500 rejection rate mean of τ̂c/

√
c

T 0.1288 2.5729220
ST 0.1129 2.4831220
BON 0.0829 2.5293460

c = 10000 rejection rate mean of τ̂c/
√
c

T 0.2630 3.1839720
ST 0.2357 2.9486160
BON 0.1909 3.0518460

β = 0.95
c = 600 rejection rate mean of τ̂c/

√
c

T 0.3362 3.3784546
ST 0.2766 3.1016950
BON 0.2501 3.2270517
c = 2500 rejection rate mean of τ̂c/

√
c

T 0.8019 5.4098460
ST 0.7457 3.9848560
BON 0.7213 4.3702700

c = 10000 rejection rate mean of τ̂c/
√
c

T 0.9996 10.026283
ST 0.9989 4.239397
BON 0.9989 4.788537

β = 0.8
c = 600 rejection rate mean of τ̂c/

√
c

T 0.9990 9.0158491
ST 0.9980 4.2444717
BON 0.9981 4.8140883
c = 2500 rejection rate mean of τ̂c/

√
c

T 1.0000 18.105178
ST 1.0000 4.2400000
BON 1.0000 4.8000000

c = 10000 rejection rate mean of τ̂c/
√
c

T 1.0000 36.045610
ST 1.0000 4.2400000
BON 1.0000 4.7900000
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Table 3: Size of tests when alternative hypothesis is explosive
β = 1

c = 600 rejection rate mean of τ̂c/
√
c

T 0.0590 2.0675163
ST 0.0504 2.0675163
Bon 0.0415 2.0675163

c = 2500 rejection rate mean of τ̂c/
√
c

T 0.0509 2.0859180
ST 0.0440 2.0859180
Bon 0.0420 2.0859180

c = 10000 rejection rate mean of τ̂c/
√
c

T 0.0506 2.0973950
ST 0.0503 2.0973950
Bon 0.0424 2.0973950

Table 4: Power of tests when alternative hypothesis is explosive
β = 1.01

c = 600 rejection rate mean of τ̂c/
√
c

T 0.0784 1.8900467
ST 0.0667 1.8900467
Bon 0.0569 1.8900467

c = 2500 rejection rate mean of τ̂c/
√
c

T 0.1196 1.7052720
ST 0.0823 1.7052720
Bon 0.0978 1.7052720

c = 10000 rejection rate mean of τ̂c/
√
c

T 0.2624 1.4189670
ST 0.1550 1.4189670
Bon 0.2060 1.4189670

β = 1.05
c = 600 rejection rate mean of τ̂c/

√
c

T 0.3299 1.3404179
ST 0.1849 1.3404179
Bon 0.2531 1.3404179

c = 2500 rejection rate mean of τ̂c/
√
c

T 0.8010 0.94602
ST 0.4100 0.94602
Bon 0.7300 0.94602

c = 10000 rejection rate mean of τ̂c/
√
c

T 0.9996 0.610923
ST 0.8233 0.610923
Bon 0.9990 0.610923
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5.4 Comparison of the simulation and numerical computation results
****

We can evaluate the powers of our testing procedure and the expected stopping time by numerical
calculations given an alternative parameter value. We can numerically compute the theoreical expected
stopping time given c and a parameter value by the transition densities of Bessel diffusions with
constant drift obtained by Linetsky (2004). We find that our theoretical results are consistent with
the simulations.

****

6 Conclusion
Considering AR(1) process, we obtain the asymptotic distribution of the OLS estimator of the AR(1)
parameter and the Fisher information based stopping time under a sequential sampling both under
the unit root process and near unit root process. The t statistic is asymptotically normally distributed
and the stopping time is characterized by Bessel processes. We employ diffusion approximation to
prove the results which enables us to analyze the asymptotic properties in the case of local alternatives
of near unit root processes. Based on the results, we propose three kinds of unit root tests using the t
statistic, the stopping time and the both by Bonferroni approach. When the alternative is a stationary
process, we show that the stopping time can be a useful test statistic especially when the sampling
cost is large. If the alternative is an explosive process, t test is shown to perform the best. The
Bonferrroni approach is one way of using both of t value and stopping time, but it is likely to be able
to construct a better test exploiting both information.

