
 
 
 
 
 
 
 

KIER DISCUSSION PAPER SERIES 

KYOTO INSTITUTE 
OF 

ECONOMIC RESEARCH 
 

 

KYOTO UNIVERSITY 

KYOTO, JAPAN 

Discussion Paper No.1042 
 

 
“Long Life-span and Optimal Recurrent Education” 

 
Akira Momota 

 
 
 

 September 2020 
 



Long Life-span and Optimal Recurrent Education

Akira Momota�

College of Economics, Ritsumeikan University

August, 2020

Abstract

This paper theoretically investigates the e¤ect of increased longevity on the years of
schooling and work. We consider a situation in which individuals have opportunities for
recurrent education by assuming that the transition from schooling to work is reversible.
We �nd that setting aside a period of time for recurrent education is optimal for individuals
when the life-span is longer than a certain threshold number of years. As the life-span
increases, the total schooling years and the retirement age increase. However, when the
life-span becomes so long that recurrent education takes place, the e¤ect of an increase
in the active life by one year on the lifetime income is signi�cantly smaller than in the
situation where the life-span is less long.
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1 Introduction

Growth in average life expectancy is a common trend that has been observed in many devel-
oped countries. Ben-Porath�s (1967) pioneering study analyzed the impact of increased life
expectancy on investment in human capital and the lifetime labor supply. Using a life-cycle
model, Ben-Porath (1967) showed that increased longevity increases the return on education
investment and accordingly leads people to devote more time to education. This mechanism,
known as the Ben-Porath mechanism, has been studied from theoretical and empirical perspec-
tives.1

From a theoretical viewpoint, the e¤ect of an increase in life expectancy on the length of
an individual�s schooling period for their human capital accumulation and working period has
been explored by de la Croix and Licandro (1999), Kalemli-Ozcan et al. (2000), Boucekkine
et al. (2003), Soares (2005), Zhang and Zhang (2005), Cervellati and Sunde (2005, 2013), and
Cai and Lau (2017), among others. In these studies, an individual�s retirement age is treated
as exogenous (or ignored). Moreover, this issue is investigated in an endogenous retirement-
age setting; some examples include Boucekkine et al. (2002), Echevarría (2004), Ferreira and
Pessôa (2007), Hazan (2009), Sánchez-Romero et al. (2016), and Yasui (2016).2

In the preceding studies, it is assumed that schooling and working are indivisible3 and that
the transitions from the stage of schooling to work and from the stage of work to retirement are
irreversible. As a result, it is commonly postulated that individuals follow an orderly progression
through the three life stages: schooling, work, and retirement. In fact, this three-stage view of
life is widely observed over the twentieth century, making it an appropriate assumption.
However, in societies experiencing increased life expectancy and a longer active life (in this

paper, the active life is de�ned as the aggregate of the periods engaged in education and work),
it is di¢ cult for individuals equipped only with the education that they received during their
youth to perform work over their lifetimes. It has been noted that recurrent education, namely,
returning to a university or other educational institution after a certain period of work to relearn

1From the empirical perspective, the causal e¤ect of life expectancy on investment in human capital has
been examined. Although some studies do not support the causality (for example, Acemoglu and Johnson
(2006), Lorentzen et al. (2008), and Hazan (2009)), it is supported by others, including Bils and Klenow (2000),
Jayachandran and Lleras-Muney (2009), Cervellati and Sunde (2011, 2013), and Oster et al. (2013).

2Another related but slightly di¤erent line of study is undertaken by Ehrlich and Lui (1991), Zhang et al.
(2003), and Zhang and Zhang (2009), who investigate the e¤ect of a rise in the longevity of parents on the
education investment for children. In addition, d�Albis et al. (2012) study the e¤ect on the optimal retirement
age of a change in mortality at an arbitrary age by abstracting the education investment problem. Nishimura
et al. (2018) consider the e¤ects of a rise in longevity on the optimal retirement and education expenditure,
rather than years of education.

3Ben-Porath (1967) assumes that schooling and work are divisible in every period, and time is allocated to
human capital investment and labor supply. In this setting, the life stage does not appear explicitly.
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or to gain new knowledge and skills, will become increasingly important. Table 1 supports this
view. This table describes the proportion of adults (25�64 years old) who participate in formal
education4 across 22 countries in the OECD.5 We compare the rate of adult participation in
2007 (in 2005, 2006, or 2008 in some countries) with that in 2012 (or 2015 for some countries).
We observe that this level rises in many countries, increasing, on average, by 3 percentage
points in this short period. This trend is expected to continue in the future.
This paper theoretically investigates the e¤ect of increased longevity on the years of school-

ing and work. The novel point is that we consider the situation in which individuals have
opportunities for recurrent education.6

In line with the existing research, we assume that schooling and work are indivisible, and
that individuals can engage only in education or work, but not both, at a given point in time.
This indicates that individuals cannot update their skills to the latest versions available while
they are engaged in work. In addition, we assume that, with the passage of time, the individuals�
existing human capital gradually becomes outdated.78 In e¤ect, individuals consider whether
to set aside periods of time for recurrent education during their active life and optimally decide
on the timing and length of their recurrent education and work; that is, their life plans, during
their active life to maximize their lifetime utility.
In the present model, we use a rectangular survival function, where individuals live with

certainty until a certain age, at which time they all die. As pointed out by Wilmoth and

4According to the OECD (2011, 2017), formal education is de�ned as the planned education provided in the
system of schools, colleges, universities, and other formal educational institutions. Recurrent education in the
present model is closely related to formal education.

5Among these people, there are some students who are still completing tertiary education, rather than
undertaking recurrent education, even though they are more than 25 years old. However, the proportion of
adults (25�64 years old) who participate in formal education is considered to provide a reasonable approximation
of the proportion of individuals undertaking recurrent education.

6In this regard, Tanaka (2017) is an exception. Tanaka (2017) incorporates recurrent education into a three-
period overlapping-generations model, and investigates the e¤ect of a decline in the mortality rate on the human
capital. This paper di¤ers from Tanaka (2017) in several points. Tanaka (2017) considers a situation in which
people always undertake recurrent education. By contrast, this paper considers the conditions under which
recurrent education is undertaken. Moreover, we derive our results in a more rigorous manner.
Tanaka (2017) focuses on the cases in which tertiary education and recurrent education are complements

or substitutes. The present paper assumes that the relation between the two is neutral (they are neither
complements nor substitutes).

7Berk and Weil (2015) observe that this occurs in the case of scientists and medical practitioners. It is also
likely to apply to other white-collar workers, who then experience a need for recurrent education.
By contrast, Magnac et al. (2018) assume that the post-schooling human capital investment is divisible.
8We can also consider a situation in which work experience raises the individual�s productivity, such as an

on-the-job training e¤ect or a learning-by-doing e¤ect. If we incorporate such e¤ects into a model, we consider
that they attenuate the depreciation of the human capital during working periods (see footnote 14 on this
point).
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Horiuchi (1999) and Cervellati and Sunde (2013), the observed increase in life expectancy is the
result of a process of rectangularization of the survival function. Moreover, Strulik and Vollmer
(2013) maintain that recent improvements in life expectancy, since 1970 onward, are driven at
least partly by an expanding human life-span (i.e., an increase in the possible maximum age).
Taking this into account, it is presumably justi�able, to a certain extent, to model the life-
span of individuals with a rectangular survival function when we focus on current and future
economic situations.9 Of course, this assumption assists in making the analysis tractable.
The �ndings of this analysis reveal that the question of whether recurrent education is an

optimal choice for individuals depends crucially on the length of the individual�s active life (or
life-span). If the active life (or life-span) for individuals is below a certain threshold number
of years, the traditional progression of life stages from education to work to retirement will be
the optimal life plan for individuals. On the other hand, we �nd that setting aside a period
for recurrent education will be part of the optimal life plan for individuals with an active life
that surpasses this threshold number of years. Furthermore, we �nd outcomes concerning the
properties of the optimal recurrent education and of the lifetime income.
First, it is desirable to acquire the latest skills available regardless of whether they are

being acquired during one�s initial education when young, or later, during a period of recurrent
education. In e¤ect, when striving to build human capital during youth, it is not optimal
for individuals to lower their standards of e¤ort on the assumption that they will engage in
recurrent education at some future point in time. Moreover, if people undertake recurrent
education, they should make an e¤ort to acquire cutting-edge skills.
Second, an individual�s lifetime income increases for each year added to one�s active life.

However, when the life-span becomes so long that recurrent education does take place, the
e¤ect of an increase in the active life by one year on the lifetime income is signi�cantly smaller
compared with the situation where the life-span is less long and the recurrent education does not
take place. The implication is that, in an economy with a longer life-span, individuals cannot
continue to expect income growth on a level commensurate with their past experience, even if
they extend their periods of schooling based on recurrent education (and strive to acquire the
latest skills, whether during youth or through recurrent education).
The remainder of this paper is structured as follows. Section 2 introduces the model. We

treat the length of the active life (or equivalently, retirement age) as exogenous from Section
2 to Section 4. In Section 3, we analyze the optimal lifetime schedule of the individuals. In

9Oxborrow and Turnovsky (2017) build dynamical models by employing various formulations with respect
to the survival function. They use the rectangular survival function in one model and the survival function
formulated by Boucekkine et al. (2002) in another. They �nd that the properties of the equilibrium paths that
are derived from these alternative models are similar to each other. De la Croix (2017) states that when current
data are used, this result is not surprising, as the rectangularization process of the actual survival function is
well advanced.
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particular, we explore the relationship between the length of the active life and the optimal
schedule concerning the recurrent education. Section 4 explores the e¤ect of an increase in the
length of the active life on the lifetime income. In Section 5, we extend the model by treating
the retirement age as endogenous. We show that the main result obtained in Sections 3 and 4
holds under the extended model, and we examine the optimal retirement age. Finally, Section
6 concludes the paper.

