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Abstract

Uninsured investment risks are introduced into a textbook AK model. There are no
financial frictions. Depending on insurance market development, asset bubbles emerge
in an infinitely-lived agent economy. A collapse of bubbles has short-run impacts.
At the moment of the collapse of bubbles, aggregate demand decreases immediately.
This instantly triggers sharp declines in all of GDP, consumption, investment, capital
utilization, and wealth-to-GDP, although capital remains constant in the short run.
Consistently with data, investment decreases more than consumption. The bubbles
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economy falls into a prolonged recession.
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1 Introduction

Economic history has repeatedly experienced boom-bust in asset prices, which has significant
impacts on real economies (Aliber and Kindleberger (2015)). A famous example is the Great
Recession of 2007-2009 in the US economy. Some economists and policy makers believe that
asset price busts may trigger the Great Recession in US.1 In fact, Martin and Ventura (2012)
document a drastic decrease in the wealth-to-GDP ratio during 2007-2009. The 2007-2009
crisis has the following two features (see Panels (a) and (b) in Figure 1).

[Figure 1]

Fact 1. Sharp and instant contraction: During the 2007-2009 crisis, economic growth slowed
substantially and became even negative. In this period, per capita GDP, consumption and in-
vestment in the US decreased by 4.41%, 3.27%, and 23.1%, respectively. Notably, investment
showed the largest decline.

Fact 2. Slow recovery and prolonged recession: After the crisis of 2007-2009, growth recov-
ered. However, recovery was slow. The average growth rate of GDP per capita in the US
during 2009-2013 is 1.27%, that is much lower than 2.09% average growth during 2003-2007.

These two features are also observed in Japanese stock and real estate markets boom around
1990 and U.S dotcom bubble around 2000.2

In traditional macroeconomic models of rational bubbles, bubbles suppress capital accu-
mulation. Conversely, a collapse of bubbles accelerates capital accumulation in the long run
(see Tirole (1985)). This prediction of traditional rational bubble models is inconsistent with
the above facts. Recently, authors including Martin and Ventura (2012), Kunieda and Shi-
bata (2016), Hirano and Yanagawa (2017), Miao and Wang (2018) attempt to overcome this
shortcoming. These authors successfully construct models where a bust of bubbles suppresses
capital accumulation. Since capital accumulation affects mainly long-run growth rather than
short-run fluctuations, these models provide theoretical explanation for slow recovery and
prolong recessions (Fact 2).

However, Panels (b) and (c) in Figure 1 show that during 2007-2009, growth of capital
remained positive (although it slowed) even though GDP decreased sharply.3 Thus, the above
mentioned models may not explain sharp contractions in a short period (Fact 1). Indeed, in
these models, GDP is determined (mainly) by capital and hence a collapse of bubbles has
no impacts on GDP in the short run. Accordingly, asset bubbles affect only the division of
output between aggregate consumption and investment. After a collapse of bubbles, these
two aggregates move in the opposite direction in the short run. Significantly, these existing
studies do not examine which decreases more, consumption or investment.

1A bubbles on asset is defined as the difference between the fundamental and market values of an asset.
2In Japan during 1986-1990, 1991-1993, and 1994-1996, the average growth rates of GDP per capita are

4.88%, -0.14%, and 2.68%, respectively. The average growth rates of investment (consumption) per capita are
8.82% (4.41%), -3.77% (1.34%), and 5.48% (2.05%), respectively. For the case of U.S dotcom bubble during
1995-1999, 2000-2002, and 2003-2006, the average growth rates of GDP per capita are 3.1%, 0.39%, and
2.47%, respectively. The average growth rates of investment (consumption) per capita are 7.11% (3.19%),
-2.73% (1.51%), and 4.55% (2.54%), respectively. The source of data is the same as that in Figure 1.

3It is well known that on usual business cycles (not including the 2007-2009 crisis), capital stock is much
less volatile than output. See Cooley and Prescott (1995) and King and Rebelo (1999).
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The following question arises naturally; Does a collapse of bubbles explain Facts 1 and
2 simultaneously? We construct a single model where a burst of bubbles triggers instant
and sharp declines in GDP and other aggregate variables that are followed by a prolonged
recession, as shown in Panel (a) of Figure 2. We also address a larger decline in investment
than consumption.

[Figure 2]

For our purpose, we construct an infinitely-lived agent model. Our model is quite simple
and is composed of only four parameters. Importantly, our model is fairy close to a textbook
macroeconomic model. Indeed, If we eliminate one parameter, our model reduces to a text-
book AK model. Thus, we can provide main results and their mechanisms in an analytically
clear manner. Moreover, the simplicity of our model allows us to easily show how a bust of
bubbles triggers an instant contraction (Fact 1).

We conduct our analysis in two steps. In the first step, we introduce investment risks to
a textbook AK model. We use this benchmark model to examine how bubbles affect capital
accumulation in the long run. Each entrepreneur produces new capital, which is subject to
idiosyncratic risks. The investment risks are not insured, which is an assumption common
to recent literature on rational bubbles. In contrast to recent studies on rational bubbles,
entrepreneurs in our model face no borrowing constraints. Entrepreneurs have an identical ex
ante productivity of investment and investment risks realize only after investment takes place.
Thus, there are no lending and borrowing among entrepreneurs. Borrowing constraints do
not matter. We do not claim that the absence of borrowing constraints is realistic. However,
it makes our analysis simpler.

Even without borrowing constraints, bubbly assets are valued in an infinitely-lived agent
economy. Faced with investment risks, risk averse entrepreneurs reduce investment in capital
production. Through saving-investment balance, the rate of return on holding capital is
reduced. Since bubbly assets yield a high return, entrepreneurs hold bubbly assets for a
speculative purpose. Only in economies with advanced technology and medium degrees of
investment risks, asset bubbles arise.

Interestingly, even without borrowing constraints, asset bubbles accelerate capital accu-
mulation and long-run growth. Asset bubbles make entrepreneurs wealthy. Wealthy en-
trepreneurs take more risks and produce more capital, which has a positive growth effect.
Depending on production technology and insurance market development, the positive effect
dominates an usual crowding-out effect of asset bubbles. Then, bubbles promote economic
growth. Conversely, asset bubble bust decreases long-run growth, leading to a long-term
depression.

However, the benchmark model fails to capture sharp and instant contractions (Fact 1).
In fact, at the moment of bubble bust, the level of real GDP remains unchanged and thus
consumption and investment move oppositely in the short run.

In the second step, we endogenize capital utilization to address Fact 1. If investment
risk is removed, the extended model also returns to a textbook AK model. Panel (a) of
Figure 2 shows how a collapse of bubbles at time t1 affects GDP. At time t1, the economy
experiences instant and drastic falls in all of capital utilization, GDP, consumption, invest-
ment, the wealth-to-GDP ratio, and growth rate. Now, both consumption and investment
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decrease. Entrepreneurs’ welfare also declines. After the initial contraction, because of de-
pressed growth, the economy falls into a prolong recession.

Importantly, a sunspot shock triggers a collapse of bubbles in our model. This suggests
that even without any changes in fundamentals, an instant contraction and a subsequent low
growth may hit an economy.

How bubbles affect aggregate demand is a key to the initial decline at time t1. A col-
lapse of bubbles decreases entrepreneurs’ wealth, which reduces aggregate consumption and
investment. Faced with reduced aggregate demand, some production facilities (capital) seize
operation, which decreases capital utilization. Although capital remains unchanged at time
t1, depressed capital utilization leads to instant declines in macroeconomic activities. The
sharp decline in capital utilization is consistent with Panel (d) of Figure 1.4

The following two points should be emphasized. (i) At the moment of a collapse of bubbles
(time t1), capital stock remains constant (see Panel (b) of Figure 2). Even in a short period
during which capital does not change, a collapse of bubbles triggers an instant contraction.
(ii) Consistently with Fact 1, our model predicts that at time t1, investment decreases more
than consumption under a condition. This is because bubble bust depresses investment even
if capital utilization is exogenously fixed.

Supply side is important for the prolonged recession after time t1. Because of permanently
reduced growth, capital grows slowly (see Panel (b) of Figure 2). In the long run, output is
depressed and the recession prolongs.

We also consider the effect of a temporal negative technology shock. It induces bursting
bubbles, which amplifies the impact of a negative technology shock. Even a temporal negative
technology shock depresses economic activities permanently.

Our model provides some new insights that are not fully addressed by the existing studies
on rational bubbles. We do not claim that our model is superior to the existing ones. Rather,
our study complements the existing studies by highlighting how a collapse of bubbles induces
an instant contraction as well as a long-term recession.

1.1 Related literature

This study constructs an infinitely-lived agents model of rational bubbles. In overlapping-
generations (OLG) models, Tirole (1985) shows that bubbles may exist if the economy is
dynamically inefficient. Abel et al. (1989) find empirically that developed economies are
dynamically efficient. Farhi and Tirole (2011) and Martina and Ventura (2012) show that
with borrowing constraints, bubbles arise even in dynamically efficient OLG economies.

Recently, Kocherlakota (2009), Kunieda and Shibata (2016), Hirano and Yanagawa (2017),
and Miao and Wang (2018) show that in the presence of financial frictions, bubbles exist in
infinite-horizon models of production economies.5 To ensure that borrowing constraints are
binding occasionally, these studies assume that the insurance market is incomplete and pro-
ductivity of agents changes frequently due to idiosyncratic shocks. As Aiyagari and McGrat-
tan (1998) and Farhi and Tirole (2011) point out, occasionally binding borrowing constraints

4King and Rebelo (1999) and Stock and Watson (1999) show that on business cycles in the post-war
period (not including the 2007-2009 recession), capacity utilization is much more volatile than output.

5Kocherlakota (1992) and Santos and Woodford (1997) provide examples of equilibrium with bubbles in
infinite-horizon models of endowment economies with borrowing constraints.
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shorten agents’ planing horizon and make infinitely-lived agents’ behavior similar to that of
OLG models. This is crucial for the existence of asset bubbles in these models.

In our model, there are no borrowing constraints and entrepreneurs’ productivity remains
unchanged overtime.6 We show that even without occasionally binding borrowing constraints,
bubbles exist in an infinitely-lived agent model. Since there are no credit constraints, our
model can not address the relation between credit booms and asset bubbles. However, the
absence of borrowing constraints makes aggregation easy and simplifies our analysis.

Aoki et al. (2014) also show the existence of bubbles in an infinitely-lived agents model
without borrowing constraints. In their model, agents hold bubbly assets to diversify id-
iosyncratic risks because bubbles are safety assets.7 In our model, bubbly assets are risky
and entrepreneurs hold bubbly assets only for speculative purpose. Moreover, in Aoki et al
(2014), bubbles always lower long-run growth, which contrasts our results.

How is our long-run growth effect of bubbles related to the literature? Tirole (1985)
shows that bubbles crowd investment out and lower capital accumulation and output in the
long run.8 Recent studies show that asset bubbles relax borrowing constraints and improve
efficiency of resource allocation, which promotes capital accumulation and long-run growth
(e.g., Kocherlakota (2009), Farhi and Tirole (2011), Martin and Ventura (2012), Aoki and
Nikolov (2015), Kunieda and Shibata (2016), Hirano and Yanagawa (2017), and Miao and
Wang (2018).9

Borrowing constraints are absent in our model. The key is incomplete insurance. Our
result suggests that even without financial frictions, bubbles may enhance growth if insurance
market is incomplete. However, there is a similarity between the existing and our models. In
both models, bubbles positively affect agents’ wealth, which boosts long-run growth.

Does a bursting of bubbles trigger instant and sharp contractions (Fact 1) in the existing
studies we have just mentioned? Figure 2 in Aoki and Nikolov (2015) illustrates the answer
well. The figure shows that after a collapse of bubbles, output decreases only gradually (the
upper-left panel) and investment increases in the short run (the lower-right panel).10 These
results are obtained because output is mainly determined by capital and hence aggregate
consumption and investment move in the opposite direction in the short run. The similar
short-run effects are found also in Marin and Ventura (2012), Kunieda and Shibata (2016),
Hirano and Yanagawa (2017).11 In Kocherlakota (2009), when bubbles collapse, investment

6Ample empirical studies show that firm productivity is highly persistent. For example, Baily et al (1992)
document that in the US economy, 58% of most productive firms remained most productive ten years later.
See Bartelsman and Domes (2000), Foster et al (2001), Fukao and Kwon (2006), and Foster et al (2008).
In a model with uninsured idiosyncratic shocks but without bubbles, Moll (2014) shows that persistency of
productivity shocks affects results dramatically, arguing that persistent shocks are empirically relevant.

7Kitagawa (1994) show that agents demand bubbles as safety assets in an OLG model.
8Grossman and Yanagawa (1993), King and Ferguson (1993) and Futagami and Shibata (2000) find that

asset bubbles retards long-run economic growth.
9Mitsui and Watanabe (1989) and Woodford (1990) are early studies showing that bubbles promote capital

investment. These studies do not examine the impacts of bursting bubbles. Olivier (2000) and Tanaka (2011)
investigate how stock bubbles stimulate R&D activities.

10In Aoki and Nikolov (2015), increased investment doe not necessarily accelerate capital accumulation be-
cause a collapse of bubbles reallocates resources from high productive firms to low productive ones. The same
mechanism applies to Marin and Ventura (2012), Kunieda and Shibata (2016), and Hirano and Yanagawa
(2017).

11In Martin and Ventura (2012), equation (11) shows that bubbles at period t affect period t + 1 capital
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instantly increases while consumption decreases (see footnote 5 in Kocherlakota (2009)) al-
though output decreases sharply one period after the bubble bust. In Miao and Wang (2018),
a collapse of bubbles induces an instant increase in aggregate consumption and output de-
creases only gradually (see Figure 3 in Miao and Wang (2018)). Besides, these studies do
not address why investment decreases more than consumption.