Sequential probability ratio test (SPRT) based on the likelihood ratio is commonly used in sequen-
tial tests, because it is the most powerful test against a simple alternative hypothesis. It is possible to
apply this approach in the present unit root testing. We comjecture that it could potentially ourper-
form the t and stopping time tests we propose in this paper. A practical disadvantage of SPRT is
that the alternative needs to be simple. In the present context, this limitation is obviously inconve-
nient because we typically do not know a likely value under the alternative. One possibile approach
employing SPRT is that we plug an estimator in the likelihood under the alternative to construct
a test statistic, but its statistical properties are unknown. Research toward this direction has been
conducted in part and is currently going on.

This paper deals with only AR(1) process with i.i.d. inovations, but we can consider a variety of
extention to e.g. AR(1) processes with martingale diffrence innovations, AR(p) processes, nonpara-
metrically correlated linear processes, GARCH processes and others, which are currently under way
in part.
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Appendix 1
Proof of Theorem 6

We shall use a diffusion approximation on space D[0,∞), so briefly show some characteristics of
the space (see Billingsley (1999) for details). According to Billingsley (1999), D[0,∞) is a Polish
space; a complete separable metric space with a suitable metric. We start with a simple lemma which
enable us to deal with weak convergence in D[0,∞) easily.

We define the sup norms ‖·‖m for m > 0 and ‖·‖∞ for f : [0,∞)→ R;

‖f‖m = sup
t∈[0,m]

|f(t)| , ‖f‖∞ = sup
t∈[0,∞)

|f(t)| , (30)

and also define the metric of C[0,∞), the set of the continuous functions on [0,∞);

ρ(f, g) =

∞∑
m=1

2−m(‖f − g‖m ∧ 1),

by which C[0,∞) becomes a Polish space.
Let Λm denote the class of strictly increasing, continuous mappings of [0,m] itself. If λ ∈ Λm,

then λ0 = 0 and λm = m, put

‖λ‖◦m = sup
0≤s<t≤m

∣∣∣∣log
λt− λs
t− s

∣∣∣∣ .
Let

d◦m(x, y) = inf
λ∈Λm

{
‖λ‖◦m ∨ ‖x− yλ‖m

}
.

Define

hm(t) =


1 t ≤ m− 1,

m− t m− 1 ≤ t ≤ m,
0 t ≥ m.

For f ∈ D[0,∞), let fm be the element of D[0,∞) defined by

fm(t) = hm(t)f(t), t ≥ 0.

Define the metric on D[0,∞) for f, g ∈ D[0,∞);

d◦∞ (f, g) =

∞∑
m=1

2−m (1 ∧ d◦m (fm, gm)) .

Let Λ∞ be the set of strictly increasing, continuous maps of [0,∞) onto itself.

Theorem 14. (Billingsley (1999) p.168 , Th16.1). Let I : [0,∞) → [0,∞) be the identity map;
I(t) = t. Then, * in D[0,∞) as n→∞ if and only if there exist elements λn of Λ∞ such that

‖λn − I‖∞ → 0, (31)

and for each m,
‖fn ◦ λn − f‖m → 0. (32)

Based on this theorem, we can derive the following lemma.

Lemma 15. Suppose fn ∈ D[0,∞) and f ∈ C[0,∞). Then, limn→∞ d◦∞(fn, f) = 0 if and only if
limn→∞ ‖fn − f‖m = 0 for any m > 0.