2 Model

Time is continuous and indexed by real numbers.10 Consider the individuals who just completed
their primary education at time 0. For notational convenience, we label their age at time 0
as age 0. The individuals� active life occurs from time 0 to R (that is, from age 0 to R),
where R denotes the retirement age. We treat R as an exogenous variable until Section 4. The
individuals engage in either (higher) schooling or labor supply activities during their active life.
As stated in the Introduction, we assume that schooling and the labor supply are indivisible. In
addition, we assume that the transition from schooling to work is reversible, which is the novel
point of this study. First, the individuals obtain an education at school and accumulate human
capital, after which they leave school and begin work. The knowledge and skills that they
learned at school become old-fashioned as time passes or, in other words, their human capital
depreciates during the working period. They can update their human capital by entering school
again after a certain period of working, which is referred to as recurrent education.

2.1 Life schedule

Let si be the length of the i-th period during which a person receives education at a higher
learning institution during their lifetime. s1 denotes tertiary education and si (i � 2) repre-
sents recurrent education. Similarly, let wi be the length of the i-th period during which a
person engages in work during their lifetime. We call the sequence si and wi the life schedule
(during the active life). For simplicity, we assume that individuals have the opportunity to
undertake recurrent education at most once, and the life schedule is expressed as the vector
(s1; w1; s2; w2).11 The following equation holds as the active life constraint:

10As a result of our continuous-time setting, the appearance of the model is somewhat complicated compared
with a discrete-time model. However, we employ this setting because the main results (for example, the result
concerning thresholds) can be presented in a simpler manner than those obtained with a discrete-time model.
11More generally, we could consider a situation where an individual undertakes recurrent education more

than once and express the life schedule as the vector (s1; w1; s2; w2; � � � ; sn; wn). From this perspective, we can
interpret the present model as considering the situation where individuals choose si = 0 for i � 3. This situation
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s1 + w1 + s2 + w2 = R: (1)

In accordance with the life schedule, the active life [0; R] is divided and the division points
are represented as the set � � f0; tw1 ; ts2 ; tw2 ; Rg, where, for example, tw1 is the date at
which the �rst working period starts. (Note that ts1 = 0 holds.) The set � has one-to-one
correspondence to the life schedule (s1; w1; s2; w2); for example, ts2 � tw1 = w1. Thus, we also
refer to � as the life schedule throughout the analysis.

2.2 Human capital accumulation

Let At represent the newest knowledge or skills at time t, evaluated in terms of human capital.
In other words, At represents the maximum level of human capital available at time t. We
assume that At grows at an exogenous constant rate g.12 We normalize A0 as unity. That is,
At = e

gt. Let Bt denote the basic human capital level obtained as a result of primary education.
Put di¤erently, Bt is possessed by the people aged 0 at time t. Taking into account that the
content of the primary education is in�uenced by existing knowledge, we assume that it also
grows at a rate g. (In this sense, we do not interpret Bt as the innate ability of individuals.)
That is, Bt = B0egt, where B0 < A0 = 1.
We represent the human capital of the individuals who have the life schedule � by h� (t),

t 2 [0; R]. The initial human capital level at age 0 is h� (0) = B0:While they receive education,
h� (t) grows at a constant rate of � until they catch up to the frontier of knowledge, At. Once
they reach At, h� (t) grows at a pace of g. We assume that � > g, that is, that the speed of
learning existing knowledge is greater than the speed of creating new knowledge.13 The law of
motion of human capital in the schooling periods (s1 and s2) is as follows:

_h� (t) =

�
�h� (t) ; h� (t) < At
gh� (t) ; h� (t) = At

: (2)

After the individuals �nish schooling, they work, using their acquired human capital. Because
new knowledge continues to emerge in the economy, the acquired knowledge becomes out of

is justi�ed by taking into account the fact that entering school involves some �xed costs. Instead of introducing
the �xed costs explicitly into the model, we assume that n = 2 to simplify the analysis.
12We can consider At as being created by researchers, and treating g as exogenous implies that we do not

focus on the behavior of the researchers.
13We make this assumption as simple as possible to focus on exploring the e¤ect of a longer life-span on the

optimal life schedule.
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date. Thus, human capital depreciates at the rate � and the law of motion of human capital in
the working periods (w1 and w2) is:14

_h� (t) = ��h� (t) : (3)

2.3 Labor income

Individuals earn labor income in the working periods, with labor income at time t represented
by y� (t) = �h� (t). � denotes the productivity of a unit of human capital. Let Ii denote
the present value of the labor income earned during the i-th working period (from t = twi to
t = twi + wi). Ii is expressed as:

Ii =

Z twi+wi

twi

y� (t) e
�rtdt = �

Z twi+wi

twi

h� (t) e
�rtdt;

where r is the interest rate. We assume that r is exogenous and constant. From (3), we obtain

h� (t) = h� (twi) e
��(t�twi) during the i-th working period. Thus, we can rewrite Ii as:

Ii = �h� (twi) e
�rtwi

Z twi+wi

twi

e�(�+r)(t�twi)dt = �h� (twi) e
�rtwi

Z wi

0

e�(�+r)tdt: (4)

The lifetime income, denoted by I, is expressed as follows:

I =
2X
i=1

Ii

Here, we impose the following assumption regarding the parameters.

Assumption 1 � > r � g � 0 holds.15

� > r indicates that the rate of return of the human capital investment is higher than the
rate of return of savings, and r � g indicates that the potential economic growth rate is lower
than the interest rate.

14It is natural to consider that work experience also increases human capital. Considering this aspect, the law
of motion of h� (t) in the working period will be represented as _h� (t) = ("� �)h� (t), where " � 0 represents
the work experience e¤ect (for example, the on-the-job training e¤ect). However, this modi�cation does not
change the qualitative result as long as "� � is less than g.
15When we explicitly consider " (see footnote 14), we assume that � > r � g � "� �.
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2.4 Optimal problem of individuals

We analyze the optimal behavior of individuals aged 0 at time 0. Similar to Echevarría (2004),
Ferreira and Pessôa (2007), Hazan (2009), and Yasui (2016), we use a rectangular survival
function; that is, individuals live with certainty until age T , at which time they all die. There
is no uncertainty about life expectancy, and the lifetime utility function is expressed as:

U =

Z T

0

u (ct) e
��tdt; (5)

where u (ct) is the instantaneous utility from consumption, and we specify it as u (ct) =�
c1��t � 1

�
= (1� �) and � � 1.16 In Section 5, we extend the model by incorporating the

disutility of work or study into the utility function, and we treat the retirement age as endoge-
nous.
We consider the budget constraint of the individuals. They can access the perfect capital

market and face no borrowing constraints. We assume that the foregone labor income consists
only of the cost of schooling, and that the individuals have no initial assets.17 In this situation,
the lifetime budget constraint is represented as:Z T

0

cte
�rtdt = I: (6)

The individuals choose the consumption pro�le fctgTt=0 and the life schedule (s1; w1; s2; w2) to
maximize (5). The maximization problem can be decomposed into the following two steps.
That is, we directly apply the separation theorem presented by Acemoglu (2009 Theorem 10.1)
to the present model.

(Step 1) The individuals choose the life schedule, (s1; w1; s2; w2) to maximize I. Let us denote
the maximized lifetime income by I�.

(Step 2) Based on I�, the individuals maximize lifetime utility by selecting fctgTt=0.

The main contribution of the present study is in the Step 1 analysis.18 We focus on Step 1
16The elasticity of intertemporal substitution in consumption is given by 1=�. This assumption means that

the elasticity is less than unity. Havranek et al. (2015) summarize the estimated values of intertemporal
substitution for 45 countries and show that in 41 of these countries, the mean elasticity is less than unity.
17In Section 5.2, we discuss the e¤ect of the initial asset on the optimal behavior.
18Even if we explicitly consider lifetime uncertainty, the separation theorem can be applied to the optimal

problem of an individual as long as the complete market is assumed. However, the functional form of I, the
objective function of Step 1, varies depending on the assumption on the survival function. For example, it will
be shown in Section 3.1 (the case of s2 = 0) that I is hump-shaped. However, this property does not necessarily
hold when the survival function is signi�cantly di¤erent from the rectangular form, and the result obtained in
Step 1 will vary. A similar discussion is applied to the property of I in Section 3.2.
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in Section 3, and explore the property of I� in Section 4.
Once I� is obtained, we need only solve a standard utility maximization problem concerning

the intertemporal choice of consumption. That is, in Step 2, we construct the Lagrangean as:

L =

Z T

0

u (ct) e
��tdt+ �

�
I� �

Z T

0

cte
�rtdt

�
:

We obtain the following optimal condition for ct:

u0 (ct) e
(r��)t = �: (7)

From (7), we obtain u0 (c0) = u0 (ct) e(r��)t.19 Furthermore, noting that u0 (ct) = c��t , we obtain:

ct = c0e
r��
�
t: (8)

From (6) and (8), we obtain:

c0 =
I�

� (T )
; (9)

where � (T ) is de�ned as � (T ) �
R T
0
e�

(��1)r+�
�

tdt.

3 Optimal lifetime schedule

Let us explore the optimal life schedule (s�1; w
�
1; s

�
2; w

�
2), which maximizes the lifetime income I.