These authors have advanced the rational bubble theory considerably, providing impor-
tant insights on how bubbles promote long-run growth. However, the above discussion shows
that more work still remains to be done in terms of the short-run effects of bubbles. We show
that endogenizing capital utilization may solve some problems.12 Remarkably, we show that
investment decreases more than consumption under a condition.

Guerron-Quintana et al. (2019) also introduce capital utilization to a model of rational
bubbles. Our study differs from theirs in several aspects. First, their focus is on the impacts
of recurrently occurring bubbles. We focus on the short-run impacts of bubbles. Second, in
their model, how bubbles affect economy depends on borrowing constraints. In our model,
the degree of investment risks plays key roles. Finally, their results are based on numerical
analysis. All of our results are theoretical. Thus, economic intuition and mechanism for
results are analytically clear.

The rest of the paper is organized as follows: Section 2 presents our benchmark model.
Section 3 examines how bubble emerges and how bubbles affect long-run growth in the
benchmark model. Section 4 endogenizes capital utilization and shows that a collapse of
bubbles triggers an instant contraction as well as a long-term recession. Concluding remarks
are in Section 5.

2 A simple AK model

This section presents our benchmark model where capital utilization rate is exogenously fixed.
Using this model, Section 3 examines the existence condition of bubbles and how bubbles
affect long-run growth.

Time is continuous and runs from t = 0 to ∞. A single general good is produced by using
an AK production function. The only input in general good production is called capital.
Entrepreneurs own capital and bubbly assets. They can produce new capital using general
good. They face idiosyncratic shocks when producing new capital. We can interpret capital
broadly. Appendix R presents a model where production of new capital includes setting up
new businesses or developing new technologies, which is subject to idiosyncratic risks.

and output. They assume heterogeneous productivity among agents. If δ = 1, the right-hand side of equation
(11) corresponds to aggregate investment. It shows that a collapse of bubbles increases aggregate investment.
In Hirano and Yanagawa (2017), equation (16) shows that asset bubble busts increase aggregate investment
and equation (8) shows that aggregate consumption and investment move in the opposite direction. Figure
3 in Kunieda and Shibata (2016) shows the same results. In Hirano and Yanagawa (2017) and Kunieda and
Shibata (2016), a collapse of bubbles affects long-rung growth whereas it does not affect output level in the
short run.

12Endogenous capital utilization in our model is motivated by King and Rebelo (1999) who show that
capital utilization is important when considering short-run fluctuation in an RBC model.
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2.1 General Good Sector

A single general good is used for both consumption and input of capital production. The
general good is competitively produced by the following production function:

Yt = AKt, A > 0, (1)

where Yt and Kt denote output and capital input, respectively. The general good is taken as
a numeraire. Denote the rental rate of capital by qt. Profit maximization yields

qt = A. (2)

2.2 Entrepreneurs

Preferences and Investment Risks: There is a continuum of infinitely-lived entrepreneurs
whose measure is one. Entrepreneurs are risk averse. Entrepreneur i ∈ [0, 1] has the following
expected lifetime utility:

Ui,t = Et

∫ ∞

t

(log ci,t) e
−ρ(s−t)ds, (3)

where ci,t is entrepreneur i’s consumption, ρ > 0 is the subjective discount rate, and Et is an
expectation operator conditional on time t information. We assume that

A > ρ. (4)

Capital production is irreversible and subject to risks. We assume that the risks are not
fully insurable.13 If entrepreneur i uses Ii,t(≥ 0) units of general good for a time period of
length dt, dxi,t units of new capital are produced as follows:

dxi,t = ϕIi,tdt+ σIi,tdWi,t, ϕ = 1, σ > 0, (5)

where Wi,t is a standard Brownian motion. Its increment, dWi,t, represents idiosyncratic
investment risks. We assume that dWi,t is independent and identically distributed across
entrepreneurs. Parameters ϕ and σ are common to all entrepreneurs. As in a standard AK
model, we assume ϕ = 1. A large σ means a low insurance coverage and high risks. As
insurance market develops, more risks are insurable and σ decreases. If σ = 0, our model
reduces to a standard AK model. As mentioned earlier, dxi,t includes starting new businesses,
developing new technologies, and so on (see Appendix R).

Asset holdings and budget constraint: Entrepreneurs sell capital that they newly pro-
duce. Denote the price of capital as vt. Since general good price is one and ϕ = 1, entrepreneur
i earns the following profits:

(vt − 1)Ii,tdt+ σvtIi,tdWi,t. (6)

The term (vt − 1)Ii,tdt represents the deterministic profits. The term σvtIi,tdWi,t represents
the stochastic profits that reflect investment risks. All entrepreneurs have the same (average)

13Asymmetric information is one of the sources of incomplete insurance. In Townsend (1979), the costly
state verification causes asymmetric information and hence incomplete insurance. We do not model insurance
contracts for simplicity.
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productivity ϕ(= 1) and learn shocks after output realizes. Thus, there are no borrowing
and lending among entrepreneurs. Hence, borrowing constraints do not matter.

As in Tirole (1985), a bubbly asset is an intrinsically useless asset with zero fundamental
value. Let pt be the bubbly asset price at time t. The free disposability of bubbly assets
ensures pt ≥ 0. In the bubbleless economy, pt is zero (pt=0). In the bubble economy, pt is
strictly positive (pt > 0). Entrepreneur i holds ki,t units of capital and bni,t units of bubbly
assets. His or her total assets holdings are given by

ωi,t = vtki,t + ptb
n
i,t = ai,t + bi,t, (7)

where ai,t ≡ vtki,t and bi,t ≡ ptb
n
i,t. We assume that ωi,0 > 0 for all entrepreneurs.

We derive the evolution of ωi,t. Suppose that the bubble economy prevails between t and
t + dt. Between t and t + dt, entrepreneur i earns capital rental income qtki,tdt and profits
given by (6). He or she consumes ci,tdt units of general good, incurs capital depreciation
δ · vtki,tdt (δ > 0), and purchases dki,t units of capital and db

n
i,t units of bubbly assets. If he

or she sells capital (bubbly assets), dki,t (db
n
i,t) is negative. Thus, we have

ci,tdt+ δvtki,tdt+ vtdki,t + ptdb
n
i,t = qtki,tdt+ (vt − 1)Ii,tdt+ σvtIi,tdWi,t. (8)

From (7), we have dωi,t = (dvt)ki,t+vtdki,t+(dpt)b
n
i,t+ptdb

n
i,t. By using (7) and (8), we derive

dωi,t = [rtai,t + ψtbi,t + (vt − 1)Ii,t − ci,t] dt+ σvtIi,tdWi,t. (9)

The rates of return on holding capital and bubbly assets are, respectively, given by

rtdt ≡
qdt+ dvt − δvtdt

vt
and ψtdt ≡

dpt
pt
.

Note that rt is deterministic. In the bubbleless economy, we have pt = bi,t = ψt = 0 in (9).
Given ωi,t ≡ vtki,t + ptb

n
i,t, there is a trade-off between holding capital and bubbly assets.

However, there is no trade-off between bubbly assets bni,t and capital production Ii,t. Thus,
entrepreneurs can not diversify investment risks by holding bubbly assets. This contrasts
with Aoki et al. (2014) in which the rate of return on holding capital is stochastic and
individuals hold (safe) bubbly assets to diversify capital holding risks.14

Following Weil (1987), we consider the stochastic bubbles which may burst in the future.
The literature often assumes that once bubbles burst, they will never be valued in the subse-
quent future. Consider a sunspot shock that follows a Poisson process with a constant arrival
rate µ > 0. The sunspot shock triggers a asset bubble bust. Given that pt > 0, pt+dt remains
strictly positive with probability 1− µdt. Otherwise, we have pt+dt = 0.15 Asset bubble bust
is an aggregate shock that is independent of idiosyncratic shocks, σdWi,t. A larger µ means
riskier bubbles. All entrepreneurs know the value of µ.

Utility maximization: Given ωi,0 > 0, entrepreneur i maximizes (3) subject to (7) and
(9). We do not impose the non-negativity constraints, ki,t ≥ 0 and bni,t ≥ 0. Since all

14They consider a budget constraint like dωi,t = [rtai,t + ψtbi,t − ci,t] dt+ σkai,tdW
k
i,t, where ai,t is capital

holdings and W k
i,t is a standard Brownian motion. If σk > 0, the rate of return on capital, rtdt+ σkdW

k
i,t, is

stochastic. Holding safe bubbly asset, bi,t, diversifies this capital holding risk.
15All the propositions in this study hold even if bubbles never burst µ = 0.
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entrepreneurs have the same ex-ante productivity, they do not have incentives to lend and
borrow and hence the short sales constraint bni,t ≥ 0 never binds.16 Appendix A shows that
the behavior of entrepreneur i is summarized as follows:

ci,t = ρωi,t, (10a)

ai,t = (1− st)ωi,t, (10b)

bi,t = st ωi,t, (10c)

st =

{
1− µ

ψt−rt in the bubble economy (pt > 0),

0 in the bubbleless economy (pt = 0),
(10d)

Ii,t =
vt − 1

(σvt)2
ωi,t, (10e)

dωi,t =

[
rt(1− st) + ψtst +

(
vt − 1

σvt

)2

− ρ

]
ωi,tdt+

(
vt − 1

σvt

)
ωi,tdWi,t. (10f)

Here, we assume an inner solution for Ii,t ≥ 0, which is satisfied in equilibrium we consider.
The transversality condition is satisfied as follows:

lim
t→∞

Et

[
ωi,t
ci,t

e−ρt
]
= lim

t→∞

1

ρ
e−ρt = 0. (11)

We focus only on equilibria where all of rt, ψt, vt and st are constant. Thus, (10f) shows that
ωi,t follows a geometric Brownian motion, which ensures that ωi,t > 0 since ωi,0 > 0. (10a) is
an usual consumption function under a logarithmic utility function.

(10b)–(10d) summarize entrepreneur i’s portfolio choice between capital and bubbly as-
sets. Particularly, st represents an incentive for holding bubbly assets. Since st is independent
of i, all entrepreneurs hold the same fraction of their wealth as bubbly assets. Later, we ob-
serve that st ∈ (0, 1) holds in the bubble economy, which ensures ki,t > 0 and bni,t > 0.

We mention the following three points. First, investment risk σ does not directly affect
st, which means that entrepreneurs do not hold bubbly assets to diversify investment risk
σIi,tdWi,t. This contrasts with Aoki et al. (2014). Second, one may guess that when a
positive shock hits entrepreneur i, he or she may accumulate bubbly assets (increase st) as a
self-insurance and then resell bubbly assets (decrease st) when hit by a negative shock. This
guess is not the case. Since st is independent of i, realization of idiosyncratic shock does not
affect entrepreneurs’ portfolio. Entrepreneurs do not use bubbly assets as a self-insurance.

Finally, entrepreneurs hold bubbly assets for purely speculative motive. In the bubble
economy, the term ψt− rt in (10d) is the risk premium on bubbles that is positive in equilib-
rium if µ > 0 (see (20d)).17 Only if the risk premium is high enough to compensate for risks
of bubble bust ψt − rt > µ, entrepreneurs hold bubbly assets st > 0.

(10e) shows decisions on capital production. Only if capital price is high enough to
compensate capital production risks (vt > 1), risk averse entrepreneurs choose positive capital
production. As σ increases, entrepreneurs decrease capital production. If σ = 0, we have
vt = 1 and hence our model reduces to a textbook AK model.

16Kocherlakota (1992) shows that if individuals borrow and lend, a short sales constraint bni,t ≥ 0 is needed
for the existence of bubbles.

17If µ = 0, ψt = rt holds in the bubble economy. In this case, st is indeterminate at the individual
entrepreneurs’ level. However, this does not affect our main results.
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2.3 Aggregation and competitive equilibrium

Let us define the following aggregate valuables, Ct =
∫ 1

0
ci,tdi, It =

∫ 1

0
Ii,tdi, Kt =

∫ 1

0
ki,tdi,

bnt =
∫ 1

0
bni,tdi, and ωt =

∫ 1

0
ωi,tdi. Then, we have

ωt = vtKt + ptb
n
t , (12a)

Ct = ρωt, (12b)

It =
vt − 1

(σvt)2
ωt. (12c)

Since Ii,t and dWi,t are independent and dWi,t follows a normal distribution with zero

mean, we aggregate (5) as dKt ≡
∫ 1

0
(dxi,t)di−δKtdt = [It+σ

∫ 1

0
Ii,tdi

∫ 1

0
(dWi,t)di−δKt]dt =

[It − δKt]dt. The long-run growth rate of economy is given by

gt =
K̇t

Kt

=
It
Kt

− δ. (13)

Since total nominal supply of bubbly assets is constant at M > 0, the market for bubbly
assets clears as bnt =M . The general good market clears as

Yt = Ct + It, (14)

For later use, let us define Vt and Bt as follows:

Vt ≡
1

vt
and Bt ≡

ptM

vtKt

. (15)

Vt is price of general good in terms of capital and Bt is the value of bubbles relative to value
of capital. We have Bt > 0 in the bubble economy, whereas we have Bt = 0 in the bubbleless
economy. Since ptM = stωt holds from (10c) and bnt = M , we have st = Bt/(1 + Bt). Thus,
st ∈ (0, 1) holds in the bubble economy (Bt > 0). Both Vt and Bt are jump variables. A
steady state equilibrium is an equilibrium where Vt and Bt are constant. At a steady state
equilibrium gt becomes constant and Kt, Ct, Yt, and pt grow at the same rate.

2.4 Economy without investment risks: σ = 0

If σ = 0 holds, our model reduces to a standard AK model and asset bubbles can not exist,
as shown in the following proposition.