Proof. Suppose (31) and (32) hold for fn ∈ D[0,∞), f ∈ C[0,∞), and λn ∈ Λ∞. Fix m ∈ N and
ε ∈ (0,m). Since f is uniformly continuous on any compact set, there is 0 < δ < m such that
|f(s)− f(t)| < ε/2 for any s, t ∈ [0, 2m] satisfying |s− t| < δ. Choose n0 so that ‖λn − I‖∞ < δ and
‖fn ◦ λn − f‖2m < ε/2 for any n ≥ n0. Then, we can get

∣∣t− λ−1
n t
∣∣ < δ, and

‖fn − f‖m = sup
t≤m

∣∣fn(λnλ
−1
n t)− f(λ−1

n t) + f(λ−1
n t)− f(t)

∣∣
≤ ‖fn ◦ λn − f‖2m + sup

t≤m

∣∣f(λ−1
n t)− f(t)

∣∣
≤ ε

2
+
ε

2
.
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Proof of Theorem 6
Let Sn = ε1 + ε2 + · · ·+ εn with S0 = 0, W be a Brownian motion, and

Wc(t) = Sb√ctc/c
1/4σ. (33)

Then, by the functional central limit theorem for martingale differences (Theorem 18.2 in Billingsley
(1999)) , as c ↑ ∞,

Wc ⇒W. (34)

Since D[0,∞) is Polish, we can use Skorohod’s representation Theorem (Theorem 6.7 in Billingsley
(1999)) and create a new probability space (Ω̃, F̃ , P̃ ) under which W̃ is a Brownian motion, W̃c ∈
D[0,∞) has the same distribution as Wc in D[0,∞), and∥∥∥W̃c − W̃

∥∥∥
m
→ 0 (35)

as c ↑ ∞ any m > 0 a.s., where ‖‖m is the sup norm defined in (30).
Let βc = 1− δ/

√
c, we can write xn in (18) as follows:

xn =

n−1∑
k=1

βkc εn−k + βnc x0.

Then xn can be rewritten as

xn = βnc x0 +

n∑
i=1

βn−ic εi

= βnc x0 +

n∑
i=1

βn−ic (Si − Si−1)

= βnc x0 − (1− βc)
n∑
i=1

βn−i−1
c Si + β−1

c Sn.

Here, we define Xc(t) = xb√ctc/c
1/4σ and X0 = x0/c

1/4σ, then we have

Xc(t) =
1

c1/4σ

βb√ctcc x0 −
δ√
c

b√ctc∑
i=1

β
b√ctc−i−1
c Si + β−1

c Sb√ctc

 . (36)

From (35), we can obtain

Lemma 16. Define

X(t) = −δe−δt
∫ t

0

eδsW (s)ds+W (t), (37)

then Xc ⇒ X as c ↑ ∞ in the sense of D[0,∞).

Proof. Consider W̃c and W̃ of (35) and observe

b√ctc∑
i=1

β−i−1
c

Si
c1/4σ

1√
c

=

∫ b√ctc/√c
0

β
−b√csc−1
c Wc(s)ds.

Then,

sup
t≤m

∣∣∣∣∣
∫ b√ctc/√c

0

β
−b√csc−1
c W̃c(s)ds−

∫ t

0

β
−b√csc−1
c W̃c(s)ds

∣∣∣∣∣ ≤ sup
t≤m

∣∣∣∣β−b√ctc−1
c W̃c(s)

1√
c

∣∣∣∣→ 0 a.s.
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Hence it suffices to show that

X̃c(t) = − δ√
c
β
b√ctc
c

∫ b√ctc/√c
0

β
−b√csc−1
c W̃c(s)ds+ β−1

c W̃c(t)

→ X̃(t) := e−δtX̃0 − δe−δt
∫ t

0

eδsW̃ (s)ds+ W̃ (t) (38)

uniformly in t ∈ [0,m] for any m > 0. To show (38), first we will show β
b√ctc
c → e−δt uniformly in

t ∈ [0,m] for any m > 0. Since

e−δt =

b√ctc∑
k=0

(−δt)k

k!
+

∞∑
b√ctc+1

(−δt)k

k!
,

and

β
b√ctc
c =

(
1− δ√

c

)b√ctc

=

b√ctc∑
k=0

(−δt)k

k!

(
n√
ct

)k
n(n− 1) · · · (n− k + 1)

nk
,

where n = b
√
ctc. For any m > 0, by Dini’s theorem, we have

sup
t≤m

∣∣∣∣e−δt − βb√ctcc

∣∣∣∣
= sup
t≤m

∣∣∣∣∣∣∣
b√ctc∑
k=0

(−δt)k

k!