The individuals face the time constraint (1), the law of motion of human capital (2) and (3),
and the nonnegative constraints, s1 � 0, w1 � 0, s2 � 0, and w2 � 0. In particular, we are
interested in the situation where s�2 is positive.
We solve this problem by dividing it into several steps. To begin, we explore the relationship

between the individuals�human capital h� (t) and At. In this regard, we obtain the following
lemma under Assumption 1:

Lemma 1 If h� (t) = At is attained at time t, it is optimal for an individual to leave school
at time t.
19Taking the logarithm of (7) and di¤erentiating it with respect to t, we obtain the Euler equation:

u00 (ct)

u0 (ct)
_ct + r � � = 0:
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The proof is given in Appendix A. The intuition of this lemma is simple. Once h� (t) = At
is attained, the pace of the human capital accumulation slows down from � to g, as in (2).
The situation of g � r implies that an additional year of schooling reduces the lifetime income.
(Although it raises the individual�s income by g � 100% because the receipt of the income is
postponed by one year, the present value of the income is discounted by r � 100%.)20
Taking Lemma 1 into account, the law of motion of h� (t), (2), and (3), is rearranged as:

_h� (t) =

�
�h� (t) (s1 and s2)
��h� (t) (w1 and w2)

: (10)

Let us de�ne �s1 as �s1 � b0
��g , where b0 � � logB0 > 0, and note that h� (t) = At is attained

at t = �s1. Lemma 1 argues that s1 � �s1 must hold at the optimum. In relation to this, we
obtain the following lemma:

Lemma 2 (i) s2 > 0 can be the optimal solution only if s1 = �s1 holds (that is, if h� (t) = At
is attained in the �rst schooling period). (ii) If s1 < �s1, s2 = 0 is optimal.

We describe the proof in Appendix B. To understand the implication of this lemma, let us
consider the case where s1 < �s1 and s2 > 0. That is, individuals do not study as much as
possible in their youth, and they go to school again later in their active life. Lemma 2 argues
that such a plan does not maximize the total income; that is, it is not optimal. In Appendix
B, we show that if the individuals increase s1 by �t and reduce s2 by �t (this is feasible under
s1 < �s1 and s2 > 0), the lifetime income rises. In other words, studying in their early life is
more bene�cial than studying in their later life if the individuals�productivity of learning, �, is
the same across ages21 because the former involves a longer period over which the individuals
can receive returns on their human capital investment than does the latter.
It is useful to note that Lemma 2 suggests that either s2 = 0 or s1 = �s1 (or both) holds at

the optimum. Accordingly, we examine these situations in turn, and then unite the two cases
to obtain the optimal solution. The case where s2 = 0 means that the recurrent education
does not take place. Thus, this situation corresponds closely with the situation considered
in the preceding studies, where irreversibility of the transition from schooling to work is as-
sumed. Conversely, when s1 = �s1, we will explicitly explore the optimal choice of the recurrent
education, which is the novel point of this study.

20If we consider that At grows as a result of the activity of researchers, and if researchers are explicitly
introduced into the model, we will have to consider their incentives; that is, the bene�t that the researchers
receive from successful research.
21This result is reinforced when the productivity falls as the age rises.
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3.1 The case where s2 = 0 holds

In this case, the active life [0; R] is simply divided into the two subperiods, the schooling period
[0; s1] and the working period [s1; R]. When s2 = 0 holds, the working period is not interrupted
by the recurrent education. In other words, we do not have to distinguish between the �rst and
second working periods, and only the total working years w � w1 + w2 matter. The lifetime
income I is represented as I =

R R
s1
y� (s) e

�rsds. Based on (4), I can be represented as follows
(by noting that tw1 = s1 and w = R� s1):

I = �h� (s1) e
�rs1

Z w

0

e�(�+r)tdt:

From (10), h� (s1) = B0e�s1 holds, so that the above equation is calculated as:

I = �B0e
(��r)s1

Z w

0

e�(�+r)tdt =
�B0
� + r

�
e(��r)s1 � e�(�+r)Re(�+�)s1

�
: (11)

Here, let us de�ne �I as:

�I =
�B0
� + r

�
e(��r)�s1 � e�(�+r)Re(�+�)�s1

�
: (12)

�I represents the lifetime income when both s1 = �s1 and s2 = 0 hold. We will utilize �I later.
Taking the logarithm of (11) (of the �rst equality) and calculating the total derivative, we

obtain:
dI

I
= (� � r) ds1 +

� + r

e(�+r)w � 1dw: (13)

The term (� � r) ds1 indicates the e¤ect of the accumulation of human capital on I. When
s1 rises by ds1, human capital increases by �ds1� 100%. (Note that dh�=h� = �dt from (10).)
By contrast, the increase in s1 by ds1 delays the time when people start working, so that the
present value of the income, I, is discounted by rds1 � 100%. The term (� � r) ds1, which is
positive, represents the marginal bene�t of human capital investment.
The last term of (13) indicates the e¤ect of the length of the working period on I. It is

useful to note that �+r
e(�+r)w�1 is equal to

1
I
@I
@w
. An increase in s1 by ds1 reduces w by the same

amount (dw = �ds1 from w = R � s1). That is, this term represents the marginal cost of
human capital investment.
From (13), we obtain:

1

I

dI

ds1
= (� � r)� � + r

e(�+r)(R�s1) � 1 ;

and, consequently, we obtain:

dI

ds1
R 0() � � r R � + r

e(�+r)(R�s1) � 1 : (14)
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We consider the optimal s1. Note that the marginal cost of the human capital investment,
the right-hand side (RHS) of (14), decreases as R rises. This means that as the length of the
active life increases, individuals have an incentive to receive more education. Let us de�ne
R̂0 as the level of R that satis�es dI=ds1 = 0 at s1 = 0. From (14), R̂0 is calculated as
R̂0 =

1
�+r
log �+�

��r . Moreover, we de�ne R̂1 as the level of R that satis�es dI=ds1 = 0 at s1 = �s1,

and it is obtained as R̂1 � �s1 + R̂0 =
b0
��g +

1
�+r
log �+�

��r . As we will see later, R̂0 and, more

importantly, R̂1 become the thresholds for the optimal choice of schooling.22

Let s+1 denote the level of s1 satisfying dI=ds1 = 0. s
+
1 is calculated as:

s+1 = R� R̂0; (15)

and we obtain the following result in the case of s2 = 0:

Lemma 3 Conditional on s2 = 0, I is maximized at (i) s1 = 0 when R � R̂0; (ii) s1 = s+1
(interior solution) when R̂0 < R < R̂1; and (iii) s1 = �s1 when R � R̂1.

Proof. Because the RHS of (14) is a decreasing function of s1, dI=ds1 � 0 holds if and only if
s1 � s+1 . That is, the graph of I is hump-shaped on the s1-I plane, and its peak is at s1 = s+1 .
Recall that the possible range of s1 is 0 � s1 � �s1. Moreover, we con�rm the following from
(15):
(i) When R � R̂0, s+1 � 0 holds, so that I is maximized at s1 = 0.
(ii) When R̂0 < R < R̂1, s+1 2 (0; �s1) holds, so that I is maximized at s1 = s+1 .
(iii) When R̂1 � R, s+1 � �s1 holds, so that I is maximized at s1 = �s1.

Fig. 1 panels (i), (ii), and (iii) illustrate Lemma 3 (i), (ii), and (iii), respectively. From (12),
I = �I holds at s1 = �s1. (Note that the level of �I di¤ers across Fig. 1 panels (i), (ii), and (iii)
because �I changes as R changes.)
Lemma 3 indicates that the length of schooling increases as the length of the active life

increases. R̂0 represents the threshold determining whether (further) education takes place.
Lemma 3 (i) suggests that if the length of the active life R falls short of the threshold, then
the cost of schooling always dominates the bene�t and, thus, s1 = 0 is optimal. Lemma 3
(ii) indicates that if R is longer than R̂0, the bene�t of schooling outweighs its cost and, thus,

22As will be shown in Proposition 1, individuals choose recurrent education when R > R̂1. It can be
observed that R̂1 is a decreasing function of �. (In this regard, di¤erentiating R̂1 with respect to � yields
@R̂1=@� = [x+ log (1� x)] = (� + r)2, where x � (� + r) = (� + �) 2 (0; 1). It is immediately con�rmed that
� (x) � x + log (1� x) < 0 for any 0 < x < 1 because � (0) = 0 and �0 (x) < 0 hold.) This indicates that
the individuals have more incentive to undertake recurrent education as � rises. We interpret this as indicating
that recurrent education assists individuals to boost their depreciated income-earning ability. Incidentally, we
con�rm that even though � = 0 (that is, even though � is absent), the recurrent education may take place.
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s1 > 0 is optimal. Furthermore, the optimal years of schooling (s1 = s+1 ) are an increasing
function of R. This result is consistent with the preceding literature.23

3.2 The case where s1 = �s1 holds

Let us consider the case where R is larger than R̂1. In this case, s1 = �s1 holds, as shown in
Lemma 3 (iii). By noting that tw1 = �s1 and tw2 = �s1+ w1 + s2, and that h� (twi) = B0e

��s1 and
h� (tw2) = B0e

�(�s1+s2)e��w1 hold from (10), we obtain I1 and I2 from (4):

I1 = �B0e
(��r)�s1

Z w1

0

e�(�+r)tdt =
�B0
� + r

e(��r)�s1
�
1� e�(�+r)w1

�
; (16)

I2 = �B0e
(��r)(�s1+s2)e�(�+r)w1

Z w2

0

e�(�+r)tdt =
�B0
� + r

e(��r)(�s1+s2)�(�+r)w1
�
1� e�(�+r)w2

�
: (17)

Applying a procedure similar to the one used to derive (13) from (11), we derive the following
equations from (16) and (17). Noting that �s1 is constant (so far as the exogenous parameters
do not change), we obtain:

dI1
I1
=

� + r

e(�+r)w1 � 1dw1; (18)

dI2
I2
= [(� � r) ds2 � (� + r) dw1] +

� + r

e(�+r)w2 � 1dw2: (19)

Let us interpret (18) and (19). As mentioned, when we interpret (13), the term �+r
e(�+r)wi�1dwi,

which appears on the RHS of both (18) and (19), represents the e¤ect of the length of the i-th
working period wi on Ii. The term in the square brackets in (19) represents the e¤ect of a
change in the human capital on I2. An increase of ds2 years in s2 raises the human capital by
�ds2 units, whereas a dw1 increase in w1 depreciates the human capital by �dw1 units. Thus,
the net change of the human capital at t = tw2 is �ds2 � �dw1. In addition, the time when w2
starts, t = tw2, is delayed by ds2+dw1, which discounts the present value of I2 by r (ds2 + dw1).
The lifetime income is expressed as:

I = I1 + I2 =
�B0
� + r

�
e(��r)�s1

�
1� e�(�+r)w1

�
+ e(��r)(�s1+s2)�(�+r)w1

�
1� e�(�+r)w2

�	
:

The optimization problem is to maximize I, subject to the active life constraint:

�s1 + w1 + s2 + w2 = R; (20)

23In particular, this result is very close to Hazan�s (2009) Proposition 2.
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the constraint concerning the upper bound of human capital, h� (tw2) � Atw2 , and the nonneg-
ative constraints w1 � 0, s2 � 0, and w2 � 0. Here, substituting (20) into the above equation
to eliminate s2, I is expressed as a function of w1 and w2, I (w1; w2):

I (w1; w2) =
�B0
� + r

�
e(��r)�s1

�
1� e�(�+r)w1

�
+ e(��r)(R�w2)�(�+�)w1

�
1� e�(�+r)w2

�	
: (21)

The constraint h� (tw2) � Atw2 is equivalent to B0e
�(�s1+s2)e��w1 � eg(�s1+s2+w1). Taking the

logarithm and using (20), we obtain:

� + �

� � gw1 + w2 � R� �s1: (22)

Furthermore, we rewrite s2 � 0 using (20) as:

w1 + w2 � R� �s1: (23)

In sum, the optimization problem is to maximize (21) with respect to (w1; w2) 2 <2+ subject
to (22) and (23). Fig. 2 depicts the relationship between (22) and (23) on the (w1; w2) plane.
The two lines intersect at (w1; w2) = (0; R� �s1) (Point A in the �gure), and (22) is steeper than
(23). The shaded triangle area represents the region in which both (22) and (23) are satis�ed.
When (w1; w2) is on the border of (23), we obtain the following:

Lemma 4 I (w1; w2) = I holds when (w1; w2) is on the border of (23).

We can prove Lemma 4 simply by substituting w2 = R� �s1�w1 into (21) and making some
arrangement. Noting that s2 = 0 holds on the border of (23), the implication of Lemma 4 is
straightforward. As stated in Section 3.1, when s2 = 0, we do not have to distinguish between
w1 and w2, and only w matters, which is equal to R� �s1. As seen in (12), the lifetime income
when s1 = �s1 and s2 = 0 is I.
Because I (w1; w2) is not necessarily a concave function, we solve the maximization problem

by the following steps.

(Step I) Taking w2 as given, we seek a value of w1 that maximizes I (w1; w2). The solution
is expressed as a function of w2, 	(w2).
(Step II) We solve w2, which maximizes J (w2) � I (	 (w2) ; w2). We denote the solution

by w�2. The optimal w1 is obtained by w
�
1 = 	(w

�
2).
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3.2.1 Property of 	(w2): Step I problem

First, treating w2 as given, we maximize I (w1; w2) with respect to w1. To begin, for nota-
tional convenience, we introduce 	(w2) and 	(w2), and rewrite the constraints (22) and (23),
respectively, as:

w1 � 	(w2) �
� � g
� + �

(R� �s1 � w2) ; (24)

w1 � 	(w2) � R� �s1 � w2: (25)

The solution 	(w2) is represented as:

	(w2) = argmax	(w2)�w1�	(w2) I (w1; w2) :

Di¤erentiating (21) partially with respect to w1 yields:

@I (w1; w2)

@w1
=
�B0
� + r

�
(� + r) e(��r)�s1e�(�+r)w1 � (� + �) e�(�+�)w1e(��r)(R�w2)

�
1� e�(�+r)w2

�	
:

(26)
Let us interpret (26). It is useful to note that:

dI = dI1 + dI2 =
dI1
I1
� I1 +

dI2
I2
� I2: (27)

Given dw2 = 0, and using (18) and (19), (27) is represented as:

dI

dw1

����
dw2=0

=
� + r

e(�+r)w1 � 1I1 +
�
(� � r) ds2

dw1
� (� + r)

�
I2;

Furthermore, we obtain ds2 = �dw1 from the active life constraint (20). That is, an increase
in the working period w1 reduces the schooling period s2 by the same amount, given that w2 is
constant. Thus, the above equation is rewritten as:

dI

dw1

����
dw2=0

=
� + r

e(�+r)w1 � 1I1 � (� + �) I2: (28)

It is immediately con�rmed that the �rst and second terms of the RHS of (26) correspond,
respectively, to the �rst and second terms of the RHS of (28). The �rst term represents the
positive e¤ect of increasing w1 on I and the second term represents the negative e¤ect of
increasing w1. The term e�(�+r)w1 in the �rst term of (26) indicates that the positive e¤ect
declines as w1 rises, and the speed of the decline is �+ r. Observe that the negative e¤ect (the
second term) also decreases, and its speed is � + �. Because � > r holds under Assumption
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1, the positive e¤ect declines more slowly than the negative e¤ect does as w1 rises. In other
words, the positive e¤ect becomes (relatively) larger than the negative e¤ect as w1 rises. The
following equation, derived from (26), clearly conveys this point:

@I (w1; w2)

@w1
R 0() e(��r)w1 R � + �

� + r
e(��r)(R��s1�w2)

�
1� e�(�+r)w2

�
: (29)

The following lemma summarizes the implication of (29):

Lemma 5 Taking w2 as given, the level of w1 that maximizes I (w1; w2) is obtained as a corner
solution. That is, 	(w2) is either on 	(w2) or on 	(w2).

Proof. The left-hand side (LHS) of (29) is an increasing function of w1 under Assumption
1, and its value is one when w1 = 0. Because w2 is treated as given, the value of the RHS is
constant. If it is less than one, the LHS is always greater than the RHS and, thus, @I(w1;w2)

@w1
> 0.

In this case, the optimal w1 is on 	(w2).
On the other hand, if the RHS is greater than one, a value of w1 that satis�es

@I(w1;w2)
@w1

= 0

exists and is unique, and we denote it by w�1 . It is immediately con�rmed that when w1 < w
�
1 ,

@I(w1;w2)
@w1

< 0, and vice versa. Thus, I (w1; w2) has a minimum value at w1 = w�1 . This indicates
that the 	(w2) is characterized as the corner solution; that is, 	(w2) is either on 	(w2) or on
	(w2).

Lemma 5 indicates the features of the optimal recurrent education based on the assumption
that � > r. w1 = 	(w2) means that h� (t) = At is attained in the recurrent education period,
and w1 = 	(w2) means that s2 = 0. If individuals go to school to undertake recurrent educa-
tion, they should acquire cutting-edge skills. Otherwise, they should not undertake recurrent
education.
More details on the property of 	(w2) (in particular, on which border 	(w2) exists) will

be provided in Section 3.2.2.

3.2.2 Property of J (w2): Step II problem

Substituting 	(w2) into I (w1; w2), we represent I as a function of w2, and we de�ne J (w2) as
J (w2) � I (	 (w2) ; w2). From Lemma 5, J (w2) is expressed as:

J (w2) = max
�
J (w2) ; J (w2)

	
;
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where J (w2) and J (w2) are de�ned as, respectively:24

J (w2) � I (	 (w2) ; w2)

=
B0�

� + r

�
e(��r)�s1

�
1� e�(�+r)	(w2)

�
+ e(��g)�s1e�(r�g)(R�w2)

�
1� e�(�+r)w2

�	
; (30)

J (w2) � I
�
	(w2) ; w2

�
=
B0�

� + r

�
e(��r)�s1 � e�(�+r)Re(�+�)�s1

�
= I: (31)

The last equality of (31) is immediately con�rmed from (12), and this is the restatement of
Lemma 4.
Next, let us consider the property of J (w2). In this case, (24) holds as an equality:

w1 = 	(w2) =
� � g
� + �

(R� �s1 � w2) ; (32)

and the following equation is obtained from the active life constraint (20):

s2 =
g + �

� + �
(R� �s1 � w2) =

g + �

� � gw1: (33)

Note that the �rst and the second terms of (30) correspond to I1 and I2, respectively.25 Di¤er-
entiating (30) with respect to w2 yields:

J 0 (w2) =
�B0
� + r

fe(��r)�s1 (� + r) e�(�+r)	(w2)	0 (w2)

+ e(��g)�s1e�(r�g)(R�w2)
�
(r � g)

�
1� e�(�+r)w2

�
+ (� + r) e�(�+r)w2

�
g: (34)

Let us interpret this. Using (18) and (19), (27) is represented as:

dI

dw2
=

� + r

e(�+r)w1 � 1
dw1
dw2

I1 +

�
(� � r) ds2

dw2
� (� + r) dw1

dw2

�
I2 +

� + r

e(�+r)w2 � 1I2: (35)

By applying (32) and (33) to the above equation (35), we con�rm that the �rst, second, and
third terms of (34) correspond to the �rst, second, and third terms of (35), respectively. (In

24When we explore the e¤ect of a change in R on I in the next section, we explicitly express the parameter
R as an argument, and represent the RHSs of (30) and (31) as J (w2; R) and J (w2; R), respectively.
25When (32) and (33) hold, it is con�rmed that the following holds:

(� � g) �s1 � (r � g) (R� w2) = (� � r) (�s1 + s2)� (� + r)w1:

Thus, e(��g)�s1e�(r�g)(R�w2) in (30) is equal to e(��r)(�s1+s2)�(�+r)w1 in (17).
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particular, note that (� � r) ds2
dw2
� (� + r) dw1

dw2
is equal to r�g.) We can interpret (35) based on

(18) and (19). The last term �+r
e(�+r)w2�1I2 indicates the direct e¤ect of an increase in the length

of the second working period w2 on I2. At the same time, as shown by (32) and (33), a rise
in w2 reduces w1 and s2, which also a¤ects I (indirect e¤ects). The �rst term �+r

e(�+r)w1�1
dw1
dw2
I1

indicates the e¤ect of a decrease in w1 on I1. The second term (� � r) ds2
dw2
�(� + r) dw1

dw2
(= r�g)

represents the e¤ect of a change in the human capital stock on I2, as discussed earlier.
The �rst term of (35) is negative because dw1

dw2
= 	0 (w2) < 0, whereas the second term is

positive on the assumption that r > g, and the third term is also positive. Let us investigate
the (relative) strength of these negative and positive e¤ects. We rearrange (34) as:

J 0 (w2) =
�B0
� + r

e(��g)�s1e�(r�g)(R�w2)f�� � g
� + �

(� + r) e(r�g�
��g
�+�

(�+r))(R�w2��s1)

+ (r � g)
�
1� e�(�+r)w2

�
+ (� + r) e�(�+r)w2g

=
�B0
� + r

e(��g)�s1e�(r�g)(R�w2)f�� � g
� + �

(� + r) e�
(��r)(g+�)

�+�
(R�w2��s1) + (r � g) + (g + �) e�(�+r)w2g:

(36)

The last equality is obtained by noting that r � g � ��g
�+�

(� + r) is equal to � (��r)(g+�)
�+�

. Let us
denote the terms in the curly brackets of (36) by � (w2):

� (w2) � �
� � g
� + �

(� + r) e�
(��r)(g+�)

�+�
(R�w2��s1) + (r � g) + (g + �) e�(�+r)w2 :

From (36), it can be seen that the sign of J 0 (w2) is equal to the sign of � (w2). That is:

J 0 (w2) R 0() � (w2) R 0()
� � g
� + �

(� + r) e�
(��r)(g+�)

�+�
(R�w2��s1) Q (r � g)+ (g + �) e�(�+r)w2 :

(37)
The LHS of (37) corresponds to the negative e¤ect (the �rst term of (35)) and the RHS of
(37) corresponds to the positive e¤ects (the sum of the second and the third terms). It is
con�rmed that as w2 increases, the LHS increases, whereas the RHS decreases, which means
that the negative e¤ect dominates the positive e¤ect when w2 is large, and vice versa. In other
words, �0 (w2) < 0 holds. Let w+2 denote a value of w2 that satis�es � (w2) = 0. The above
property indicates that � (w2) > 0 ( () J 0 (w2) > 0) holds when w2 < w+2 and � (w2) < 0

(() J 0 (w2) < 0) holds when w2 > w+2 .
As seen in Fig. 2, the range of w2 that satis�es the constraints is [0; R� �s1]. We obtain the

following property concerning J (w2) and J (w2) in the range of w2 2 [0; R� �s1]:

Lemma 6 (i) J (w2) = I holds for any w2 2 [0; R� �s1].
(ii) J (0) < I and J (R� �s1) = I holds.
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(iii) When R � R̂1, J (w2) � I holds for any w2 2 [0; R� �s1]. That is, J (w2) is maximized
at w2 = R� �s1.
(iv) When R > R̂1, w+2 exists in w

+
2 2 (0; R� �s1) and J (w2) is maximized at w2 = w+2 .

The proof is given in Appendix C. Based on Lemma 6, we depict J (w2) (the solid curve)
as well as J (w2) and J (w2) (the dotted curves) in Fig. 3. Panel (i) illustrates the case where
R � R̂1. From Lemma 6 (i) and (iii), we obtain J (w2) = I for any w2 2 [0; R� �s1] and, in
regard to 	(w2), we obtain w1 = 	(w2) = 	 (w2) = R� �s1 � w2.
Panel (ii) illustrates the case where R > R̂1. J (w2) is continuous and, from Lemma 6 (ii)

and (iv), it is guaranteed that there exists a ŵ2 2
�
0; w+2

�
that satis�es J (ŵ2) = I. Using it,

J (w2) is expressed as:

J (w2) =

�
I w2 2 [0; ŵ2)

J (w2) w2 2 [ŵ2; R� �s1]
: (38)

Furthermore, as regards 	(w2), we obtain:

w1 = 	(w2) =

(
	(w2) = R� �s1 � w2 w2 2 [0; ŵ2)

	 (w2) =
��g
�+�

(R� �s1 � w2) w2 2 [ŵ2; R� �s1]
: (39)

J (w2) is a continuous function at w2 = ŵ2, whereas 	(w2) is discontinuous at this point.
Remember that the maximum of J (w2) corresponds to the maximum level of I conditional

on s1 = �s1. We obtain the following result:

Lemma 7 Conditional on s1 = �s1, the following hold.
(i) When R � R̂1, the maximum level of I is I. (ii) When R > R̂1, I is maximized at w+2 ,

which satis�es J 0
�
w+2
�
= 0 (an interior solution).

3.3 Derivation of the optimal lifetime schedule

By combining Lemmas 3 and 7, we obtain the optimal lifetime schedule (s�1; w
�
1; s

�
2; w

�
2). As

mentioned earlier, when s2 = 0, discriminating between w1 and w2 is not signi�cant, and only
the total working years w � w1 + w2 matter. We obtain the following result:

Proposition 1 (i) When R � R̂0, s�1 = 0 and s�2 = 0 hold and, in regard to the total working
years, w� = R holds.
(ii) When R̂0 < R � R̂1, s�1 = s+1 � R� R̂0, s�2 = 0, and w� = R̂0 hold.
(iii) When R > R̂1, s�1 = �s1 and s�2 > 0 hold. In regard to the working years, w

�
1 > 0 and

w�2 = w
+
2 > 0 hold.
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Proof. (i) When R � R̂0, Fig. 1 (i) (that is, Lemma 3 (i)) represents I conditional on s2 = 0,
and Fig. 3 (i) (that is, Lemma 7 (i)) represents I conditional on s1 = �s1. By comparing these
�gures, we see that I is maximized when s�1 = 0 and s2 = 0. Furthermore, from the active life
constraint (1), w� = R holds.

(ii) When R̂0 < R < R̂1, we compare Fig. 1 (ii) with Fig. 3 (i) and, when R = R̂1,
we compare Fig. 1 (iii) with Fig. 3 (i). Consequently, we see that I is maximized when
s�1 = s

+
1 � R� R̂0 and s2 = 0. In this case, w� = R̂0 holds from (1).

(iii) When R > R̂1, by comparing Fig. 1 (iii) with Fig. 3 (ii), we can see that I is maximized
when s1 = �s1 and w2 = w+2 . Because w

+
2 2 (ŵ2; R� �s1) holds, as shown in (39), (32) and (33)

hold:

w1 = 	(w2) =
� � g
� + �

(R� �s1 � w2) ;

s2 =
g + �

� � gw1 =
g + �

� + �
(R� �s1 � w2) :

When w�2 = w
+
2 , it is con�rmed that w

�
1 > 0 holds from (32), and s�2 > 0 holds from (33).

This proposition indicates that the recurrent education takes place when R > R̂1. Let us
discuss this case. Note that w�2 = w

+
2 indicates that (37) holds as an equality. Combining it

with (32) yields the following equation:

(� � g) (� + r)
� + �

e�
(��r)(g+�)

��g w1 = r � g + (g + �) e�(�+r)w2 : (40)

s�2, w
�
1, and w

�
2 are obtained from (32), (33), and (40), respectively, and we can characterize

the optimal schedule by examining these three equations. Fig. 4 depicts (32) and (40) on
the (w1; w2) plane. The graph of (32) is a downward-sloping line and the w2-intercept is
w2 = R� �s1. Conversely, the graph of (40) is an upward-sloping curve, and the w2-intercept is
w2 =

1
�+r
log �+�

��r = R̂0. (Moreover, it is convex under Assumption 1, as we prove in Appendix

D.) Thus, when R > R̂0 + �s1 = R̂1, we observe that the intersection exists in the interior, that
is, (w�1; w

�
2) 2 <2++, and is unique.

Moreover, by drawing the minus 45 degree line that passes Point A (the dotted line in Fig.
4), we can represent the optimal life schedule visually on the w2 axis. First, the length of the
line segment OB is w�1 + w

�
2. Next, the length BC is equal to s�2, which is seen from (20).

Finally, the length OR is equal to R and depicting Point R on the w2 axis, we obtain s�1 as the
segment CR. That is, OR is divided into four regions, s�1; s

�
2; w

�
1, and w

�
2.
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3.4 E¤ects of an increase in R on the optimal schedule

When the value of the parameter R changes, the optimal life schedule changes. Let us explore
the e¤ect of a rise in R on the optimal life schedule. In particular, we are interested in the case
where R > R̂1. Using (32) and (40), we obtain the following result.26

Proposition 2 Suppose that R > R̂1. When R rises marginally, s�1 remains at s
�
1 = �s1, and

w�1, w
�
2

�
= w+2

�
, and s�2 increase.

Proof. First, s�1 = �s1 is directly obtained from Proposition 1 (iii). We observe that the graph
of (32) shifts rightward as R increases, and that (40) remains unchanged. As seen in Fig. 5,
the intersection moves up and to the right, from Point A to Point A0. Thus, both w�1 and w

�
2

rise. Moreover, taking (33) into account, we obtain that s�2 increases.

This proposition indicates the optimal timing for the recurrent education and its optimal
length. We observe that when R is close to R̂1, w�1 is zero,

27 and, from (33), s�2 also becomes
zero. As R rises, individuals work longer in the �rst working period and, thus, delay the timing
of recurrent education. At the same time, the duration of the recurrent education, s2, becomes
longer. We note that both the total schooling period, s�, and the total working period, w�,
increase.