Proposition 1 Suppose that σ = 0 and (4) hold. (i) There exist an unique bubbleless equi-
librium where Vt, rt, and gt satisfy

Vt = 1 ≡ VNR, rt = A− δ ≡ rNR, and gt = A− ρ− δ ≡ gNR (< rNR). (16)

Inequality (4) ensures It > 0. (ii) There exists no bubble economy.

(Proof) See Appendix B.
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3 Investment risks and the long-run effects of bubbles

This section shows that with investment risks σ > 0, asset bubbles emerge in the benchmark
economy. We also examine how bubbles affect long-run growth. We first provide a set of
equations that characterize equilibrium dynamics.

Proposition 2 Suppose σ > 0. In an equilibrium where It > 0 holds, Vt and Bt satisfy

A =

[
ρ

Vt
+

1− Vt
σ2

]
(1 +Bt), (17a)

Ḃt =

{
µ(1 +Bt) + AVt −

1− Vt
σ2

(1 +Bt)

}
Bt. (17b)

(Proof) See Appendix C.

(17a) comes from general good market equilibrium condition (14). The left-hand side (LHS)
shows general good supply (Yt/Kt) while the right-hand side (RHS) shows general good
demand ((Ct + It)/Kt). The dynamics of Bt follow (17b).

3.1 Bubbleless economy

In the bubbleless economy where Bt = Ḃt = 0 holds, (17a) alone determines equilibrium Vt.
We prove the following proposition.

Proposition 3 Suppose that σ > 0. If and only if (4) holds, there exists a unique bubbleless
steady-state equilibrium such that It > 0 holds and Vt, rt, and gt satisfy

Vt = VL (< VNR ≡ 1), (18a)

rt = AVL − δ ≡ rL (< rNR), (18b)

gt =
1− VL
σ2

− δ ≡ gL (< gNR), (18c)

where VL ∈ (ρ/A, 1) is a positive solution of (17a) under Bt = 0.

(Proof) See Appendix D.

Faced with investment risk (σ > 0), entrepreneurs invest less in capital production, compared
to no risk case σ = 0. Hence, growth rate is reduced (gL < gNR). The reduced capital
production increases capital price vt = V −1

t (VL < VNR) and hence decreases the return on
capital holding (rL < rNR). In other words, risks depress investment and then lower the
return on capital through saving-investment balance. This creates a basis for bubbles.

3.2 Bubble economy

By using (17a) and (17b), we show the existence of a bubble steady state where a low rate
of return on holding capital induces entrepreneurs to hold bubbly assets with a high return.
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Proposition 4 Suppose that σ > 0.
(i) If A ≤ µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2, the bubble steady-state equilibrium does not exist.
(ii) If

A > µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2, (19)

there exist σ1 and σ2, where 0 < σ1 < σ2 < 1/(ρ+ µ)
1
2 , such that

(a) if σ /∈ (σ1, σ2), the bubble steady-state equilibrium does not exist;
(b) if σ ∈ (σ1, σ2), there exists a unique bubble stead-state equilibrium where It > 0 holds

and Vt, Bt, rt, ψt and gt satisfy

Vt = 1− σ(ρ+ µ)
1
2 ≡ V ∗ (∈ (0, VNR)), (20a)

Bt =
A
[
1− σ(ρ+ µ)

1
2

]
1
σ
(ρ+ µ)

1
2 − µ

− 1 ≡ B∗ (> 0), (20b)

rt = AV ∗ − δ ≡ r∗, (20c)

ψt − rt = µ(1 +B∗) > 0, (20d)

gt =
1− V ∗

σ2
(1 +B∗)− δ ≡ g∗. (20e)

(Proof) See Appendix E.

Proposition 4 (i) implies that asset bubbles do not exist if technology level is extremely
low (small A). The intuition is simple. If A is small, capital accumulates at a considerably
low rate, which cannot sustain expansion of asset bubbles.18

Only in economies with advanced technology (large A), asset bubbles may exist on the
condition that insurance market is moderately developed, σ ∈ (σ1, σ2) (Proposition 4 (ii)).19

With a large risk (σ > σ1), entrepreneurs reduce capital investment considerably. Through
saving-investment balance, the rate of return on holding capital rt decreases, which leads to
a positive risk premium on bubbly assets ψt− rt > 0. Thus, entrepreneurs have an incentive
to hold bubbly assets. Only if investment risk is not too large (σ < σ2), capital accumulates
at a sufficiently high rate and can sustain expansion of asset bubbles. Thus, only for medium
investment risks (σ ∈ (σ1, σ2)), the bubble steady state exists.20

Our mechanism behind asset bubbles is different from those of the existing models. Let us
focus on infinitely-lived agent models. In Kunieda and Shibata (2016), Hirano and Yanagawa
(2017), and Miao and Wang (2018) who consider financial frictions, borrowing constraints
play an important role, which is absent from our model. In Aoki et al. (2014) where return
on holding capital bears risks (see footnote 14), entrepreneurs hold bubbly assets to diversify

18We have Yt = AKt ≥ Ct ≥ ρptM because of (1), (12a), (12b), (14), It ≥ 0, and bnt =M . Thus, ptM can
not grow faster than Kt (ψ(≡ ṗt/pt) < g∗). In the steady-state equilibrium, ψ ≤ g∗ must hold.

19Hirano and Yanagawa (2017) show that asset bubbles are likely to arise in an economy with large
inequality in productivity among firms.

20Idiosyncratic nature of investment risk is essential for the existence of bubbles. If a positive (negative)
shock dWi,t > 0 (dWi,t < 0) hits an entrepreneur, he or she accumulates more (less) wealth than the average
entrepreneurs (see (10f)). (Note that he or she does not change the share of bubbly assets holdings, s.) This
heterogeneity triggers trade of assets, including bubbly assets, among entrepreneurs.
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the risks and bubbly assets provide a lower rate of return than capital. In our model, the
rate of return on bubbly assets is higher than capital because investment risks depresses the
rate of return on holding capital. This stimulates entrepreneurs to hold bubbly assets for
purely speculative motive.

Remark: We can show that a bubble steady state exists if and only if rL < gL − µ holds
in the bubbless steady-state equilibrium (see Appendix G). Previous studies provide similar
existence conditions. Our mechanism behind a low rate of return on capital is different
from previous studies again. In overlapping-generations models, overaccumulation of capital
results in a low interest rate. In Kunieda and Shibata (2016), Hirano and Yanagawa (2017),
and Miao and Wang (2018), borrowing constraints depresses demand for borrowing, which
results in a low interest rate. In Aoki et al. (2014), risk premium on holding capital generates
a low risk-free rate. In our model, the uninsured risks depress investment and hence lower
the rate of return on capital rL through saving-investment balance.

3.3 Coexistence of the bubble and bubbleless steady states

Since (19) implies (4), we immediately obtain the following corollary.

Corollary 1 Suppose that σ > 0 and that (19) holds. If σ ∈ (σ1, σ2), there exist two steady-
state equilibria; the bubble and bubbleless steady-state equilibria.

Corollary 1 states that the bubble and bubbleless steady states coexist under the same
parameter set. Figure 3 shows the phase diagram (see Appendix F). The bubble steady state
is unstable while the bubbleless one is totally stable.

[Figure 3]

A sunspot shock triggers a collapse of bubbles. Assume that an economy is in the bubble
steady state at time 0. At time t1(> 0), a sunspot shock hits the economy. (The shock
follows a Poisson process with an arrival rate µ.) Then, asset bubbles burst. Since both Vt
and Bt are jump variables, the economy immediately jumps to the bubbleless steady state.
The remaining of this section examines how a collapse of bubbles affects long-run growth.

3.4 Growth effects of bubbles

The following proposition shows that even though there is no borrowing constraint in our
model, asset bubbles enhance long-run growth under some conditions.

Proposition 5 Suppose that both the bubble and bubbleless steady-state equilibrium exist.
(i) If µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2 < A ≤ 2(µ+ 2ρ), we have g∗ > gL.
(ii) If A > 2(µ+ 2ρ), then there exists σ ∈ (σ1, σ2) such that

(a) if σ = σ, we have g∗ = gL;
(b) if σ ∈ (σ1, σ), we have g∗ < gL;
(c) if σ ∈ (σ, σ2), we have g∗ > gL.

(Proof) See Appendix H.
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Proposition 5 (i) shows that in the economy with relatively low technology (small A), bubbles
always enhance long-run growth. Proposition 5 (ii) (c) shows that in the economy with
advanced technology (large A), Bubbles boost long-run growth if the insurance market is less
developed.

To understand Proposition 5 intuitively, we rewrite the first-order condition for Ii,t, (A.14),
as

(vt − 1)Ii,t =
(σ · vtIi,t)2

vtki,t + bi,t
. (21)

The LHS shows the (average) investment return (vt − 1)Ii,t. This represents entrepreneurs’
incentive of increasing Ii,t. The RHS shows investment risk (σvtIi,t)

2 relative to entrepreneur
i’s wealth, which represents entrepreneurs’ incentive of reducing Ii,t to avoid investment risks.

Asset bubbles bi,t have a direct effect on the RHS. If vt remains constant, asset bubbles
increase entrepreneur i’s wealth from vtki,t to vtki,t + bi,t, which negatively affects the RHS.
In sum, asset bubbles make entrepreneurs wealthy, which raises entrepreneurs’ tolerance to
investment risks and encourage them to take more investment risks.

Besides, asset bubbles indirectly affect the RHS through vt. General good market equi-
librium Yt = Ct + It, or equivalently (17a), shows this effect. The bubbleless steady state
is characterized by (17a) alone. Figure 4 shows the graphs of both sides of (17a). Asset
bubbles make entrepreneurs wealthy, which has positive effects on demand for general good
Ct + It (see (12b) and (12c)). Since supply of general good is fixed at Yt = AKt in the short
run, price of general good relative to capital, 1/vt, increases. Thus, we have v∗t < vL,t (see
Appendix G for a formal proof). A decrease in vt reduces the variance of investment shock
(σ · vtIi,t)2, which reduces the RHS and crowds in capital production. A decrease in vt have
a negative effect on the LHS, which crowds out capital production.

[Figure 4]

If A is small, the average growth rate of capital is low. Thus, entrepreneurs care more
about investment risks. If σ is large, the RHS of (21) becomes relatively important. Thus,
the crowding-in effect dominates the crowding-out effect. Proposition 5 (i) and (ii)(c) hold.

We emphasize the importance of the direct wealth effect of bubbles. If there is no direct
effect, (21) reduces to

(vt − 1)Ii,t =
(σ · vtIi,t)2

vtki,t
⇒ Ii,t =

1

σ2

(
1− 1

vt

)
ki,t.

As discussed above, asset bubbles decrease vt. The above equation shows that without the di-
rect wealth effect, asset bubbles discourage capital production of each entrepreneur. We con-
clude that asset bubbles stimulate growth mainly because asset bubbles make entrepreneurs
wealthy and then encourage them to take more investment risks.

In infinitely-lived agent models without borrowing constraints, Aoki et al. (2014) show
that asset bubbles always decrease growth. Recent studies show that in the presence of
borrowing constraints, bubbles may increase growth. See Kocherlakota (2009), Kunieda and
Shibata (2016), Hirano and Yanagawa (2017), and and Miao and Wang (2018). Note that
those authors assume incomplete insurance to ensure binding borrowing constraints.
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In our model, there are no borrowing constraints. Nevertheless, asset bubbles stimulate
growth. The key to this result is incomplete insurance. Our result suggests that even without
financial frictions, bubbles have a growth enhancing effect if insurance is incomplete. We
emphasize the similarity between the existing models and our models. In both models,
bubbles positively affect entrepreneurs’ wealth, which in turn boosts long-run growth.

3.5 Collapse of bubbles and the long-run effect

From Corollary 1 and Proposition 5, we obtain the following corollary.

Corollary 2 Suppose that either Proposition 5 (i) or (ii)(c) holds. In addition, suppose that
the economy is initially in the bubble steady state and that at time t1(> 0), a sunspot shock
triggers a collapse of asset bubbles. Then, at time t1, the economy jumps to the bubbleless
steady state and long-run growth rate of the economy declines suddenly and permanently.

Even without any fundamental changes, the collapse of bubbles causes a permanent decline
in growth, leading to a prolonged recession.

The benchmark model fails to capture instant and sharp contractions (Fact 1). At the
moment of asset bubble bust, general good production remains constant since it is determined
by capital, Yt = AKt. A collapse of bubbles affects only the division between Ct and It in
the short run, because Yt = Ct + It holds. Thus, Ct and It moves in the opposite direction
in the short run.

4 Capital Utilization and the short-run effects of bubbles

We now endogenize capital utilization and then show that under this extension, a collapse
of bubbles causes instant declines in all of capital utilization rate, consumption, capital
production, general good production, GDP, wealth-to-GDP ratio, and long-run growth.

Our formulation of capital utilization follows Miao (2014).21 Denote capital utilization
rate of entrepreneur i as ζi,t ≥ 0. We do not impose any upper bounds on ζi,t for simplicity.
If entrepreneur i lends one unit of capital with utilization rate ζi,t, he or she earns capital
rental income of qtζi,t. As capital utilization increases, capital depreciates more. We assume
that the depreciation rate is given by δ̄(ζi,t) = δζ2i,t/2, where δ > 0. The rate of return on
holding one unit of capital is given by

ri,tdt =
qtζi,t · dt− δ̄(ζi,t)vt · dt+ dvt

vt
. (22)

Given qt and vt, entrepreneur i chooses ζi,t to maximize ri,t, which yields

ζi,t =
qtVt
δ

≡ ζt, (23)

where Vt = 1/vt again. A high capital price means a large value of capital depreciation.
Thus, ζt decreases with capital price vt = Vt

−1. Since all entrepreneurs choose the same

21Guerron-Quintana et al. (2019) also consider endogenous capital utilization in a model with bubbles,
although they focus on the effect of recurrent bubbles.
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level of capital utilization, we have ri,t = rt. In other respects, the optimization problem of
entrepreneurs is the same as the benchmark model. Thus, (10a)–(10f) and (11) hold.