(
1−

(
n√
ct

)k k−1∏
i=1

(
1− i

n

))
+

∞∑
b√ctc+1

(−δt)k

k!

∣∣∣∣∣∣∣
≤ sup
t≤m

∣∣∣∣∣∣∣
b√ctc∑
k=0

(δt)
k

k!

(
1−

(
1− (

√
ct− n)√
ct

)k k−1∏
i=1

(
1− i

n

))
+

∞∑
b√ctc+1

(δt)
k

k!

∣∣∣∣∣∣∣
≤ sup
t≤m

∣∣∣∣∣∣∣
∞∑
k=0

(δt)
k

k!

(
1−

(
1− 1√

ct

)k k−1∏
i=1

(
1− i

n

))
+

∞∑
b√ctc+1

(δt)
k

k!

∣∣∣∣∣∣∣
→0.

Hence (38) holds uniformly in t ∈ [0,m] for any m > 0.

Next, as to Xt, using d-dimentional Itô’s formula (Theorem in Revus and Yor (1999) pp147), we
will see (22). In fact, put Yt = Xte

δt, we can find dYt = eδtdWt. Letting Xt = e−δtYt, we have the
differential of Xt;

dXt = d(e−δtYt)

= e−δtdYt + Ytd(e−δt)

= dWt − δe−δtYtdt
= −δXtdt+ dWt.

Appendix 2
6.1 Proof of Theorem 8
To prove the asymptotic property of

√
cφ̂cτc , we show the following lemmas.
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Lemma 17. Let I : [0,∞)→ [0,∞) be the identity map; I(t) = t and

Ic(t) =

b√ctc∑
n=1

ε2n/
√
cσ2. (39)

Then,
‖Ic − I‖m = sup

t≤m
|Ic(t)− t| → 0

for any m > 0 a.s as c ↑ ∞.

Proof. Fix ω ∈
{∑N

n=1 ε
2
n/N → σ2

}
and for any m > 0 and ε > 0 find N0 so that for any N ≥ N0∣∣∣∣∣ 1

N

N∑
n=1

(
ε2n
σ2
− 1

)∣∣∣∣∣ < ε

2m
.

Then, for large enough c > 0,

sup
t≤m
|Ic(t)− t|

= sup
t≤m

∣∣∣∣∣∣∣
1√
c

b√ctc∑
n=1

(
ε2n
σ2
− 1

)
+
b
√
ctc −

√
ct√

c

∣∣∣∣∣∣∣
≤ max
N≤N0

∣∣∣∣∣ 1√
c

N∑
n=1

(
ε2n
σ2
− 1

)∣∣∣∣∣ ∨ sup
N0≤

√
ct≤
√
cm

∣∣∣∣∣∣∣
t√
ct

b√ctc∑
n=1

(
ε2n
σ2
− 1

)∣∣∣∣∣∣∣+
1√
c

≤1

4
ε+m

ε

2m
+

1

4
ε = ε. (40)

Lemma 18. Let

Fc(t) =
1

σ2c

b√ctc∑
n=1

x2
n−1, F (t) =

∫ t

0

X2(u)du (41)

and

Jc(t) =
1

σ2
√
c

b√ctc∑
n=1

xn−1∆xn J(t) =

∫ t

0

X(u)dX(u). (42)

Under the assumption of Theorem 6,

(Xc, Fc, Jc, Ic)⇒ (X,F, J, I) , (43)

in the sense of D[0,∞)4 as c ↑ ∞, where Xc and X are defined in Theorem 6 and Ic and I in Lemma
17.

Proof. Using Skorohod’s representation theorem for Theorem 6 and Lemma 17, we use(
X̃c, Ĩc

)
→
(
X̃, Ĩ

)
a.s. in the sense of D[0,∞)×D[0,∞) . Since

Fc(t) =

∫ b√ctc/√c
0

X2
c (u)du,

we define

F̃c(t) =

∫ b√ctc/√c
0

X̃c
2
(u)du, F̃ (t) =

∫ t

0

X̃2(u)du. (44)

18



For F̃c, we obtain

sup
t≤M

∣∣∣∣F̃c(t)− ∫ t

0

X̃2
c (u)du

∣∣∣∣ ≤ sup
t≤M

∣∣∣X̃2
c (t)

∣∣∣ 1√
c

→ sup
t≤M

∣∣∣X̃2(t)
∣∣∣× 0 = 0 for any M > 0 a.s.