4 Relationship between R and lifetime income

Based on the optimal schedule, we derive the maximized lifetime income I�. When R varies,
the optimal lifetime schedule changes, as examined in Section 3.4, and, thus, I� changes. That
is, I� is a function of R. Thus, let us represent I� as I� = I (R).
Let us explore the property of I (R). When R � R̂1, I (R) is obtained from (11) and Lemma

3 (i) and (ii), and when R̂1 < R, it is obtained from Lemma 7. That is, I (R) is expressed as:

I (R) =

8><>:
�B0

R R
0
e�(�+r)tdt; 0 � R � R̂0

�B0e
(��r)(R�R̂0) R R̂0

0
e�(�+r)tdt; R̂0 < R � R̂1

J
�
w+2 ; R

�
; R̂1 < R

; (41)

26When R < R̂1, the following results are immediately con�rmed from Proposition 1 (i) and (ii), respectively:
(i) when R < R̂0, only the total working years w� � w�1+w�2 increase, and the total schooling years s� � s�1+s�2
remain zero as R rises; and (ii) when R̂0 < R < R̂1, s� increases, whereas w� does not change as R rises.
27As can be observed from Fig. 5, when R approaches R̂1 (from above), (32) shifts to the left and the

intersection of (32) and (40) approaches (w1; w2) = (0; R̂0).
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where:28

J
�
w+2 ; R

�
=
B0�

� + r

n
e(��r)�s1

�
1� e�

��g
�+�

(�+r)(R��s1�w+2 )
�
+ e(��g)�s1e�(r�g)(R�w

+
2 )
�
1� e�(�+r)w

+
2

�o
:

It is immediately con�rmed that limR!R̂0�0 I (R) = limR!R̂0+0 I (R) and limR!R̂1�0 I (R) =

limR!R̂1+0 I (R) hold and, thus, that I (R) is a continuous function for R � 0. Furthermore,
we obtain the following proposition:

Proposition 3 (i) I (R) is continuously di¤erentiable (that is, I (R) is of class C1).
(ii) I (R) is an increasing function of R, that is, I 0 (R) > 0.
(iii) We obtain the second derivative of I (R) as:

I 00 (R) =

8><>:
� (� + r) I 0 (R) ; 0 < R < R̂0
(� � r) I 0 (R) ; R̂0 < R < R̂1

�
h
(r � g) + (g + �) dw

+
2

dR

i
I 0 (R) ; R̂1 < R

: (42)

That is, I (R) is strictly concave when 0 � R � R̂0 and R̂1 � R, whereas it is strictly convex
when R̂0 � R � R̂1.

The proof of Proposition 3 is given in Appendix E. Proposition 3 (ii) argues that the
lifetime income increases as the active life becomes longer, which is a natural result. We obtain
an interesting �nding in Proposition 3 (iii). We depict I (R) in Fig. 6. When 0 � R � R̂0,
individuals choose no education, that is, s1 = s2 = 0 (refer to Proposition 1 (i)). In this case,
an increase in R raises I (R), but I 0 (R) declines. Conversely, when R̂0 � R � R̂1 and s1 > 0
and s2 = 0 is chosen (refer to Proposition 1 (ii)), I 0 (R) increases. This result indicates that the
human capital investment signi�cantly contributes to an increase in the lifetime income when
R is smaller than R̂1.
When R increases further and R > R̂1 holds, individuals choose s2 > 0 (refer to Proposition

1 (iii)). Proposition 3 (iii) argues that I 0 (R) declines again as R increases, although the human
capital investment increases.
Eq. (42) suggests the reason why this happens. The main reason is r � g. As discussed

in Lemmas 2 and 5, individuals update their skills twice, �rst at the end of the �rst schooling
period and then again at the end of their recurrent education. In this case, although the
individuals accumulate human capital at a speed of � during the schooling periods, the e¤ect
of the human capital accumulation on I (R) is eventually determined by the growth rate of the
cutting-edge knowledge, g, which is lower than r.

28J
�
w+2 ; R

�
is expressed as J

�
w+2
�
in the previous section. Refer to footnote 24 on this point. Note also that

w+2 is a function of R.
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The implication is that, in an economy with a longer life-span, individuals cannot expect
income growth to continue on a level commensurate with past experience, even if they extend
their periods of schooling based on recurrent education (and strive to acquire the latest skills,
whether during youth or through recurrent education) and work longer.

5 An extension: Endogenous retirement age

We extend the model by incorporating the disutility of work or study into the utility function,
and we treat the retirement age R as an endogenous variable. We show that the main result
obtained in Sections 3 and 4 still hold under the extended model. The utility function is given
as:

U =

Z T

0

u (ct) e
��tdt�

Z R

0

v (t; T ) dt; (43)

where v (t; T ) is the instantaneous disutility of work or study at age t, evaluated at time 0.2930

We impose the following assumption on v (t; T ).

Assumption 2 (i) v1 (t; T ) � @v (t; T ) =@t > 0 and v2 (t; T ) � @v (t; T ) =@T � 0. (ii)
v (0; T ) = 0 and limt!T v (t; T ) = +1 hold.

v1 (t; T ) > 0 indicates that the disutility increases with age, and v2 (t; T ) � 0 means that the
disutility at each age decreases as the longevity T increases. This is interpreted as indicating
that when the longevity increases, the health status at each age tends to improve (or at least,
it does not worsen), which leads to a decrease in the disutility of work. This idea is consistent
with the relative compression of morbidity assumption presented in Bloom et al. (2007). (A
similar idea is seen in Nishimura et al. (2018).) Assumption 2 (ii) ensures that the optimal R
is determined as an interior solution, as we will prove in Section 5.1.
The budget constraint is the same as (6):Z T

0

cte
�rtdt = I:

In this setting, individuals choose the consumption pro�le fctgTt=0, the retirement age R, and
the life schedule (s1; w1; s2; w2) to maximize (43). It is of interest to note that the separation

29Of course, we can express the disutility as ~v (t; T ) e��t, where ~v (t; T ) is the disutility evaluated at time t.
30Many empirical studies suggest that individuals have di¤erent preferences between study and work; the

examples include Heckman et al. (1998), Bils and Klenow (2000), Card (2001), Oreopoulos (2007), and Restuccia
and Vandenbroucke (2013). However, to make the analysis tractable, we assume that study and work induce
the same disutility, in line with many of the studies in the existing literature. (A notable exception is Sánchez-
Romero et al. (2016). They consider the case where the agents may have di¤erent preferences between schooling
time and working time.)
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theorem can also be applied to the model where the retirement age R is endogenous. The
maximization problem in Section 2.4 is modi�ed as follows:

(Step 1) Given the retirement age R, the individuals choose the life schedule (s1; w1; s2; w2)
to maximize I. The maximized lifetime income is denoted by I (R).

(Step 2) Based on I (R), the individuals maximize lifetime utility by choosing fctgTt=0 and R.

Note that Step 1 is essentially equal to Step 1 in Section 2.4. That is, by considering R as
given, we obtain the same optimal life schedule as presented in Section 3 and the same I (R)
as derived in Section 4. In other words, because of the separation theorem, the main result is
independent of whether R is an exogenous or an endogenous variable.

5.1 Longevity and optimal retirement age

Contrary to the exogenous retirement age model, by exploring Step 2, we obtain the relationship
between the longevity T and the optimal retirement age. Substituting I (R) into I in (6), we
construct the Lagrangean as:

L =

Z T

0

u (ct) e
��tdt�

Z R

0

v (t; T ) dt+ �

�
I (R)�

Z T

0

cte
�rtdt

�
:

As will be seen below, the optimal solution is obtained as an interior solution. In this case, the
�rst-order conditions are:

�I 0 (R) = v (R; T ) ; (44)

u0 (ct) e
(r��)t = �: (45)

Equation (44) is the optimal condition with respect to R. Equation (45) expresses the optimal
condition for ct, which is identical to (7). Using a similar procedure to derive (9), we obtain:

c0 =
I (R)

� (T )
; (46)

where � (T ) �
R T
0
e�

(��1)r+�
�

tdt.
Combining (44), (45) as of time 0, and (46) yields the following key equation:

u0
�
I (R)

� (T )

�
I 0 (R) = v (R; T ) : (47)
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The LHS of (47) expresses the marginal bene�t of working at age R (the increase in utility
from increasing the lifetime income) and the RHS expresses the marginal disutility of delaying
the retirement age. Using this equation, we derive the optimal retirement age R�.
Given T , the marginal bene�t is a decreasing function of R. To see this, di¤erentiating it

with respect to R, and noting that �u00 (c) c=u0 (c) � �, we obtain:

@

@R

�
u0
�
I (R)

� (T )

�
I 0 (R)

�
= u0

�
I (R)

� (T )

�
I 0 (R)

�
I 00 (R)

I 0 (R)
� �I

0 (R)

I (R)

�
= v (R; T )

�
I 00 (R)

I 0 (R)
� �I

0 (R)

I (R)

�
:

(48)

It can be seen that the term I00(R)
I0(R) ��

I0(R)
I(R)

determines the sign of @
@R

�
u0
�
I(R)
�(T )

�
I 0 (R)

�
. Noting

that I (R) and I 0 (R) are positive, we immediately con�rm that (48) is negative when I 00 (R) < 0.
That is, when I 0 (R) decreases with age, the marginal bene�t of continuing to work necessarily
decreases with age. Conversely, if I 00 (R) > 0, it is possible that the marginal bene�t may
increase with age. Using (53) and (42), we examine the case of R̂0 < R < R̂1, and we obtain:

I 00 (R)

I 0 (R)
� �I

0 (R)

I (R)
= (1� �) (� � r) � 0:

The last inequality holds on the assumption of � � 1. Consequently, the LHS of (47) is a
decreasing function of R.
On the other hand, the RHS of (47), which represents the marginal disutility of postponing

the retirement age, is an increasing function of R under Assumption 2 (i), and the range of
v (R; T ) is from 0 to +1 under Assumption 2 (ii). Fig. 7 depicts the LHS and RHS of (47),
which are drawn as downward- and upward-sloping curves, respectively. Thus, the solution
of (47) exists in R 2 (0; T ) and is unique. (In other words, the optimal retirement age R� is
derived as an interior solution.) Moreover, we obtain the relationship between the longevity T
and the optimal retirement age R�.

Proposition 4 When T increases, R� rises.