The production function of the general good is given by Yt = AKD
t , where K

D
t is capital

input. The capital rental rate is qt = A. Since KD
t = ζtKt holds in equilibrium, the

aggregate production function is given by Yt = AζtKt. Since the capital depreciation rate is
δ̄(ζt) = (AVt)

2/(2δ), growth rate of the economy is given by

gt =
1− Vt
σ2

(1 +Bt)−
(AVt)

2

2δ
. (24)

We focus on economies with investment risks, σ > 0. Analogously to Proposition 2, in
an equilibrium, Vt and Bt satisfy

Aζt =

(
ρ

Vt
+

1− Vt
σ2

)
(1 +Bt), (17a′)

Ḃt =

[
µ(1 +Bt) + AζtVt −

1− Vt
σ2

(1 +Bt)

]
Bt, (17b′)

were ζt is given by

ζt =
AVt
δ
. (25)

(17a′) comes from general good market equilibrium (14) that relates general good supply,
Yt/Kt, of the LHS with general good demand, (Ct + It)/Kt, on the RHS.

Remark: If there are no investment risks σ = 0, we have Vt = 1. Capital utilization rate is
determined by exogenous parameters, ζt = A/δ. Thus, the model with endogenous capital
utilization works the same way as a textbook AK model.

4.1 Existence of steady states

In the following discussion, a hat above each variable indicates that capital utilization is
endogenized. We first show the existence of bubbleless steady-state equilibrium.

Proposition 6 Suppose that σ > 0. If and only if δ > 0 is small enough to satisfy

δρ < A2, (26)

there exists a unique bubbleless steady-state equilibrium such that It > 0 holds and Vt = V̂L,
ζt = ζ̂L, and gt = ĝL, where V̂L ∈ (0, 1), ζ̂L, and ĝL are defined in Appendix I.

(Proof) See Appendix I.

Next, we show the existence of bubble steady-state equilibrium.

Proposition 7 Suppose that the following two inequalities hold;

σ < (ρ+ µ)−
1
2 , (27)

δ < AV ∗(1 +B∗), (28)

where V ∗ and B∗ are given by (20a) and (20b), respectively. Then, there exists a unique
bubble steady-state equilibrium where It > 0 holds and Vt = V̂ ∗, Bt = B̂∗, ζt = ζ̂∗, and
gt = ĝ∗, where V̂ ∗ ∈ (0, 1), B̂∗ > 0, ζ̂∗, and ĝ∗ are defined in Appendix J.
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(Proof) See Appendix J.

From (27) and (28), we can derive lower and upper bounds of σ that ensure the existence
of the bubble steady state. Thus, the intuition behind Proposition 7 is similar to that of
Proposition 4.22

Appendix K shows that conditions (27) and (28) implies (26). The following corollary
holds.

Corollary 3 Suppose that conditions (27) and (28) hold. Then, there exist two steady-state
equilibria; the bubble and bubbleless steady-state equilibria.

As in the benchmark AK model, a sunspot shock triggers a collapse of bubbles. Since both
of Vt and Bt are jump variables, after a collapse of the bubbles, the economy immediately
moves from the bubble steady state to bubbleless steady state.

4.2 Comparison between the bubble an bubbless economies

We examine how asset bubbles affect aggregate variables. Denote capital price, capital uti-
lization rate, aggregate wealth, wealth-to-GDP ratio, aggregate consumption, capital invest-
ment, general good production, and real and nominal GDP in the bubble (bubbleless) steady

state as v̂∗, ζ̂∗, ω̂∗
t , Υ̂

∗, Ĉ∗
t , Î

∗
t , Ŷ

∗
t , ĜDP

∗
t , and n̂GDP

∗
t (v̂L, ζ̂L, ω̂L,t, Υ̂L, ĈL,t, ÎL,t, ŶL,t,

ĜDPL,t, and n̂GDPL,t), respectively. We omit time index t from v̂∗, ζ̂∗, Υ̂∗, v̂L, ζ̂L, and Υ̂L

because they are constant at a steady state.
Nominal GDP and the wealth-to-GDP ratio are given by

n̂GDP t = Ĉt + v̂Ît, and Υ̂ = ω̂t/n̂GDP t,

respectively. In the real GDP, we set capital price at the bubble steady state price, v∗.

ĜDP t = Ĉt + v̂∗Ît.

In the above equations, we omit asterisks and subscript L, except for v∗ in ĜDP t.
Now, we prove the following proposition.

Proposition 8 Suppose that both the bubble and bubbleless steady state equilibria exist.
Then, the following statements are true.
(i) We have

ζ̂∗ > ζ̂L and Υ̂∗ > Υ̂L.

(ii) Suppose that both steady states have the same level of capital stock at time t. Then, we
have

Ĉ∗
t > ĈL,t and Ŷ ∗

t > ŶL,t.

22Condition (28) can be written as A2(ρ+ µ)σ3 − 2A2(ρ+ σ)1/2σ2 + (A2 + µδ)σ − δ(ρ+ µ)1/2 > 0. This
inequality and condition (27) give lower and upper bounds of σ.
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If ρ > 0 is sufficiently small, or if σ ∈ (σ, (ρ+ µ)−1/2), we have

Î∗t > ÎL,t and ĜDP
∗
t > ĜDPL,t. (29)

(iii) Finally, if ρ > 0 is sufficiently small, we have

ĝ∗ > ĝL. (30)

σ is defined in Appendix L.

(Proof) See Appendix L.

Asset bubbles promote various macroeconomic performance. How bubbles affect aggre-
gate demand is a key to this result. Let us use general good market equilibrium condition
Ŷt = Ĉt + Ît, or equivalently (17a′). In the bubbleless economy where Bt = 0 holds, (17a′)
and (25) determine equilibrium values of V̂t and ζ̂t. The LHS of (17a′) is general good supply
relative to capital, Ŷt/K̂t = Aζ̂t. Since a high v̂t discourages capital utilization, Ŷt/K̂t de-
creases with v̂t(≡ V̂ −1

t ) (see Figure 5). The RHS of (17a′) is demand for general good relative
to capital, (Ĉt + Ît)/K̂t (see (12b) and (12c) too). This increases with v̂t partly because v̂t
increases entrepreneurs’ wealth ω̂t = v̂tK̂t + b̂t.

[Figure 5]

Asset bubbles make entrepreneurs wealthy and thus stimulate aggregate consumption (see
(12b)). Besides, as Proposition 5 in Section 3.4 shows, asset bubbles encourage entrepreneurs
to take more risk and hence increase capital investment. Asset bubbles increase aggregate
demand for general good. The graph of (Ĉt + Ît)/K̂t moves upward and v̂t decreases. A
reduction in v̂t encourages capital utilization (ζ increases from ζ̂L and ζ̂∗). Hence, general
good production increases. In sum, asset bubbles stimulate aggregate demand for general
good, leading to an increase in capital utilization and production.

Since asset bubbles increase both aggregate consumption and investment, the bubble
steady state has a larger real GDP than the bubbleless one. Since asset bubbles increase
wealth more than nominal GDP, the wealth-to-GDP ratio is higher in the bubble economy
than in the bubbleless economy.23

4.3 Collapse of bubbles: the short- and long-run effects

Corollary 3 and Proposition 8 immediately yield the following important result.

Corollary 4 Suppose that there exist both the bubble and bubbleless steady state equilibria
and that ρ > 0 is small enough to ensure (29) and (30). In addition, suppose that the economy
is initially in the bubble steady state and that at time t1(> 0), a sunspot shock causes a collapse
of asset bubbles. Then, at time t1, the economy jumps to the bubbleless steady state and hence
experiences instant declines in all of capital utilization rate, aggregate consumption, aggregate
investment, general good production, economic growth rate, real GDP, and the wealth-to-GDP
ratio.

23We can show that even if utilization rate is exogenously fixed, asset bubbles increase the wealth-to-GDP
ratio because (L.2) in Appendix L holds even if utilization rate is fixed.
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A collapse of bubbles initially depresses various macroeconomic performances at time t1.
Since growth is depressed permanently, the economy experiences a long-term depression. See
Figure 2. This prediction of our model is consistent with recent economic crisis.

Demand side is relatively important for initial declines, whereas supply side is relatively
important for the long-term depression. When bubbles burst, entrepreneurs become less
wealthy. The aggregate demand for general good decreases. Then, some of production fa-
cilities (capital) become inactive (ζ̂t decreases) although the number of production facilities
(capital) remains constant. This causes instant and simultaneous declines in GDP and other
aggregate variables . Because of decreased growth, the number of production facilities (cap-
ital) gradually decreases in the long run. Accordingly, the supply of general good decreases
in the long run, which results in a prolonged recession.

The following four points are worth mentioning. First, even without any changes in
fundamentals, a collapse of bubbles causes simultaneous declines in all of capital utilization,
aggregate consumption, capital and general goods production, GDP, and growth.

Second, a collapse of bubbles has not only long-run but also short-run negative impacts.
For example, at the moment of a collapse of bubbles (time t1), real GDP decreases from

ĜDP
∗
t to ĜDPL,t. In the long run, depressed growth further depresses macroeconomic

performance. Remember that as discussed in Introduction, the existing models of rational
pay less attention to the short-run effects of a collapse of bubbles because they focus primary
on how bubbles affect long-run capital accumulation.24

Third, at the moment of a collapse of bubbles (time t1), capital remains unchanged in our
model. Even in a short period during which capital does not change, a collapse of bubbles
induces an instant contraction at time t1. This is because a collapse of bubbles induces an
instant decline in capital utilization, which allows general good production Ŷt(= Aζ̂tK̂t) to
decline instantly. This is consistent with Panels (b), (c), and (d) in Figure 1.

Finally, we examine if aggregate investment decreases more or less than consumption in
real terms. We show the following proposition.

Proposition 9 Suppose that both the bubble and bubbleless steady state equilibria exist.
Then, for σ ∈ (σ, (ρ+ µ)−1/2), we have

0 >
ĈL,t − Ĉ∗

t

Ĉ∗
t

>
v̂∗ÎL,t − v̂∗Î∗t

v̂∗Î∗t
.

(Proof) See Appendix M.

Since the bubble steady state equilibrium exists, inequality σ < (ρ+µ)−1/2, (27), is satisfied.
Condition σ ∈ (σ, (ρ + µ)−1/2) means a relatively large σ. Proposition 9 says that with
relatively large σ, at the moment of a collapse of bubbles, aggregate investment decreases
more than aggregate consumption. As Proposition 5 (ii) shows, if σ is large enough, asset
bubbles promote investment even if capital utilization is exogenous. Thus, a collapse of
bubbles induces a large decline in aggregate investment, which is consistent with data.

24As discussed in Introduction, the existing models of rational bubbles do not capture an initial decline
in final output (real GDP) because final output is determined mainly by capital. Consequently, in the short
run, a collapse of bubbles affects only the division of output between aggregate consumption and investment,
and hence the two aggregate variables move in the opposite direction.
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4.4 Temporal technology shock and collapse of bubbles

This section argues that in the presence of asset bubbles, even a temporal technology shock
can have a permanent effect on macroeconomic performance.

We first point out that a technology shock may trigger a collapse of bubbles. Appendix
K shows that the right-hand side of (28) increases with A (see (K.1)). Thus, if a negative
shock on A hits the economy, condition (28) is violated and then the bubble steady state no
longer exists. Note that (26) can be satisfied even if (28) is not satisfied (see Appendix K
and Corollary 3). Thus, the bubbleless steady state still exists.

Let us consider the following scenario. Suppose that at time 0, technology level of the
economy, A, satisfies condition (28) and then the economy is in the bubble steady state.
At time t1(> 0), an unexpected negative technology shock hits the economy (a decrease
in A) and then condition (28) breaks. Asset bubbles collapse and the economy jumps to
the bubbleless steady state. At time t2(> t1), technology level unexpectedly returns to the
original level. After time t2(> t1), the bubbleless economy continues to prevail.

Under this scenario, at time t1, the economy experiences instant declines in capital utiliza-
tion, aggregate consumption and investment, general goods production, GDP, and growth.
These instant declines are caused by two factors. Of course, the negative shock on A itself
has a negative impact on macroeconomy. In addition, the collapse of bubbles causes the
economy to jump to the bubbleless steady state. This means that asset bubbles amplify the
negative impact of the negative technology shock.

When A returns to the original level at time t2, macroeconomic performance recovers
slightly. However, since bubbles no longer exist, the economy remains to show a poorer
performance than the initial economy. Since growth remains lower than the initial growth
rate, economic activities are depressed further in the long run. Thus, even a temporally
negative technology shock has permanent negative impacts on macroeconomic performance.

4.5 Fundamental shocks without bubbles

Without bubbles, changes in fundamentals can not explain some of comovements among
aggregate variables. Appendix N shows that in the bubbleless steady state, (i) each of a
decrease in A, an increase in δ, and an increase in σ reduces growth rate ĝL but increases the
wealth-to-GDP ratio Υ̂L and (ii) an increase in ρ reduces ĝL but increase capital utilization
ζ̂L. These are not surprising results since our model is quite simple. Nevertheless, once asset
bubbles are allowed, our simple model provides an empirically relevant prediction.