Hence,
F̃c → F̃

in the sense of D[0,∞) a.s. For Jc, using

1

σ2
√
c

b√ctc∑
n=1

xn−1εn = Jc(t) + δFc(t), (45)

we obtain

Jc(t) =
1

σ2
√
c

b√ctc∑
n=1

xn−1∆xn

=
1

σ2
√
c

b√ctc∑
n=1

{
−1

2
(∆xn) 2 +

1

2
x2
n −

1

2
x2
n−1

}

=
1

2σ2
√
c

x2

b√ctc − x
2
0 −
b√ctc∑
n=1

(
− δ√

c
xn−1 + εn

)
2


=

1

2

X2
c (t)− 1

σ2
√
c

b√ctc∑
n=1

(
− δ√

c
xn−1 + εn

)
2


=

1

2

{
X2
c (t) +

δ2

√
c
Fc(t) +

2δ√
c
Jc(t)− Ic(t)

}
. (46)

Let

J̃c(t) =
1

2

{
X̃2
c (t) +

δ2

√
c
F̃c(t)− Ĩc(t)

}
/

(
1− δ√

c

)
, J̃(t) =

∫ t

0

X̃(u)dX̃(u). (47)

Then

J̃c(t) =
1

2

{
X̃2
c (t) +

δ2

√
c
F̃c(t)− Ĩc(t)

}
/

(
1− δ√

c

)
→
(
X̃2
t − t

)
/2 = J̃(t) (48)

uniformly in t ∈ [0,m] for any m > 0. The last equation is obtained by the Itô’s lemma;

X2
t = 2

∫ t

0

XudXu + t.

Hence, (43) is obtained from

(Xc, Fc, Jc, Ic) ∼
(
X̃c, F̃c, J̃c, Ĩc

)
→
(
X̃, F̃ , J̃ , Ĩ

)
.

To prove the asymptotic property of τc, we need the following lemma.
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Lemma 19. Suppose that f ∈ C[0,∞), fc ∈ D[0,∞), and

lim
c↑∞
‖fc − f‖m = 0

for any m > 0. Also suppose that s > 0 and a sequence {sc,n} satisfies

sc,b√ctc → s,

as c ↑ ∞ for any t > 0. Then, if
Leb {s : f(s) = 0} = 0,

where Leb is the Lebesgue measure, we have, as c ↑ ∞,

hc := inf

{
t > 0 :

∫ t

0

f2
c (u)du = sc,b√ctc

}
→h := inf

{
t > 0 :

∫ t

0

f2(u)du = s

}
.

Proof. Suppose t < h. There is a ε > 0 such that 0 < ε < s and
∫ t

0
f2(u)du < s − ε. Since∫ t

0
f2
c (u)du →

∫ t
0
f2(u)du and sc,b√ctc → s as c ↑ ∞,

∫ t
0
f2
c (u)du < s − ε < sc,b√ctc, so t < hc,

which implies t ≤ lim infc↑∞ hc. On the contrary, suppose t′ > h. There is a ε′ > 0 such that
0 < ε′ < s and s + ε′ <

∫ t′
0
f2(u)du. Since

∫ t′
0
f2
c (u)du →

∫ t′
0
f2(u)du and sc,b√ct′c → s as c ↑ ∞,

sc,b√ct′c < s + ε′ <
∫ t′

0
f2
c (u)du, so hc < t′. In the same way, we can get lim supc↑∞ h 5 t′. Since t

and t′ are arbitrary, limc↑∞ hc = h.