Proof. Regarding the marginal bene�t, we obtain:

@

@T

�
u0
�
I (R)

� (T )

�
I 0 (R)

�
= �u00

�
I (R)

� (T )

�
I (R)

� (T )2
�0 (T ) I 0 (R) > 0:

The last inequality comes from �0 (T ) = e�
(��1)r+�

�
T > 0. This indicates that the marginal

bene�t rises as T rises. The downward-sloping curve in Fig. 8, the marginal bene�t, shifts
upward. This e¤ect increases the length of the optimal active life.
Furthermore, Assumption 2 (ii) indicates that the marginal disutility v (R; T ) decreases as

T rises. The upward-sloping curve in Fig. 8, the marginal disutility, shifts downward. This
e¤ect also increases R�.
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The positive relationship between longevity and the length of the active life is obtained in
this model. The result is consistent with the preceding studies, which treat the retirement age
as endogenous.31

Moreover, by combining Proposition 4 with Proposition 2, we obtain the e¤ect of a rise in
the longevity on the optimal lifetime schedule. Let T̂j (j = 0; 1) denote T , which satis�es:

u0

0@I
�
R̂j

�
� (T )

1A I 0 �R̂j� = v �R̂j; T� :
From Proposition 4, it is con�rmed that T̂0 < T̂1 holds. We obtain the following result as a
corollary of Proposition 2:

Corollary 1 Suppose that T > T̂1. When T rises marginally, s�1 remains at s
�
1 = �s1, and w�1,

w�2, and s
�
2 increase.

32

5.2 E¤ect of initial asset

So far, we assume that individuals have no initial assets. Here, let us consider a situation where
an individual has some initial asset, denoted by k0, and examine the e¤ect of k0 on the optimal
choice. Suppose that k0 is given exogenously. Instead of (6), the budget constraint is given as:Z T

0

cte
�rtdt = I + k0: (49)

Although the initial asset is incorporated, the procedure to solve the optimization problem
remains unchanged. That is,

(Step 1) Given the retirement age R, the individuals choose the life schedule (s1; w1; s2; w2)
to maximize I. The maximized lifetime income is denoted by I (R).

(Step 2) Based on I (R), the individuals maximize lifetime utility by choosing fctgTt=0 and R.
31For example, refer to Boucekkine et al. (2002), Echevarría (2004), Ferreira and Pessôa (2007), Hazan (2009),

Sánchez-Romero et al. (2016), and Yasui (2016).
Sánchez-Romero et al. (2016) employ a general survival function and show that the retirement age increases

(falls) when there is a decline in the mortality rate during the retirement (working) period. In the present
model, we use a rectangular survival function. An increase in the life-span T can be considered as a decrease
in mortality during the retirement period.
32Related to footnote 26, we also obtain the following: (i) when T < T̂0, only total working years w� � w�1+w�2

increase, and total schooling years s� � s�1+s�2 remain at zero; and (ii) when T̂0 < T < T̂1, s� increases, whereas
w� does not change.
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Observe that the Step 1 problem is not a¤ected by the constant term k0. Put di¤erently,
when R is given as exogenous, the initial asset has no impact on the optimal schedule of the
individuals.
Conversely, when R is endogenous, the individual�s optimal behavior is a¤ected by the initial

asset. Note that (47) is modi�ed as:

u0
�
I (R) + k0
� (T )

�
I 0 (R) = v (R; T ) : (50)

We obtain the following result:

Proposition 5 (i) The optimal retirement age R� falls as the initial asset k0 increases.
(ii) When R > R̂1, the optimal duration of recurrent education s�2 decreases when k0 rises.

Moreover, w�1 and w
�
2 fall, and s

�
1 remains at s

�
1 = s1.

Proof. Noting that the LHS of (50) is a decreasing function of k0 because u00 < 0, the graph of
the LHS of (50) shifts downward as k0 rises, as seen in Fig. 9. Consequently, we con�rm that
R� falls when k0 rises and, thus, (i) is proved. Furthermore, recalling Proposition 2, we obtain
statement (ii) as the e¤ect of a decrease in R� on the optimal schedule.

Proposition 5 maintains that as the amount of the initial asset increases, the marginal utility
of income decreases and, thus, the duration of the active life R� falls. Moreover, the durations
of both total working time w�1 + w

�
2 and the recurring education s

�
2 decrease.

6 Concluding remarks

We have investigated the e¤ect of a longer life-span on the optimal life schedule during an
individual�s active life. We focused on the situation where individuals choose to undertake
recurrent education. In the present analysis, we made Assumption 1 in regard to the relationship
between the return of education, the interest rate, and the economic growth rate, and we have
explored the property of the optimal schooling schedule. We found that the optimal schooling
years are characterized as a corner solution; that is, people should obtain cutting-edge skills in
all schooling periods if they choose to undertake recurrent education. In addition, we found
that the total years of schooling and working increase and, thus, the retirement age is delayed
as the life-span increases.
Although the lifetime income increases as R rises, the important point is that the marginal

e¤ect of a rise in R on the lifetime income decreases signi�cantly when recurrent education
takes place. This indicates that we cannot expect vigorous income growth in an economy in
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which individuals have a longer life-span, even though these individuals work longer and study
longer and harder.
These �ndings suggest that the development of new technologies will be more important

than ever as a determinant of income growth in an economy where recurrent education is a
common practice. Regarding this point, it will be interesting to explicitly incorporate R&D
activities that produce new technologies into a model involving recurrent education. In the
present study, we have not considered this point. To undertake such an analysis, it is necessary
to build a model where a researcher�s incentives for the new inventions are considered. We
defer this issue to future research.
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Appendix A Proof of Lemma 1

Suppose that h� (t) = At is attained at time t, and consider the case where individuals continue
to study until time t + a (where a � 0) and work from time t + a to R.33 The human capital
stock at time t + a is Atega and, from (4), the present value of the income earned from time
t+ a to time R is expressed as:

I = �Ate
gae�r(t+a)

Z R�t�a

0

e�(�+r)sds =
�At
� + r

e�rte�(r�g)a
�
1� e�(�+r)(R�t�a)

�
:

Here, note that both e�(r�g)a and 1 � e�(�+r)(R�t�a) are decreasing functions of a under
Assumption 1, so that I is a decreasing function of a. Thus, I is maximized when a = 0 and,
therefore, Lemma 1 is proved.

33Instead of R, we can consider that the individuals work until ~t < R, and study from time ~t (recurrent
education). We con�rm that although the description is more complicated, the main conclusion does not
change.
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Appendix B Proof of Lemma 2

Consider a life schedule
�
sO1 ; w

O
1 ; s

O
2 ; w

O
2

�
(let us call it the original life schedule), and suppose

that sO1 < �s1 and s
O
2 > 0 hold. We show that this schedule does not maximize the lifetime income

I; that is, it is not the optimal life schedule. We can prove this statement by showing that there
is another feasible life schedule under which I is larger than the original life schedule. Let us con-
sider an alternative feasible life schedule

�
sA1 ; w

A
1 ; s

A
2 ; w

A
2

�
=
�
sO1 +�t; w

O
1 ; s

O
2 ��t; wO2

�
, where

0 < �t < sO2 , and show that I under
�
sA1 ; w

A
1 ; s

A
2 ; w

A
2

�
is larger than under

�
sO1 ; w

O
1 ; s

O
2 ; w

O
2

�
.

First, I2 is the same between the original life schedule and the alternative life schedule
because (a) and (b) below hold.
(a) sA1 +w

A
1 + s

A
2 = s

O
1 +w

O
1 + s

O
2 holds, so that tw2, the time when the recurrent education

ends and when the second working period starts, is the same between the two life schedules.
The length of the second working period is also the same (wA2 = w

O
2 ).

(b) �
�
sA1 + s

A
2

�
� �wA1 = �

�
sO1 + s

O
2

�
� �wO1 holds and, thus, the human capital at time tw2

is the same between the two life schedules.
Second, let us focus on I1. It is expressed as �e�s

O
1

R sO1 +wO1
sO1

e��(t�s
O
1 )e�rtdt = �e(��r)s

O
1

R wO1
0
e�(�+r)tdt

under the original life schedule, and �e(��r)s
A
1

R wA1
0
e�(�+r)tdt under the alternative life schedule.

We calculate the di¤erence between the two, denoted by �I1, as:

�I1 = �e
(��r)sA1

Z wA1

0

e�(�+r)tdt� �e(��r)sO1
Z wO1

0

e�(�+r)tdt

= �e(��r)(s
O
1 +�t)

Z wO1

0

e�(�+r)tdt� �e(��r)sO1
Z wO1

0

e�(�+r)tdt

=
�
e(��r)�t � 1

�
�e(��r)s

O
1

Z wO1

0

e�(�+r)tdt > 0:

Because e(��r)�t � 1 > 0, on the assumption that � > r, �I1 > 0 holds. This indicates that I1
on the alternative life schedule is higher than I1 on the original life schedule.
Consequently, the lifetime income I = I1 + I2 under

�
sA1 ; w

A
1 ; s

A
2 ; w

A
2

�
is larger than under�

sO1 ; w
O
1 ; s

O
2 ; w

O
2

�
. Thus, the original life schedule cannot be the optimal life schedule. In other

words, if s2 > 0 is optimal, s1 = �s1 must hold. Therefore, Lemma 2 (i) is proved.
Furthermore, Lemma 2 (ii) is the contraposition of Lemma 2 (i). Hence, Lemma 2 (ii) is

true because Lemma 2 (i) is true.
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Appendix C Proof of Lemma 6

As Lemma 6 (i) has been already proved in the text, we begin by proving (ii). Substituting
	(w2) = ���g

�+�
(R� �s1 � w2) into (30), we obtain:

J (w2) =
B0�

� + r

n
e(��r)�s1

�
1� e�

��g
�+�

(�+r)(R��s1�w2)
�
+ e(��g)�s1e�(r�g)(R�w2)

�
1� e�(�+r)w2

�o
:

First, we show that J (0) < I.