4.6 Bubbles and welfare

The aggregate capital at time t is K̂t. Entrepreneur i holds k̂i,t units of capital at time

t, where
∫
k̂i,tdi = K̂t. Appendix O shows that in the bubbleless steady state, utility of

entrepreneur i at time t, WL(k̂i,t), is given by

ρWL(k̂i,t) = log
ĈL,t

K̂t

k̂i,t +
1

ρ

[
ĝL − 1

2
σ2(ĝL + δ̄(ζ̂L))

2

]
. (31)
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The term −σ2

2ρ
(ĝL + δ̄(ζ̂L))

2 captures utility loss from investment risks. Naturally, a large σ
implies a large utility loss. Similarly, in the bubble steady state, utility of entrepreneur i at
time t, W ∗(k̂i,t), is given by

ρW ∗(k̂i,t) = log
Ĉ∗
t

K̂t

k̂i,t +
1

ρ

ĝ∗ − 1

2

σ
(
ĝ∗ + δ̄(ζ̂∗)

)
1 + B̂∗


2
− µ

[
W ∗(k̂i,t)−WL(k̂i,t)

]
. (32)

See Appendix O again. The last term represents utility loss of bubbles burst. The term

−σ2

2ρ

(
ĝ∗+δ̄(ζ̂∗)

1+B̂∗

)2
captures utility loss from investment risks and shows that B̂∗ mitigate the

utility loss. Intuition is simple. As we discuss just after Proposition 5, given vt, asset bubbles
make entrepreneurs wealthier and then increase entrepreneurs’ tolerance to investment risks.

From (31) and (32), we obtain

(ρ+ µ)
[
W ∗(k̂i,t)−WL(k̂i,t)

]
= log

Ĉ∗
t

ĈL,t
+
ĝ∗ − ĝL

ρ
+
σ2

2ρ

(ĝL + δ̄(ζ̂L)
)2

−

(
ĝ∗ + δ̄(ζ̂∗)

1 + B̂∗

)2
 .

From Proposition 8, the first and second terms are positive. Since asset bubbles mitigate

utility loss from investment risks, the term (ĝL+ δ̄(ζ̂L))
2 −
(
ĝ∗+δ̄(ζ̂∗)

1+B̂∗

)2
is always positive (see

Appendix P for a proof). We obtain the following proposition.25

Proposition 10 Suppose that both the bubble and bubbleless steady-state equilibria exist and
that ρ > 0 is small enough to ensure that ĝ∗ > ĝL. At the moment of a collapse of bubbles
caused by a sunspot shock, welfare of all entrepreneurs decreases instantly.

5 Discusssion and Conclusion

We construct an infinitely-lived agent model of rational bubbles. Even without borrowing
constraints, asset bubbles emerge and accelerate long-run growth. If capital utilization is
endogenized, a burst of bubbles causes an instant contraction of various economic activities
as well as a prolonged low growth. Since the existing studies on rational bubbles do not fully
address how the instant contraction, we believe that our model makes some progress.

Still, our model has some shortcomings. We shortly discuss the limitations of the present
study and the possible future works. First, the present study is purely qualitative. Thus, it
is important to examine the impact of a burst of bubbles quantitatively. Second, as Mendoza
and Terrones (2012) show, not all but many of credit booms end with an economic crisis.
The present study does not address how asset bubbles are related to credit booms. Thus,
incorporating credit frictions into our model would be an important extension. Third, no pol-
icy interventions are considered in this study. It is said that contractionary monetary policy
might have triggered the asset bubble bust around 1990 in Japan. How policy interventions
affect the existence of bubbles and the impacts of bubbles would be interesting. Fourth, asset

25Appendix Q shows that bubbles improve welfare even if capital utilization is exogenously fixed.
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bubbles might be contagious internationally. Considering effects of bubbles in multi-country
settings has to be done.

Many authors have already tackled these issues by using mainly OLG models.26 However,
since our model is quite simple and fairy close to standard macroeconomic models that are
widely used in modern macroeconomic literature, we believe that our model would be an
useful basis for these extensions.
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(d) Capacity utilization

Figure 1

Source: Data on GDP and population come from the Penn World Table 9.1(Feenstra, Inklaar,
and Timmer (2015)). Consumption and investment data are obtained from National Ac-
counts data at Penn Word Table 9.1. Data on capital are obtained from “rkna” in Penn
World Table 9.1. This measure of capital is adjusted for difference in marginal product
among different types of capital and is a proper measure of capital input. Capacity uti-
lization is obtained by Board of Governors of the Federal Reserves System (G.17 Industrial
Production and Capacity utilization). All of these are the annual data.
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Appendix

A Bellman equation and the optimal behavior of an entrepreneur

In the bubble economy, let us denote the value function of entrepreneur i with ωi,t by
U∗(ωi,t, t). In the bubbleless econoomy, we have ωi,t = ai,t. Then, U(ai,t, t) is the value
function for the bubbleless economy.

Following Stokey (2009, chapter 3), we derive the Bellman equations for U∗(ωi,t, t) and
U(ai,t, t). Consider an infinitesimal short time interval of length dt. Since bubbles burst with
probability µdt, the Bellman equation of an entrepreneur with asset ωi,t satisfies

U∗(ωi,t, t) = max
ci,t,Ii,t,ki,t,bni,t

{
(log ci,t)dt

+
1

1 + ρdt
Et [(1− µdt) · U∗(ωi,t+dt, t+ dt) + µdt · U(ai,t+dt, d+ dt)]

}
,

where the maximization is subject to Eqs. (7) and (9). We rearrange the above equation by
using U∗(ωi,t+dt, t+ dt) = U∗(ωi,t, t) + dU∗(ωi,t, t) as follows:

ρU∗(ωi,t, t) = max
ci,t,Ii,t,ki,t,bni,t

{
(1 + ρdt) log ci,t

+ Et

[
dU∗(ωi,t, t)

dt
− µ(U∗(ωi,t+dt, t+ dt)− U(ai,t+dt, d+ dt))

]}
.

Taking a limit of dt→ 0 in the above equation yields

ρU∗(ωi,t, t) = max
ci,t,Ii,t,ki,t,bni,t

{
ln ci,t +

EdU∗(ωi,t, t)

dt
− µ[U∗(ωi,t, t)− U(ai,t, t)] s.t (7) and (9)

}
.

(A.1)

Similarly, in the bubbleless economy, we have

ρU(ai,t, t) = max
ci,t,Ii,t

{
ln ci,t +

EdU(ai,t, t)

dt
s.t (7) and (9)

}
. (A.2)

We guess that U∗(ωi,t, t) = D∗(lnωi,t + u∗t ) and U(ai,t, t) = D(ln ai,t + ut). The asset
holdings ωi,t follows a stochastic process with a Brownian motionWi,t. If we use Ito’s lemma,
the functional form of dU∗(ωi,t, t) is given by

dU∗(ωi,t, t) = D∗dωi,t
ωi,t

− D∗

2

(
dωi,t
ωi,t

)2

+D∗du∗t . (A.3)

From (9), (dωi,t)
2 is computed as follows

(dωi,t)
2 = [rtai,t + ψtbi,t + (vt − 1)Ii,t − ci,t]

2 (dt)2

+2 [rtai,t + ψtbi,t + (vt − 1)Ii,t − ci,t]σvtIi,tdtdWi,t + (σvtIi,tdWi,t)
2

= (σvtIi,t)
2 dt, (A.4)
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where we use (dt)2 = 0, dtdWi,t = 0, and (dWi,t)
2 = dt. We substitute (9) and (A.4) into

(A.3) and then take an expectation to obtain

EtdU
∗(ωi,t, t) = Et

{
D∗ [rtai,t + ψtbi,t + (vt − 1)Ii,t − ci,t] dt+ σvtIi,tdWi,t

ωi,t

−D
∗

2

(
σvtIi,t
ωi,t

)2

dt+D∗du∗t

}

= D∗ [rtai,t + ψtbi,t + (vt − 1)Ii,t − ci,t] dt

ωi,t
− D∗

2

(
σvtIi,t
ωi,t

)2

dt+D∗du∗t , (A.5)

where the second line uses EtdWi,t = 0. EtdU(ai,t, t) is given in the same manner.
The Bellman equation in the bubbleless economy is given by

ρU(ai,t, t) = max
ci,t,Ii,t

{
log ci,t +D

rtai,t + (vt − 1)Ii,t − ci,t
ai,t

− D

2

(
σvtIi,t
ai,t

)2

+Du̇t

}
. (A.6)

The first-order conditions are given by

ci,t :
1

ci,t
=

D

ai,t
(A.7)

Ii,t :
vt − 1

ai,t
=

(
σvt
ai,t

)2

Ii,t (A.8)

If we use (A.6), (A.7), and (A.8), we obtain

ρD log ai,t+ ρDut = log ai,t− logD+D

[
rt +

(
vt − 1

σvt

)2
]
− 1− D

2

(
vt − 1

σvt

)2

+Du̇t. (A.9)

Therefore, we obtain

D =
1

ρ
(A.10)

ρut = ρ ln ρ+ rt +

(
vt − 1

σvt

)2

− ρ− 1

2

(
vt − 1

σvt

)2

+ u̇t. (A.11)

Then, we have
ci,t = ρai,t,

The transversality condition is satisfied:

lim
t→∞

Et

[
ai,t
ci,t

e−ρt
]
= lim

t→∞
ρe−ρt = 0.

We next consider the Bellman equation in the bubbly economy. We distinguish capital
price in the bubble economy v∗t from that in the bubbleless economy vt because the existence

2



bubble may affect value of capital. If we use U∗(ωi,t, t) = D∗ (logωi,t + u∗t ) and U(ai,t, t) =
D (log ai,t + ut), the Bellman equation in the bubbly economy can be written as

ρU∗(ωi,t, t) = max
ci,t,Ii,t,bni,t

{
log ci,t +D∗ rt(ωi,t − bi,t) + ψtbi,t + (v∗t − 1)Ii,t − ci,t

ωi,t

− D∗

2

(
σv∗t Ii,t
ωi,t

)2

+D∗u̇∗t

− µ

[
D∗ (logωi,t + u∗t )−D

(
log

vt
v∗t

(ωi,t − bi,t) + ut

)]}
. (A.12)

The first line of the above equation uses v∗t ki,t = ωi,t − bi,t. The third line uses ai,t = vtki,t =
vt(ωi,t − bi,t)/v

∗
t .

In the bubble economy, the first-order conditions are given by

ci,t :
1

ci,t
=
D∗

ωi,t
(A.13)

Ii,t :
v∗t − 1

ωi,t
=

(
σv∗t
ωi,t

)2

Ii,t (A.14)

bi,t : D∗ψt − rt
ωi,t

= D
µ

ωi,t − bi,t
(A.15)

Let us define si,t ≡ bi,t/ωi,t. From (7) and (A.15), we obtain

si,t = 1− D

D∗
µ

ψt − rt
= st. (A.16)

Thus, all entrepreneur holds the same fraction of their wealth as bubbly assets.
Using (A.13), (A.14), (A.15), and (A.16), we rewrite (A.12) as

ρD∗ logωi,t + ρD∗u∗t = logωi,t − logD∗ +D∗

[
rt(1− si,t) + ψtsi,t +

(
v∗t − 1

σv∗t

)2
]
− 1 +D∗u̇∗t

− D∗

2

(
v∗t − 1

σv∗t

)2

− µ

[
D∗(lnωi,t + u∗t )−D

(
ln
vt
v∗t

(1− st)ωi,t + ut

)]
.

(A.17)

Therefore, we obtain

D∗ =
1

ρ
(= D) (A.18)

ρu∗t = ρ ln ρ + rt(1− st) + ψtst +

(
v∗t − 1

σv∗t

)2

− ρ− 1

2

(
v∗t − 1

σv∗t

)2

+ µ

{
ln

[
(1− st)

v∗t
vt

]
− u∗t + ut

}
+ u̇∗t . (A.19)

The behavior of entrepreneur i is summarized by (10a)–(10e) and the transversality con-
dition holds as (11). Note that in these equations, we do not distinguish v∗t from vt for
simplicity. Substituting (10a)–(10e) into (9) yields (10f).
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B Proof of Proposition 1

Consider the case where there are no risks concerning capital production σ = 0. From the
first-order condition for Ii,t, (A.8) or (A.14), we obtain the first equation of (16). Hence, the
capital price vt is constant at 1(= ϕ−1) and v̇t = 0. The rate of return on capital is given by
the second equation of(16).

We next show that Bt = 0. If we use Bt = ptM/(vtKt), (12b), and the first equation of
(16), the good market clearing condition (14) can be written as

A = ρ(1 +Bt) +
It
Kt

. (B.1)

Since It ≥ 0, Bt = ptM/(vtKt) ≥ 0 must be bounded above. Suppose that price of bubbly
assets is positive, pt > 0. Then, we have

Ḃt =

(
ψt −

K̇t

Kt

)
Bt

= {ψt − A+ ρ (1 +Bt) + δ}Bt

= {ψt − rt + ρ (1 +Bt)}Bt

= (µ+ ρ) (1 +Bt)Bt. (B.2)

The first line uses vt = 1, v̇t = 0, and ψ ≡ ṗt/pt. The second line uses (13) and (B.1). The
third line uses vt = 1, dvt = 0, and rt ≡ q+v̇t−δvt

vt
. The last line uses vt = 1, (10b), (10d), and

µ

ψt − rt
= 1− st =

vtKt

vtKt + ptM
=

1

1 +Bt

. (B.3)

Since Bt ≥ 0 must be bounded, the solution of (B.2) is Bt = 0. Thus, there is no bubble
equilibrium. From Bt = 0 and (B.1), we have It/Kt = A − ρ > 0. From (13) and (B.1), we
obtain the last equation of (16).

C Proof of Proposition 2

If It > 0, then (12c) holds. We substitute (7), (12b) and (12c) into (14) and the after some
rearrangement by using Bt = ptM/(vtKt), we obtain (17a).

In the bubble economy Bt > 0, we can derive the dynamics of Bt as follows

Ḃt

Bt

=
ṗt
pt

− v̇t
vt

− K̇t

Kt

= µ(1 +Bt) + AVt −
1− Vt
σ2

(1 +Bt).

In the second equality, we use (2), (12c), (13), and (B.3), rt ≡ q+v̇t−δvt
vt

and ψt ≡ ṗt/pt.