Lemma 20. For τc, the convergence corresponding to(28) is true;(√
cφ̂cτc ,

τc√
c

)
⇒ (−δ +B1, U1) (c ↑ ∞). (49)

First, we rewrite τc and τ̂c as follows:

τc√
c

= inf

t :
1

σ2c

b√ctc∑
n=1

x2
n−1 ≥ 1

 , (50)

τ̂c√
c

= inf

t :
1

s2

b√ctcc

b√ctc∑
n=1

x2
n−1 ≥ 1

 . (51)

Proof. Skorohod’s representation theorem enables us to find the probability space in which the
a.s.convergence (

X̃c, F̃c, J̃c

)
→
(
X̃, F̃ , J̃

)
holds in the sense of D[0,∞)3, which corresponds to the weak convergence (Xc, Fc, Jc) → (X,F, J)
in Lemma 18 . Use F̃c(t) in (44) and define

τ̃c√
c

= inf
{
t : F̃c(t) ≥ 1

}
(52)

and

τ̃ ′c = inf

{√
ct ≥ 0 :

∫ t

0

X̃2
c (u)du = 1

}
.

Then ∣∣∣∣ τ̃c√c − τ̃ ′c√
c

∣∣∣∣ ≤ 1√
c
.
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From Lemma 19 we have

τ̃ ′c√
c
→ inf

{
t ≥ 0 :

∫ t

0

X̃2(u)du = 1

}
:= Ũ1.

Hence, since τ̃c/
√
c ∼ τc/

√
c ,

τc√
c
⇒ inf

{
t ≥ 0 :

∫ t

0

X2(u)du = 1

}
= U1.

On the other hand, by the fact
∫ U1

0
X2(u)du = 1 and

∫ U1

0
X(u)dW (u) = MU1 = B1 from (26),

√
cφ̂cτc =

∑τc
n=1 xn−1∆xn/σ

2
√
c∑τc

n=1 x
2
n−1/σ

2c

=
Jc(τc/

√
c)

Fc(τc/
√
c)

(53)

∼ J̃c(τ̃c/
√
c)

F̃c(τ̃c/
√
c)

(54)

→ J̃(Ũ1)

F̃ (Ũ1)
a.s.

∼
∫ U1

0
X(u)dX(u)∫ U1

0
X2(u)du

(55)

=

∫ U1

0

X(u)(−δX(u)du+ dW (u))

= −δ +B1. (56)

Lemma 21. If Ic, Fc, and Jc are defined as in (39),(41), and (42), as for s2
N defined in (5) we obtain

s2

b√ctc = − σ2

b
√
ctc

(
δ2Fc(t) +

J2
c (t)

Fc(t)
+ 2δJc(t)

)
+

√
cσ2

b
√
ctc

Ic(t) (57)

and for any t > 0
s2

b√ctc →p σ
2 . (58)

Proof. Since

√
cφ̂cb√ctc =

∑b√ctc
n=1 xn−1∆xn/σ

2
√
c∑b√ctc

n=1 x2
n−1/σ

2c

=
Jc(t)

Fc(t)

we have from (45)

b
√
ctc√
c

s2

b√ctc
σ2

=
1

σ2
√
c

b√ctc∑
n=1

(
∆xn − φ̂cb√ctcxn−1

)2

=
1

σ2
√
c

b√ctc∑
n=1

(
− 1√

c

(
δ +

Jc(t)

Fc(t)

)
xn−1 + εn

)2

=
1√
c

(
δ +

Jc(t)

Fc(t)

)2

Fc(t)−
2√
c

(
δ +

Jc(t)

Fc(t)

)
(Jc(t) + δFc(t)) + Ic(t)

= − 1√
c

(
δ2Fc(t) +

J2
c (t)

Fc(t)
+ 2δJc(t)

)
+ Ic(t)
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Hence we have (57). Consider Skorohod Theorem as in Lemma 18. For fixed t > 0,

1

b
√
ctc

(
δ2Fc(t) +

J2
c (t)

Fc(t)
+ 2δJc(t)

)
∼ 1

b
√
ctc

(
δ2F̃c(t) +

J̃2
c (t)

F̃c(t)
+ 2δJ̃c(t)

)

and the right side converges to 0 a.s. and

√
cσ2

b
√
ctc

Ic(t) =
1

b
√
ctc

b√ctc∑
n=1

ε2n → σ2a.s.

Therefore s2

b√ctc →p σ
2.