J (0) =
B0�

� + r

n
e(��r)�s1 � e�

��g
�+�

(�+r)Re[��r+
��g
�+�

(�+r)]�s1
o
:

Recall that I = �B0
�+r

�
e(��r)�s1 � e�(�+r)Re(�+�)�s1

	
. On comparing the second term in the curly

brackets of J (0) with I, it is con�rmed that J (0) < I if and only if the following inequality
holds:

�� � g
� + �

(� + r)R +

�
� � r + � � g

� + �
(� + r)

�
�s1 > � (� + r)R + (� + �) �s1:

On arranging it, we con�rm that this inequality is equivalent to R > �s1 and, thus, J (0) < I
holds true.
Second, we show that J (R� �s1) = I. Recall that 	(w2) = 	 (w2) holds at w2 = R � �s1

(see Fig. 3) and, thus, J (R� �s1) = J (R� �s1) holds. From (i), J (R� �s1) = I and, therefore,
J (R� �s1) = I holds.

Next, we examine (iii) and (iv). We have argued that � (w2), the terms in the curly brackets
of (36), is a decreasing function of w2, and that J 0 (w2) > 0 (respectively, J 0 (w2) < 0) holds if
and only if � (w2) > 0 (respectively, � (w2) < 0). Thus, we can prove (iii) and (iv) by showing
that (a) � (0) > 0 and (b) � (R� �s1) < 0 if and only if R > R̂1. Let us recall (37):

J 0 (w2) R 0() � (w2) R 0()
� � g
� + �

(� + r) e�
(��r)(g+�)

�+�
(R�w2��s1) Q (r � g)+ (g + �) e�(�+r)w2 :

When w2 = 0, the following holds:

LHS =
� � g
� + �

(� + r) e�
(��r)(g+�)

�+�
(R��s1) < � + r = RHS;

where the inequality holds because ��g
�+�

< 1 and e�
(��r)(g+�)

�+�
(R��s1) < 1 hold on the assumption

of � > r. Thus, (a) � (0) > 0 holds.
Conversely, when w2 = R� �s1, � (R� �s1) < 0 if and only if the following holds:

� � g
� + �

(� + r) > (r � g) + (g + �) e�(�+r)(R��s1):
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Noting that ��g
�+�

(� + r) � (r � g) is equal to (��r)(g+�)
�+�

, the above inequality can be rewritten
as:

� � r
� + �

> e�(�+r)(R��s1):

From the de�nition of R̂1, we immediately con�rm that the above equality is equivalent to
R > R̂1. Therefore, (b) is proved.
Taking (a), (b), and �0 (w2) < 0 into account, when R � R̂1, we con�rm that � (w2) > 0

( () J 0 (w2) > 0) holds for any w2 2 (0; R� �s1) and, together with Lemma 6 (ii), J (w2) is
maximized at w2 = R� �s1. Thus, Lemma 6 (iii) is proved. On the other hand, when R > R̂1,
w+2 , a value of w2 that satis�es � (w2) = 0 exists in w

+
2 2 (0; R� �s1), and J (w2) is maximized

at w2 = w+2 . Thus, Lemma 6 (iv) is proved.

Appendix D The concavity of (40) in the case of r � g
Taking the logarithm, we rewrite (40) as:

w2 = �(w1) �
1

� + r
f� log' (w1) + log (g + �)g : (51)

where ' (w1) is de�ned as:

' (w1) =
(� � g) (� + r)

� + �
e�

(��r)(g+�)
��g w1 � (r � g) :

Because dw2
dw1

= �1
�+r

'0(w1)
'(w1)

, we calculate '0(w1)
'(w1)

. It is obtained as:

'0 (w1)

' (w1)
=

� (� + r) (g + �) (� � r) e�
(��r)(g+�)

��g w1

(� � g) (� + r) e�
(��r)(g+�)

��g w1 � (r � g) (� + �)

=
� (� + r) (g + �) (� � r)

(� � g) (� + r)� (r � g) (� + �) e
(��r)(g+�)

��g w1
:

Thus, we obtain:

dw2
dw1

= �0 (w1) =
(g + �) (� � r)

(� � g) (� + r)� (r � g) (� + �) e
(��r)(g+�)

��g w1
: (52)

From the above, we observe that the denominator of dw2=dw1 is a decreasing function of w1
under Assumption 1. That is, dw2=dw1 increases as w1 rises.
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Appendix E Proof of Proposition 3

(i) We investigate the �rst derivative of I (R). Because it holds that
@J(w+2 ;R)

@w2
= 0 (expressed

as J 0
�
w+2
�
= 0 in the Section 3),

dJ(w+2 ;R)
dR

=
@J(w+2 ;R)

@w2

dw+2
dR
+

@J(w+2 ;R)
@R

=
@J(w+2 ;R)

@R
holds. Thus,

we obtain the following from (41):

I 0 (R) =

8><>:
�B0e

�(�+r)R; 0 < R < R̂0
(� � r) I (R) ; R̂0 < R < R̂1

�B0e
(��g)�s1e�[(r�g)R+(g+�)w

+
2 ]; R̂1 < R

: (53)

We examine whether I 0 (R) is continuous at R = R̂0 and R = R̂1. From (53), we obtain
limR!R̂0�0 I

0 (R) = �B0e
�(�+r)R̂0, and from (41) and (53), we obtain:

lim
R!R̂0+0

I 0 (R) = (� � r) lim
R!R̂0+0

I (R) = (� � r)�B0
Z R̂0

0

e�(�+r)tdt:

Thus, limR!R̂0�0 I
0 (R) = limR!R̂0+0 I

0 (R)
�
� I 0(R̂0)

�
holds if and only if the following equa-

tion holds:
� � r
� + r

�
1� e�(�+r)R̂0

�
= e�(�+r)R̂0 : (54)

Recalling that R̂0 � 1
�+r
log �+�

��r , we con�rm that (54) is true. Thus, I 0 (R) is continuous at

R = R̂0.
Next, we consider limR!R̂1�0 I

0 (R) and limR!R̂1+0 I
0 (R). Recalling that R � R̂0 = �s1 at

R = R̂1, we obtain limR!R̂1�0 I
0 (R) = (� � r)�B0e(��r)�s1

R R̂0
0
e�(�+r)tdt. Furthermore, recalling

that limR!R̂1+0w
+
2 = R̂0 (refer to footnote 27), we obtain:

lim
R!R̂1+0

I 0 (R) = �B0e
(��g)�s1e�[(r�g)R̂1+(g+�)R̂0] = �B0e

(��r)�s1e�(�+r)R̂0 :

From (54), we con�rm that limR!R̂1�0 I
0 (R) = limR!R̂1+0 I

0 (R)
�
� I 0(R̂1)

�
holds. That is,

I 0 (R) is continuous at R = R̂1. Hence, I 0 (R) is a continuous function. In other words, I (R) is
a continuously di¤erentiable function.

(ii) From (53), it can be seen that I 0 (R) > 0 holds for R 2 <++nfR̂0; R̂1g, and we have
shown that I 0 (R) is continuous at R = R̂0 and R = R̂1 above. That is, I 0 (R) > 0 holds at
R = R̂0 and at R = R̂1, which completes the proof.

(iii) We obtain the second derivative of I (R) from (53):

I 00 (R) =

8><>:
� (� + r) I 0 (R) ; 0 < R < R̂0
(� � r) I 0 (R) ; R̂0 < R < R̂1

�
h
(r � g) + (g + �) dw

+
2

dR

i
I 0 (R) ; R̂1 < R

:
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It can be seen immediately from (42) that I 00 (R) < 0 when 0 < R < R̂0 and that I 00 (R) > 0

when R̂0 < R < R̂1. Moreover, because r � g (Assumption 1) and dw+2
dR

> 0 (Proposition 2),
I 00 (R) < 0 when R̂1 < R. (This indicates that I 00 (R) is not continuous at R = R̂0 and R = R̂1.
That is, I (R) is not of class C2.) I (R) is a continuous function on R > 0, so we can conclude
that I 00 (R) is strictly concave for 0 � R � R̂0, strictly convex for R̂0 � R � R̂1, and strictly
concave for R̂1 � R.
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Table 1: Participation rate of adults (25–64 years old) in formal education 

 

Country 2007 2012 Difference 

Australia 11.7 16.7 5.0  

Austria 4.2 6.4 2.2  

Canada 9.9*** 14.1 4.2  

Czech Republic 3.9*** 5.6 1.7  

Denmark 10.1*** 14.0 3.9  

Estonia 5.0 9.1 4.1  

Finland 10.2** 15.5 5.3  

France 5.1 4.6 –0.5  

Germany 5.2 6.7 1.5  

Greece 2.3 5.5**** 3.2  

Ireland 6.2*** 15.2 9.0  

Italy 4.4** 5.6 1.2  

Korea 5.7 4.8 –0.9  

Netherlands 6.8*** 14.0 7.2  

New Zealand 20.3 17.6**** –2.7  

Norway 9.9 15.7 5.8  

Poland 5.5** 7.5 2.0  

Slovak Republic 6.1 5.7 –0.4  

Slovenia 8.7 10.6**** 1.9  

Spain 5.9 12.6 6.7  

Sweden 12.7* 13.1 0.4  

United States 8.6* 14.3 5.7  

Average 7.7 10.7 3.0  

Note: The symbols *, **, ***, and *** indicate that the surveys were 

implemented in 2005, 2006, 2008, and 2015, respectively. 

Source: OECD Education at a Glance 2011 and 2017. 

 

 

 

 

  

  



 
 

 
 
 

 

Fig. 1: Lifetime income when 𝑠ଶ ൌ 0 
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Fig. 2: Relationship between (22) and (23) 
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Fig. 3: Graphs of 𝐽ሺ𝑤ଶሻ, 𝐽ሺ𝑤ଶሻ, and 𝐽ሺ𝑤ଶሻ  
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Fig. 4: Graphs of (32) and (40), and the optimal schedule 
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Fig. 5: Effect of an increase in 𝑅 
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Fig. 6: Graph of 𝐼ሺ𝑅ሻ 
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Fig. 7: Optimal retirement age 
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Fig. 8: Effect of a rise in 𝑇 
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Fig. 9: Effect of a rise in 𝑘଴  
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