Note that in the bubbleless economy, we have pt = 0, which implies that Bt = Ḃt = 0.
Then, (17b) holds in both the bubble and bubbleless economies.
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D Proof of Proposition 3

In the bubbleless economy where Bt = Ḃt = 0 holds, (17a) reduces to

A− ρ

Vt
=

1− Vt
σ2

. (D.1)

From (12c) and Vt ≡ 1/vt, we know that in the bubbleless economy, we have It/Kt =
(1 − Vt)/σ

2. Thus, if and only if the right-hand of (D.1) is positive, we have It > 0. In
addition, we have Ct = ρKt/Vt. Thus, Ct > 0 if and only if Vt > 0. We examine a condition
under which (D.1) has a positive solution Vt ensuring that the right-hand of (D.1) is positive.

The left-hand side of (D.1) increases from zero to A − ρ as Vt increases from ρ/A to 1
(see Figure A1). The right-hand of (D.1) decreases from 1/σ2 to zero as Vt increases from
zero to 1. Thus, if and only if A − ρ > 0, (D.1) has a unique solution VL ∈

(
ρ
A
, 1
)
ensuring

the right-hand of (D.1) is positive and hence It > 0.

[Figure A1]

Substituting (2), vt = 1/VL, and dvt = 0 into rt = (A − v̇tδ)/vt yields (18b). Since
VL < 1(≡ VNR), we have rL < rNR. Substituting ωt = vtKt = Kt/Vt and (12c) into (13)
yields (18c). Because of (D.1), we can rewrite (18c) as

gL =

(
A− ρ

VL

)
− δ. (D.2)

Since VL < 1(≡ VNR), we have gL < gNR.

E Proof of Proposition 4

We first prove the following lemma.

Lemma A1 Suppose that σ > 0. If and only if

A
[
1− σ(ρ+ µ)

1
2

]
>

1

σ
(ρ+ µ)

1
2 − µ > 0, (E.1)

there exists a unique bubble steady-state equilibrium where It > 0 holds and Vt, Bt, rt, ψt,
and gt satisfy (20a), (20b), (20c), (20d), and (20e), respectively.

Proof: If we assume that Bt > 0, (17b) and Ḃt = 0 imply

AVt =

(
1− Vt
σ2

− µ

)
(1 +Bt). (E.2)

Solving (17a) and (E.2) for Vt yields V = 1 ± σ(ρ + µ)1/2. Note that if we use (15), (12c)
can be written as It = (1− Vt)(1 +Bt)Kt/σ

2. To ensure It > 0, we must have Vt < 1. Thus,
(20a) holds. From s = B/(1 + B) and (10d), we obtain (20d). Substituting (20a) into (E.2)
yields (20b).

Condition (E.1) implies that 1 > σ(ρ+µ)1/2, which ensures that V ∗ > 0. Condition (E.1)
also ensures that B∗ > 0. Then, (E.1) ensures that V ∗ > 0 and B∗ > 0.
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Conversely, suppose that V ∗ > 0 and B∗ > 0. Then, V ∗ > 0 implies that 1 > σ(ρ+µ)1/2.
Thus, B∗ > 0 implies that condition (E.1).

Since Vt is constant at V ∗, we obtain (20c) from r = (A − v̇t − δ)/vt. Substituting
ωt = vtKt + ptM = (1 + Bt)Kt/Vt and (12c) into (13) yields (20e). Lemma (A1) is proved.
□

Note that (E.1) implies

σ < min

{
1

(ρ+ µ)
1
2

,
(ρ+ µ)

1
2

µ

}
. (E.3)

We also have

1

(ρ+ µ)
1
2

<
1

(ρ+ µ)
1
2

ρ+ µ

µ
=

(ρ+ µ)
1
2

µ
. (E.4)

σ < 1/(ρ+ µ)
1
2 implies the second inequality of (E.1). Hence, (E.1) holds if and only if

σ <
1

(ρ+ µ)
1
2

, (E.5)

A
[
1− σ(ρ+ µ)

1
2

]
>

1

σ
(ρ+ µ)

1
2 − µ. (E.6)

Since σ > 0, we can rewrite (E.6) as

Γ(σ) ≡ A(ρ+ µ)
1
2σ2 − (A+ µ)σ + (ρ+ µ)

1
2 < 0. (E.7)

Thus, the following lemma holds.

Lemma A2 The bubble steady-state equilibrium exists if and only if (E.5) and (E.7) hold.

Γ(σ) has following properties:

Γ(0) = (ρ+ µ)
1
2 > 0,

Γ

(
1

(ρ+ µ)
1
2

)
=

ρ

(ρ+ µ)
1
2

> 0, (E.8)

Γ′(σ) = 2A(ρ+ µ)
1
2σ − (A+ µ)

Γ′(0) = −(A+ µ) < 0

Γ′

(
1

(ρ+ µ)
1
2

)
= A− µ,

Note that if A − µ ≤ 0, Γ(σ) is a decreasing function for σ ∈ (0, 1/(ρ + µ)
1
2 ). Because of

(E.8), Γ(σ) > 0 holds for σ ∈ (0, 1/(ρ + µ)
1
2 ) (see panel (a) of Figure A2). We obtain the

following lemma.
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Lemma A3 Suppose that A − µ ≤ 0. Then the bubble steady-state equilibrium does not
exist.

[Figure A2]

Equation, Γ(σ) = 0, has real solutions if and only if

0 < (A+ µ)2 − 4A(ρ+ µ)
1
2 (ρ+ µ)

1
2

= A2 − 2(µ+ 2ρ)A+ µ2 ≡ H(A) (E.9)

Note the following points.

• If H(A) ≤ 0, then Γ(σ) ≥ 0 holds for all σ > 0 because of Γ(0) > 0. See panel (b) of
Figure A2.

• If H(A) > 0 holds, Γ(σ) = 0 has two solution, σ1 and σ2. In addition, if A > µ

holds, we have Γ′(1/(ρ + µ)
1
2 ) > 0. Remember that Γ(0) > 0, Γ(1/(ρ + µ)

1
2 ) > 0, and

Γ′(0) < 0. Thus, we have σ1, σ2 ∈ (0, 1/(ρ + µ)
1
2 ). Besides, Γ(σ) < 0 for σ ∈ (σ1, σ2)

and Γ(σ) ≥ 0 for σ ̸∈ (σ1, σ2). See panel (c) of Figure A2.

From the discussion so far, we can prove the next lemma.

Lemma A4
(i) If H(A) ≤ 0, there is no bubble steady-state equilibrium.

(ii) If A > µ and H(A) > 0 hold, there are σ1 and σ2 ∈ (0, 1/(ρ + µ)
1
2 ). If σ ∈ (σ1, σ2),

there exists a bubble steady state. If σ ̸∈ (σ1, σ2), the bubble steady state does not exist.

We next examine the properties of H(A). We evaluate H(A) at A = 0 and A = µ:

H(0) = µ2 > 0, (E.10)

H(µ) = −4ρµ < 0. (E.11)

Besides, H(A) = 0 has the following solutions:

A = µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2 > µ. (E.12)

Figure A3 shows that graph of H(A).

[Figure A3]

We obtain the following lemma.

Lemma A5
(i) If A ≤ µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2, then we have either H(A) ≤ 0 or A− µ ≤ 0.
(ii) If A > µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2, then we have both H(A) > 0 and A− µ > 0.

From Lemmas A1–A5, we obtain Proposition 4.
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F Phase Diagram

The resource constraint (17a) can be written as

1 +Bt =
A

ρ
Vt

+ 1−Vt
σ2

=
AVt

ρ+ (1−Vt)Vt
σ2

.

The right-hand side increases from zero to A/ρ as Vt increases from zero to 1. Since this
equation represents the resource constraint, the economy is always on this line. We set Ḃt = 0
in (17b) and then solve for 1 +Bt to obtain

1 +Bt =
AVt

1−Vt
σ2 − µ

.

The right-hand side increases from zero to +∞ as Vt increases from zero to 1− µσ2. In the
region above (below) Ḃt = 0 locus, we have Ḃt > 0 (Ḃt < 0). The phase diagram is shown
in Figure 3. The phase diagram shows that the bubble steady state is unstable whereas the
bubbleless one is stable.

G Existence of bubbles: gL and rL

This appendix proves the following proposition.

Proposition A1 Suppose that σ > 0 and that the bubbless steady-state equilibrium exists.
A bubble steady-state equilibrium exists if and only if rL < gL − µ holds in the bubbless
steady-state equilibrium.

(Proof) We first show that VL < V ∗ < 1(≡ VNR) holds. Suppose that both the bubble and
bubbleless steady states exist. From (17a), we have

A =
ρ

VL
+

1− VL
σ2

=

[
ρ

V ∗ +
1− V ∗

σ2

]
(1 +B∗). (G.1)

Since B∗ > 0, the above relation implies that

ρ

VL
+

1− VL
σ2

>
ρ

V ∗ +
1− V ∗

σ2
. (G.2)

Since the left-hand side decreases with VL, we thus we have

VL < V ∗(≡ 1− σ(ρ+ µ)1/2) < 1(≡ VNR). (G.3)

Suppose that the stochastic bubbly steady state exists. Then, (20a) holds. We have

(20a) ⇐⇒
(
1− V ∗

σ

)2

= µ+ ρ,

⇒
(
1− VL
σ

)2

> µ+ ρ,

⇐⇒ rL +

(
1− VL
σ

)2

− ρ > rL + µ,

⇐⇒ gL > rL + µ. (G.4)
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The second line uses (G.3). In the bubbleless steady state, ωt(= vtKt) grows at gL = K̇t/Kt.
If we integrate (10f) using the fact that ωi,t and dWi,t are independent, we obtain the last
line because of st = 0.

Next, suppose that gL > rL + µ holds in the bubbleless steady state. From the second to

the last lines of (G.4), we have that
(
1−VL
σ

)2
> µ + ρ. Since VL < 1, there exists a V̂ such

that V̂ > VL and (
1− V̂

σ

)2

= µ+ ρ ⇒ V̂ = 1− σ(µ+ ρ)
1
2 ≡ V ∗. (G.5)

Since V̂ = V ∗ > VL, we obtain B∗ > 0 from (G.1) and (G.2). Then, there exists the bubble
steady state.

H Proof of Proposition 5

We first show the following lemma.

Lemma A6 If both the bubble and bubbleless steady states exist, we have

g∗ < (=)(>)gL ⇐⇒ σ(ρ+ µ)1/2 < (=)(>)VL.

(Proof) Irrespective of whether asset bubbles exist or not, (12c) and (17a) hold. We can
rearrange (17a) as

1 +Bt

Vt
=

A
(1−Vt)Vt

σ2 + ρ
,

where (Vt, Bt) = (VL, 0) and (Vt, Bt) = (V ∗, B∗) hold in the bubbleless and bubble economies,
respectively. Then, (12c) can be written as

It
Kt

=
1− Vt
σ2

(1 +Bt) =
(1− Vt)Vt

σ2

A
(1−Vt)Vt

σ2 + ρ
,

where (Vt, Bt) = (VL, 0) or (Vt, Bt) = (V ∗, B∗). Since VL ∈ (0, 1) and V ∗ ∈ (0, 1), the above
equation and (13) show that growth rate increases with (1− Vt)Vt. Thus, we have

sign{g∗ − gL} = sign {(1− V ∗)V ∗ − (1− VL)VL} .

We have the following relationship:

sign{g∗ − gL} = sign {(1− V ∗)V ∗ − (1− VL)VL}
= sign

{
σ(ρ+ µ)1/2V ∗ − (V ∗ + σ(ρ+ µ)1/2 − VL)VL

}
= sign

{
σ(ρ+ µ)1/2(V ∗ − VL)− VL(V

∗ − VL)
}

= sign
{
[σ(ρ+ µ)1/2 − VL](V

∗ − VL)
}

= sign
{
σ(ρ+ µ)1/2 − VL

}
The second line uses V ∗ ≡ 1 − σ(ρ + µ)1/2. In the last line, we use V ∗ > VL (see (G.3)).
Lemma A6 is proved. □

We next prove the following lemma.
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Lemma A7

σ < (=)(>)σ ⇐⇒ VL > (=)(<)σ(ρ+ µ)1/2,

where

σ =
−µ+

√
µ2 + 4A(ρ+ µ)

2A(ρ+ µ)1/2
> 0. (H.1)

(Proof) Note that VL is a positive solution of (D.1). We evaluate both sides of (D.1) at
Vt = σ(ρ+ µ)1/2. As shown in Figure A4, we have the following relationship:

VL < (=)(>)σ(ρ+ µ)1/2 ⇐⇒ A− ρ

σ(ρ+ µ)1/2
> (=)(<)

1− σ(ρ+ µ)1/2

σ2
,

⇐⇒ G(σ) ≡ A(ρ+ µ)1/2σ2 + µσ − (ρ+ µ)1/2 > (=)(<)0.

[Figure A4]

Since G(0) < 0 and G(∞) > 0, G(σ) = 0 has a unique positive solution σ that is defined
by (H.1). Then, we have σ < (=)(>)σ ⇐⇒ G(σ) < (=)(>)0 ⇐⇒ VL > (=)(<)σ(ρ+µ)1/2.
Lemma A7 is proved. □

The following lemma examines whether σ ∈ (σ1, σ2) holds.