If we assume the a.s. convergence of s2

b√ctc, which is the case for s̃2

b√ctcin (60) under the new

probability space produced by Skorohod’s representation theorem, we have

Lemma 22. If s2

b√ctc → σ2a.s. for any t > 0, then τ̂c →∞ a.s.

Proof. Fix ε ∈ (0, σ2) and t > 0, choose c0 so that

σ2 − ε ≤ s2

b√ctc ≤ σ
2 + ε,

for any c ≥ c0. Multiply c > 0 to each side, c(σ2 − ε) ≤ cs2

b√ctc ≤ c(σ
2 + ε). Let c′ = c(1− ε/σ2) and

c′′ = c(1 + ε/σ2). Then,

c′σ2 ≤ cs2

b√ctc ≤ c
′′σ2. (59)

Now, for any m = 1, 2, . . . ,
⌊√

c0t
⌋
− 1, let us take a large enough c to get

∑m
n=1 x

2
n−1 < cs2

m. When
m satisfies

⌊√
c0t
⌋
≤ m < τc′ ,

∑m
n=1 x

2
n−1 < c′σ2 ≤ cs2

m. Hence, for any m = 1, 2, . . . , τc′ − 1,∑m
n=1 x

2
n−1 < cs2

m, which implies τc′ ≤ τ̂c for large enough c.
For such c, b

√
c0tc < τc′′ . Hence, s2

τ̂c
c ≤ c′′σ2 ≤

∑τc′′
n=1 x

2
n−1, which gives τ̂c ≤ τc′′ .

So we have τc′ ≤ τ̂c ≤ τc′′ for large enough c. Since limc↑∞ τc = ∞ a.s., letting c ↑ ∞, then we
haveτc′ →∞ and τc′′ →∞ a.s.. Henceforce, as c ↑ ∞, τ̂c →∞ a.s.

Now, we conclude the proof of the main theorem (Theorem 8) of τ̂c and φ̂τ̂c .

Proof. Using Skorohod’s representation theorem, we can find the probability space in which the
a.s.convergence (

X̃c, F̃c, J̃c, Ĩc

)
→
(
X̃, F̃ , J̃ , Ĩ

)
holds in the sense ofD4[0,∞), which corresponds to the weak convergence (Xc, Fc, Jc, Ic)→ (X,F, J, I)
in Theorem 6 , Lemma 17 and Lemma 18 . From (57), we define

s̃2

b√ctc = − σ2

b
√
ctc

(
δ2F̃c(t) +

J̃2
c (t)

F̃c(t)
+ 2δJ̃c(t)

)
+

√
cσ2

b
√
ctc

Ĩc(t) (60)

for any t > 0. We certainly have s2

b√ctc → σ2 a.s. for any t > 0. Using F̃c(t) in (44) and define

˜̂τc√
c

= inf

t : F̃c(t) ≥
s̃2

b√ctc
σ2

 . (61)

Then by Lemma 22 ˜̂τc →∞ a.s. Let

˜̂τ ′c = inf

√ct ≥ 0 :

∫ t

0

X̃2
c (u)du =

s̃2

b√ctc
σ2

 .
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Then ∣∣∣∣∣ ˜̂τc√
c
−

˜̂τ ′c√
c

∣∣∣∣∣ ≤ 1√
c
.

From Lemma 19 we have

˜̂τ ′c√
c
→ inf

{
t ≥ 0 :

∫ t

0

X̃2(u)du = 1

}
:= Ũ1.

Hence, since ˜̂τc/
√
c ∼ τ̂c/

√
c ,

τc√
c
⇒ inf

{
t ≥ 0 :

∫ t

0

X2(u)du = 1

}
= U1.

On the other hand, by the fact
∫ U1

0
X2(u)du = 1 and

∫ U1

0
X(u)dW (u) = MU1 = B1 from (26),

√
cφ̂cτ̂c =

∑τ̂c
n=1 xn−1∆xn/σ

2
√
c∑τ̂c

n=1 x
2
n−1/σ

2c

=
Jc(τ̂c/

√
c)

Fc(τ̂c/
√
c)

(62)

∼ J̃c(˜̂τc/
√
c)

F̃c(˜̂τc/
√
c)

(63)

→ J̃(Ũ1)

F̃ (Ũ1)
a.s.