Lemma A8

σ

{
/∈ (σ1, σ2), if µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2 < A ≤ 2(µ+ 2ρ)
∈ (σ1, σ2), if A > 2(µ+ 2ρ),

(Proof) Remember that σ1 and σ2 are solution of Γ(σ) ≡ A(ρ+µ)
1
2σ2−(A+µ)σ+(ρ+µ)

1
2 = 0

and that Γ(σ) < 0 holds if and only if σ ∈ (σ1, σ2). Thus, the following relationships holds:

σ

{
∈ (σ1, σ2) if Γ(σ) < 0
/∈ (σ1, σ2) if Γ(σ) > 0

(H.2)

We evaluate Γ(σ) as follows:

Γ(σ) = A(ρ+ µ)
1
2σ2 − (A+ µ)σ + (ρ+ µ)

1
2

= A(ρ+ µ)
1
2σ2 − (A+ µ)σ + A(ρ+ µ)1/2σ2 + µσ

= σ{2A(ρ+ µ)
1
2σ − A}

= σ
{√

µ2 + 4A(ρ+ µ)− (A+ µ)
}
.

The second line uses G(σ) ≡ A(ρ + µ)1/2σ2 + µσ − (ρ + µ)1/2 = 0. The last line uses the
definition of σ, (H.1). Because of σ > 0, we have

Γ(σ) < (=)(>)0 ⇐⇒
√
µ2 + 4A(ρ+ µ) < (=)(>)(A+ µ)

⇐⇒ µ2 + 4A(ρ+ µ) < (=)(>)(A+ µ)2

⇐⇒ A > (=)(<)2(µ+ 2ρ) (H.3)
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Remember that σ1 and σ2 exist if A > µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2. Note that

µ+ 2ρ+ 2[ρ(µ+ ρ)]1/2 < 2(µ+ 2ρ) (H.4)

holds because we have

2(µ+ 2ρ)− {µ+ 2ρ+ 2[ρ(µ+ ρ)]1/2} = µ+ 2ρ− 2[ρ(µ+ ρ)]1/2

(µ+ 2ρ)2 − {2[ρ(µ+ ρ)]1/2}2 = µ2 > 0.

From (H.2) and (H.3), σ ∈ (σ1, σ2) holds if A > 2(µ + 2ρ), while σ /∈ (σ1, σ2) holds if
µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2 < A ≤ 2(µ+ 2ρ). Lemma A8 is proved. □

We finally prove the next lemma.

Lemma A9 If µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2 < A ≤ 2(µ+ 2ρ), we have σ ≤ σ1.

(Proof) Lemma A8 implies that σ /∈ (σ1, σ2). σ1 and σ2 are solutions of a quadratic equation
Γ(σ) = 0 such that σ1 < σ2. The quadratic term σ2 of Γ(σ) has a positive coefficient. Thus,
if σ /∈ (σ1, σ2) satisfies Γ

′(σ) < (>)0, we have σ ≤ σ1 (σ ≥ σ2). We evaluate Γ′(σ) at σ = σ.

Γ′(σ) =
√
µ2 + 4A(ρ+ µ)− (A+ 2µ).

We define

Ψ(A) ≡
(√

µ2 + 4A(ρ+ µ)
)2

− (A+ 2µ)2 = −A2 + 4ρA− 3µ2.

Γ′(σ) and Ψ(A) have the same signs. Ψ(A) has the following properties:

1. The coefficient of A2 in Ψ(A) is negative.

2. Ψ( µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2 ) = −4{µ2 + ρµ+ µ[ρ(ρ+ µ)]1/2} < 0.

3. Ψ′( µ+ 2ρ+ 2{ρ(µ+ ρ)}1/2 ) = −2µ− 4{ρ(µ+ ρ)}1/2 < 0.

Thus, we have Ψ(A) < 0 for A ∈ (µ+2ρ+2{ρ(µ+ ρ)}1/2, 2(µ+2ρ)] (see Figure A5). Then,
Γ′(σ) < 0 holds, which means σ ≤ σ1. Lemma A9 is proved. □

[Figure A5]

If µ + 2ρ + 2{ρ(µ + ρ)}1/2 < A ≤ 2(µ + 2ρ), Lemma A9 indicates that σ > σ holds for
σ ∈ (σ1, σ2). Lemmas A6 and A7 imply Proposition 5 (i).

If A > 2(µ+2ρ), Lemma A8 implies that σ ∈ (σ1, σ2). We obtain Proposition 5 (ii) from
Lemmas A6 and A7.
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I Proof of Proposition 6

In the bubbleless steady state where Bt = 0, the following equation holds from (17a′) and
(25):

A2V

δ
− ρ

V
=

1− V

σ2
. (I.1)

The left-hand side of (I.1) increases from 0 to +∞ as V increases from
√
ρδ/A to ∞. The

right-hand side of (I.1) decrease from 1/σ2 > 0 to 0 as V increases from 0 to 1. Thus,
(26) ensures that (I.1) has a unique positive solution V̂L ∈ (

√
ρδ/A, 1). Therefore, we have

Vt = V̂L. Since V̂L < 1, Ît > 0.
Since growth rate is given by (24), we have

gt =
1− V̂L
σ2

− (AV̂L)
2

2δ
≡ ĝL. (I.2)

Since (23) holds, we have

ζt =
AV̂L
δ

≡ ζ̂L. (I.3)

J Proof of Proposition 7

If we set Ḃt = 0 in (17b′), we obtain(
1− Vt
σ2

− µ

)
(1 +Bt) = AζtVt. (J.1)

If we eliminate Bt from (17a′) and (J.1), we obtain

Vt = 1− σ(ρ+ µ)
1
2 ≡ V̂ ∗(= V ∗ ∈ (0, 1)),

where V ∗ is given by (20a). Since V̂ ∗ < 1, we have It > 0. Since (23) holds, we have

ζt =
AV̂ ∗

δ
≡ ζ̂∗. (J.2)

Condition (27) ensures that V̂ ∗ > 0. If we substitute Vt = V̂ ∗ into (J.1), we obtain

Bt = ζ̂∗(1 +B∗)− 1 ≡ B̂∗(> 0).

Because of (E.4), condition (27) ensures that 1 +B∗ > 0. Then, condition (28) ensures that
B̂∗ > 0. Since growth rate is given by (24), we have

gt =
1− V̂ ∗

σ2
(1 + B̂∗)− (AV̂ ∗)2

2δ
≡ ĝ∗.
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K Proof of Corollary 3

We show that conditions (27) and (28) imply condition (26). Since 0 < V ∗ < 1, condition
(28) implies

δ < A(1 +B∗) = A2 1− σ(ρ+ µ)1/2

1
σ
(ρ+ µ)1/2 − µ

. (K.1)

We can show the following relationship:

sign

{
1

ρ
− 1− σ(ρ+ µ)1/2

1
σ
(ρ+ µ)1/2 − µ

}
= sign

{
1

σ
(ρ+ µ)1/2 − µ− ρ{1− σ(ρ+ µ)1/2}

}
= sign

{
ρσ2(ρ+ µ)1/2 + (ρ+ µ)1/2 − σ(µ+ ρ)

}
= sign

{
ρσ2(ρ+ µ)−1/2 + (ρ+ µ)−1/2 − σ

}
> 0. (K.2)

The first equality holds because the term 1
σ
(ρ + µ)1/2 − µ is positive because of (E.4) and

condition (27). The last inequality holds because of condition (27). The inequalities (K.1)
and (K.2), implies δ < A2/ρ, which is equivalent to (26). Thus, conditions (27) and (28)
imply condition (26).

L Proof of Proposition 8

Proof of (i): From (17a′) and (25), we have

A2

δ
=

(
ρ

V 2
+

1− V

σ2V

)
(1 +B), (L.1)

where (V,B) = (V̂ ∗, B̂∗) or (V̂L, B̂L). Since B̂
∗ > 0, the above equation implies

ρ

V̂ ∗2
+

1− V̂ ∗

σ2V̂ ∗
<

ρ

V̂ 2
L

+
1− V̂L

σ2V̂L
.

The left-hand side decreases with V̂ ∗. Thus, we have V̂ ∗ > V̂L. From (I.3) and (J.2), we have
ζ̂∗ > ζ̂L. The wealth-to-GDP ratio can be rewritten as

Υ =
ωt

ρωt + vtIt
=

1 +B

ρ(1 +B) + It/Kt

=
1

ρ+ 1−V
σ2

, (L.2)

where (V,Υ) = (V̂L, Υ̂L) or (V̂ ∗, Υ̂∗). The last equality holds because of (12c). Then, Υ
increases with V . Since V̂ ∗ > V̂L, we have Υ̂∗ > Υ̂L.
Proof of (ii): Since Yt = AζtKt, we have Ŷ ∗

t > ŶL,t if both steady states have the same level
of Kt.

We rearrange (L.1) as

1 +B

V
=

A2/δ
ρ
V
+ 1−V

σ2

. (L.3)
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where (V,B) = (V̂ ∗, B̂∗) or (V̂L, B̂L). Thus, we have

Ct = ρωt = ρ
1 +B

V
Kt = ρ

A2/δ
ρ
V
+ 1−V

σ2

Kt. (L.4)

The last term increases with V . Thus, we have Ĉ∗
t > ĈL,t if both steady states have the same

level of capital stock.
The first inequality (29) is proved as follows. From Yt = Ct + It, Yt = AζtKt, and (L.4),

we have

It =
A2

δ
V

(1− V )V

ρσ2 + (1− V )V
Kt. (L.5)

Note that V̂L is a positive solution of (I.1) that can be rewritten as

Λ(V ) ≡ (σ2A2 + δ)V 2 − δV − ρδσ2 = 0.

Thus, we have

V̂L =
δ +

√
δ2 + 4ρδσ2(σ2A2 + δ)

2(σ2A2 + δ)
→ δ

σ2A2 + δ
, (L.6)

as ρ→ 0. Besides, we have

V̂ ∗ = 1− σ
√
ρ+ µ→ 1− σ

√
µ, as ρ→ 0. (L.7)

Thus, both of V̂L and V̂ ∗ converge to a constant as ρ→ 0. From (L.5), we have

It →
A2

δ
V Kt.

Since V̂ ∗ > V̂L, the first equality of (29) holds if ρ > 0 is sufficiently small. Then, the second
equality of (29) also holds.

We continue the proof of the first inequality (29). (L.5) shows that since V̂ ∗ > V̂L, we
have

(1− V̂ ∗)V̂ ∗ > (1− V̂L)V̂L ⇒ Î∗t > ÎL,t.

As in proof of Lemma A6, because of V̂ ∗ = 1− σ(ρ+ µ)1/2, we have

(1− V̂ ∗)V̂ ∗ > (1− V̂L)V̂L ⇐⇒ V̂L < σ(ρ+ µ)1/2.

Note that V̂L is a positive solution of Λ(V ) ≡ (σ2A2 + δ)V 2 − δV − ρδσ2 = 0. Clearly,
Λ(0) = −ρδσ2 < 0 holds. Thus, we have V̂L < σ(ρ+ µ)1/2 if and only if Λ

(
σ(ρ+ µ)1/2

)
> 0,

which can be rearranged as

Λ
(
σ(ρ+ µ)1/2

)
> 0 ⇐⇒ Ξ(σ) ≡ A2(ρ+ µ)σ3 + δµσ − δ

√
ρ+ µ > 0.
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Since Ξ(0) < 0 and Ξ′(σ) > 0 hold, Ξ(σ) = 0 has a unique and positive solution σ. Since

the bubble steady state exists, condition (27), σ < (ρ+µ)−
1
2 , must be satisfied. We evaluate

Ξ(σ) at σ = (ρ+ µ)−
1
2 .

Ξ
(
(ρ+ µ)−1/2

)
=

1√
ρ+ µ

(A2 − δρ) > 0.

Condition (26) ensures the above inequality. Thus, we have Ξ(σ) > 0 for σ ∈ (σ, (ρ+µ)−1/2).
Therefore, for σ ∈ (σ, (ρ + µ)−1/2), we have V̂L < σ(ρ + µ)1/2 and hence (1 − V̂ ∗)V̂ ∗ >
(1− V̂L)V̂L. The two inequalities of (29) hold.
Proof of (iii): If we use (L.3), the growth rate is written as

g =
1− V

σ2
(1 +B)− (AV )2

2δ
=

1− V

σ2

A2V/δ
ρ
V
+ 1−V

σ2

− (AV )2

2δ
, (L.8)

where V = V̂L or V̂ ∗. Since both of V̂L and V̂ ∗ converge to a constant as ρ→ 0, we have

g → A2

δ

(
V − V 2

2

)
, (L.9)

where V = V̂L or V̂ ∗. We differentiate the last term of the above equation with respect to V :

∂

∂V

A2

δ

(
V − V 2

2

)
=
A2

δ
(1− V ) > 0 for V < 1. (L.10)

Thus, since 0 < V̂L < V̂ ∗ < 1, we have (30) for sufficiently small ρ > 0.

M Proof of Proposition 9

From (L.4) and (L.5), we have

ÎL,t

Î∗t
=
V̂L(1− V̂L)

V̂ ∗(1− V̂ ∗)

ĈL,t

Ĉ∗
t

,

ans thus

(1− V̂ ∗)V̂ ∗ > (1− V̂L)V̂L ⇐⇒ ÎL,t

Î∗t
<
ĈL,t

Ĉ∗
t

.

Appendix L shows that for σ ∈ (σ, (ρ+µ)−1/2), we have (1−V̂ ∗)V̂ ∗ > (1−V̂L)V̂L. Proposition
9 is proved.

N Comparative statics in the bubbless steady state

Since V̂L is a positive solution of (I.1), we have ∂V̂L/∂A = −(2AV̂L)/(A
2+ρδ/V̂ 2

L +δ/σ
2)−1 <

0. The last equality of (L.2) shows that Υ̂L increases with V̂L. Thus, we have ∂Υ̂L/∂A < 0.
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We rearrange ĝL, (I.2), as

ĝL =
1− V̂L
σ2

− AV̂L
2

AV̂L
δ

=
1− V̂L
σ2

− AV̂L
2

1

A

(
1− V̂L
σ2

+
ρ

V̂L

)

=
1

σ2
(1− V̂L)

(
1− V̂L

2

)
− ρ

2
. (N.1)

The second equality uses (I.1). Since 0 < V̂L < 1, the last line shows that ĝL decreases with
V̂L. Thus, we have ∂ĝL/∂A > 0.