∼
∫ U1

0
X(u)dX(u)∫ U1

0
X2(u)du

(64)

= −δ +B1. (65)

Finally we obtain the representation of the stopping time U1 by using the Bessel process with a
drift −δ. The inverse function theorem gives dUs/ds = 1/X2

Us
. By Ito’s formula,

X2
u = 2

∫ u

0

XtdXt + u = −2δ

∫ u

0

X2
t dt+ 2

∫ u

0

XtdWt + u. (66)

Letting u = Us, we have

X2
Us = −2δ

∫ Us

0

X2
t dt+ 2

∫ Us

0

XtdWt + Us = −2δs+ 2Bs + Us.

Thus

dUs
ds

=
1

−2δs+ 2Bs + Us
.

Put ρs = X2
Us
/2 = (−2δs+ 2Bs + Us)/2, then we have

dρs = (−δ +
1

4ρs
)ds+ dBs. (67)

This indicates that ρs is the Bessel process of dimension 3/2 with a drift −δ and a initial value X2
0/2.

Then, we have

U1 =

∫ 1

0

dUs =

∫ 1

0

1

−2δs+ 2Bs + Us
ds =

∫ 1

0

1

2ρs
ds.
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6.2 Proof of Theorem 13
Proof. Put t = τ̂c/

√
c in (57) and by (39), we have

c1/4
(
s2
τ̂c − σ

2
)

= −σ
2c1/4

τ̂c

δ2Fc

(
τ̂c√
c

)
+
J2
c

(
τ̂c√
c

)
Fc

(
τ̂c√
c

) + 2δJc

(
τ̂c√
c

)+

√
cσ2c1/4

τ̂c
Ic

(
τ̂c√
c

)

= −σ
2c1/4

τ̂c

δ2Fc

(
τ̂c√
c

)
+
J2
c

(
τ̂c√
c

)
Fc

(
τ̂c√
c

) + 2δJc

(
τ̂c√
c

)+
c1/4

τ̂c

τ̂c∑
n=1

(
ε2n − σ2

)

= −σ
2
√
c

τ̂c

1

c1/4

δ2Fc

(
τ̂c√
c

)
+
J2
c

(
τ̂c√
c

)
Fc

(
τ̂c√
c

) + 2δJc

(
τ̂c√
c

)+

√
c

τ̂c

1

c1/4

τ̂c∑
n=1

(
ε2n − σ2

)
Now, we define

W ′c (t) =
1

c1/4σε2

b√ctc∑
n=1

(
ε2n − σ2

)
(68)

Then, we have
W ′c (t)⇒W ′

in the sense of D[0,∞), where W ′ is a Brownian motion with 〈W ′,W 〉1 = µ3/σε2σ.
Using Skorohod’s representation theorem, we can find the probability space in which the a.s.convergence(

F̃c, J̃c, W̃
′
c

)
→
(
F̃ , J̃ , W̃ ′

)
holds in the sense of D3[0,∞), which corresponds to the weak convergence (Fc, Jc,W

′
c)→ (F, J,W ′).

So we have

c1/4
(
s2
τ̂c − σ

2
)

= −σ
2
√
c

τ̂c

1

c1/4

δ2Fc

(
τ̂c√
c

)
+
J2
c

(
τ̂c√
c

)
Fc

(
τ̂c√
c

) + 2δJc

(
τ̂c√
c

)+ σε2

√
c

τ̂c
W ′c

(
τ̂c√
c

)

∼ −σ
2
√
c

˜̂τc

1

c1/4

δ2F̃c

(
˜̂τc√
c

)
+
J̃2
c

(
˜̂τc√
c

)
F̃c

(
˜̂τc√
c

) + 2δJ̃c

(
˜̂τc√
c

)+ σε2

√
c

˜̂τc
W̃ ′c

(
˜̂τc√
c

)

→ σε2

Ũ1

W̃ ′
(
Ũ1

)
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