From (I.1), we have ∂V̂L/∂δ = A2V̂L(δA
2+ρδ2/V̂ 2

L +δ
2/σ2)−1 > 0. From the last equality

of (L.2), we have ∂Υ̂L/∂δ > 0. From the last equality of (N.1), we have ∂ĝL/∂δ < 0.
From (I.1), we have ∂V̂L/∂σ = −2[(1− V̂L)/σ

3](A2/δ+ ρ/V̂ 2
L +1/σ2)−1 < 0. We use (I.1)

to rearrange (L.2) as

Υ̂L =
1

ρ+ 1−V̂L
σ2

=
1

ρ+ A2V̂L
δ

− ρ

V̂L

.

Υ̂L decreases with V̂L. Thus, we have ∂Υ̂L/∂σ > 0. Using (I.1), we rearrange ĝL, (I.2), as

ĝL =
A2V̂L
δ

− ρ

V̂L
− (AV̂L)

2

2δ
. (N.2)

Then, we have

∂ĝL
∂σ

=

[
A2(1− V̂L)

δ
+

ρ

V̂ 2
L

]
∂V̂L
∂σ

< 0. (N.3)

From (I.1), we have ∂V̂L/∂ρ = V̂ −1
L (A2/δ+ρ/V̂ 2

L +1/σ2)−1 > 0. Thus, we have ∂ζ̂L/∂ρ >

0. From (I.2), we know that ĝL deceases with V̂L. Thus, we have ∂ĝL/∂ρ < 0.

O Derivation of (31) and (32)

We first derive (31) and (32). In both the bubble and bubbleless economies, we have ωt =
Kt/Vt + ptM = (1 + Bt)Kt/Vt. Both Vt and Bt are constant in the steady state. Thus, in
the steady state, we have

gt =
K̇t

Kt

=
ω̇t
ωt

= rt(1− st) + ψtst +

(
1− Vt
σ

)2

− ρ. (O.1)

To obtain the last equality, we aggregate (10f) over i using the facts that ωi,t and dWi,t are
independent and dWi,t follows a normal distribution with zero mean.

Since ĝL = (1− V̂L)/σ
2 − δ̄(ζ̂L) holds in the bubbleless economy, we have

1− V̂L
σ

= σ
(
ĝL + δ̄(ζ̂L)

)
. (O.2)
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From st = 0, (A.10), (A.11), (O.2) and U(ai,t, t) = D(log ai,t + ut), we have

ρU(âi,t, t) = log âi,t + log ρ+
1

ρ

r̂L +

(
1− V̂L
σ

)2

− ρ

− 1

2ρ

{
σ
(
ĝL + δ̄(ζ̂L)

)}2

. (O.3)

From (O.1) and (O.3), we obtain

ρU(âi,t, t) = log ρâi,t +
1

ρ

[
ĝL − 1

2

{
σ
(
ĝL + δ̄(ζ̂L)

)}2
]
. (O.4)

We have ρâi,t = ρv̂Lk̂i,t = (ĈL,t/K̂t)k̂i,t in the bubbleless steady state. Thus, (O.4) is rewritten
as (31).

Since ĝ∗ = (1− V̂ ∗)(1 + B̂∗)/σ2 − δ̄(ζ̂∗) holds in the bubble steady state, we have

1− V̂ ∗

σ
=
σ
(
ĝ∗ + δ̄(ζ̂∗)

)
1 + B̂∗

. (O.5)

From (A.18), (A.19), (O.5) and U∗(ωi,t, t) = D∗(logωi,t + u∗t ), we have

ρU∗(ω̂i,t, t) = log ω̂i,t + log ρ+
1

ρ

r̂∗(1− ŝ∗) + ψŝ∗ +

(
1− V̂ ∗

σ

)2

− ρ


− 1

2ρ

σ
(
ĝ∗ + δ̄(ζ̂∗)

)
1 + B̂∗


2

− µ [U∗(ω̂i,t, t)− U(âi,t, t)] . (O.6)

From (O.1) and (O.6), we obtain

ρU∗(ω̂i,t, t) = log ρω̂i,t +
1

ρ

ĝ∗ − 1

2

σ
(
ĝ∗ + δ̄(ζ̂∗)

)
1 + B̂∗


2
− µ [U∗(ω̂i,t, t)− U(âi,t, t)] . (O.7)

In the bubble steady state, we have

ρω̂i,t = ρω̂t
ω̂i,t
ω̂t

= Ĉ∗
t

v̂∗k̂i,t

v̂∗K̂t

=
Ĉ∗
t

K̂t

k̂i,t. (O.8)

The second equality uses v̂∗k̂i,t = (1 − ŝ∗)ω̂i,t (see (10b)), K̂t =
∫ 1

0
k̂i,tdi and ω̂t =

∫ 1

0
ω̂i,tdi.

From (O.7) and (O.8), we obtain (32).
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P Proof of Proposition 10

From (O.2) and (O.5), we have

sign

(ĝL + δ̄(ζ̂L)
)2

−

(
ĝ∗ + δ̄(ζ̂∗)

1 + B̂∗

)2
 = sign

{
(1− V̂L)

2 − (1− V̂ ∗)2
}
.

Since 0 < V̂L < V̂ ∗ < 1 holds, we have (1− V̂L)
2 > (1− V̂ ∗)2.

Q Bubbles and welfare

This section investigates how asset bubbles affect welfare of entrepreneurs. The initial aggre-
gate capital isK0. We assume that in both the bubble and bubbleless economies, entrepreneur
i holds the same amounts of capital ki,0 at time 0, where

∫
ki,0di = K0. Appendix Q.1 shows

that in the bubbleless steady state, utility of entrepreneur i at time 0 is given by

ρWL(ki,0) = log ki,0 + Z(gL)−
σ2

2ρ
(gL + δ)2, (Q.1)

where

Z(g) ≡ log {A− (g + δ)}+ g

ρ
.

Z(g) represents utility from consumption and its growth. The term −σ2

2ρ
(gL + δ)2 captures

utility loss from investment risks. Naturally, a large σ implies a large utility loss. Similarly,
in the bubble steady state, utility of entrepreneur i at time 0 is given by

ρW ∗(ki,0) = log ki,0 + Z(g∗)− σ2

2ρ

(
g∗ + δ

1 +B∗

)2

− µ [W ∗(ki,0)−WL(ki,0)] . (Q.2)

The last term represents utility loss of bubbles burst. The term −σ2

2ρ

(
g∗+δ
1+B∗

)2
captures utility

loss from investment risks and shows that B∗ mitigate the utility loss. Intuition is simple.
As we discuss just after Proposition 5, given vt, asset bubbles make entrepreneurs wealthier
and then increase entrepreneurs’ tolerance to investment risks.

From (Q.1) and (Q.2), we obtain

(ρ+ µ) [W ∗(ki,0)−WL(ki,0)] = Z(g∗)− Z(gL) +
σ2

2ρ

{
(gL + δ)2 −

(
g∗ + δ

1 +B∗

)2
}
. (Q.3)

The term (gL + δ)2 −
(
g∗+δ
1+B∗

)2
is always positive (see Appendix Q.2), because asset bubbles

increase entrepreneurs’ tolerance to investment risks and then have a positive welfare effect.
The term Z(g∗)− Z(gL) can be positive or negative depending on parameters of the model.
Thus, asset bubbles has a negative welfare effect. However, we can show that the overall
welfare effect of bubbles is always positive. In sum, asset bubbles have a significantly large
positive welfare effect because asset bubbles increase entrepreneurs’ tolerance to investment
risks. We obtain the following proposition.

Proposition A2 Suppose that both the bubble and bubbleless steady-state equilibrium exist.
Then, asset bubbles always improve welfare of all entrepreneurs.

(Proof) See Appendix Q.2.
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Q.1 Derivation of (Q.1) and (Q.2)

We first derive (Q.1) and (Q.2). In both the bubble and bubbleless economies, we have
ωt = Kt/Vt + ptM = (1 +Bt)Kt/Vt. Both Vt and Bt are constant in the steady state. Thus,
in the steady state, we have

gt =
K̇t

Kt

=
ω̇t
ωt

= rt(1− st) + ψtst +

(
1− Vt
σ

)2

− ρ. (Q.4)

To obtain the last equality, we aggregate (10f) over i using the facts that ωi,t and dWi,t are
independent and dWi,t follows a normal distribution with zero mean.

Since gL = (1− VL)/σ
2 − δ holds in the bubbleless economy, we have

1− VL
σ

= σ(gL + δ). (Q.5)

From st = 0, (A.10), (A.11), (Q.5) and U(ai,t, t) = D(log ai,t + ut), we have

ρU(ai,t, t) = log ai,t + log ρ+
1

ρ

[
rL +

(
1− VL
σ

)2

− ρ

]
− 1

2ρ
{σ(gL + δ)}2 . (Q.6)

From (Q.4) and (Q.6), we obtain

ρU(ai,0, 0) = log ρai,0 +
1

ρ

[
gL − 1

2
{σ(gL + δ)}2

]
. (Q.7)

We have ρai,0 = ρv0ki,0 = (C0/K0)ki,0 in the bubbleless steady state. From (1), (13), and
(14), we have

C0

K0

= A− (gt + δ), (Q.8)

in both the bubble and bubbleless economies. Thus, (Q.7) is rewritten as (Q.1).
Since g∗ = (1− V ∗)(1 +B∗)/σ2 − δ holds in the bubble steady state, we have

1− V ∗

σ
=
σ(g∗ + δ)

1 +B∗ . (Q.9)

From (A.18), (A.19), (Q.9) and U∗(ωi,t, t) = D∗(logωi,t + u∗t ), we have

ρU∗(ωi,t, t) = logωi,t + log ρ+
1

ρ

[
r∗(1− s) + ψs+

(
1− V ∗

σ

)2

− ρ

]

− 1

2ρ

{
σ(g∗ + δ)

1 +B∗

}2

− µ [U∗(ωi,t, t)− U(ai,t, t)] . (Q.10)

From (Q.4) and (Q.10), we obtain

ρU∗(ωi,0, 0) = log ρωi,0 +
1

ρ

[
g∗ − 1

2

{
σ(g∗ + δ)

1 +B∗

}2
]
− µ [U∗(ωi,0, 0)− U(ai,0, 0)] . (Q.11)
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In the bubble steady state, we have

ρωi,0 = ρω0
ωi,0
ω0

= C0
v0ki,0
v0K0

=
C0

K0

ki,0. (Q.12)

The second equality uses v0ki,0 = (1− s0)ωi,0 (see (10b)), K0 =
∫ 1

0
ki,0di and ω0 =

∫ 1

0
ωi,0di.

From (Q.8), (Q.11), and (Q.12), we obtain

(ρ+ µ)U∗(ωi,0, 0) = log ki,0 + Z(g∗)− σ2

2ρ

(
g∗ + δ

1 +B∗

)2

+ µWL(ki,0, 0) ≡ (ρ+ µ)W ∗(ki,0, 0).

After rearranging the above equation, (Q.2) is derived.

Q.2 Proof of Proposition A2

From (Q.5) and (Q.9), we have

sign

{
(gL + δ)2 −

(
g∗ + δ

1 +B∗

)2
}

= sign
{
(1− VL)

2 − (1− V ∗)2
}

(Q.13)

From (G.3), we have VL < V ∗ < 1. Thus, (1− VL)
2 > (1− V ∗)2 holds.

We show that max{gL, g∗} < gNR, where gNR ≡ A− δ− ρ is the growth rate under σ = 0
(see the last equation of (16)). (18c) ensures that gL < gNR. Using (20e), we show g∗ < gNR
as follows:

g∗ =

(
A− ρ

1 +B∗

V ∗

)
− δ

<

(
A− ρ

1

V ∗

)
− δ

< A− ρ− δ ≡ gNR, (Q.14)

The first line uses (17a) in (20e). The second line uses B∗ > 0. The last line uses V ∗ < 1.
Function Z(g) has the following properties:

Z ′(g) =
gNR − g

ρ(gNR + ρ− g)
> 0 for g < gNR, (Q.15)

Z ′′(g) =
−1

(gNR + ρ− g)2
< 0 for g < gNR. (Q.16)

We consider the following two cases; (i) g∗ ≥ gL and (ii) g∗ < gL.

(i) If g∗ ≥ gL holds, we have Z(g∗) ≥ Z(gL) because of (Q.14) and (Q.15). Since (1−VL)
2 >

(1− V ∗)2 holds, we have U∗(ωi,0, 0) > U(ai,0, 0).
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(ii) If g∗ < gL holds, we have Z(g∗) < Z(gL) because of max{gL, g∗} < gNR and (Q.15).
Furthermore, since Z(g) is an increase and concave function for g < gNR, we have

0 < Z(gL)− Z(g∗) < Z ′(g∗)(gL − g∗). (Q.17)

In addition, because of VL < V ∗ (see (G.3)), we have

(1− VL)
2 − (1− V ∗)2 = (1− VL + 1− V ∗)(V ∗ − VL)

> 2(1− V ∗)(V ∗ − VL). (Q.18)

From (Q.3), (Q.17), and (Q.18), we obtain

(ρ+ µ) [U∗(ωi,0, 0)− U(ai,0, 0)] > Z ′(g∗)(g∗ − gL) +
1

ρσ2
(1− V ∗)(V ∗ − VL). (Q.19)

If we use gNR ≡ A− δ − ρ and the first line of (Q.14), we have

Z ′(g∗) =
1

ρ

(
1− ρ

A− δ − g∗

)
=

1

ρ

(
1− V ∗

1 +B∗

)
. (Q.20)

Using (18c), (20e) and (Q.20), we examine the sign of the second line of (Q.19) as follows:

sign

{
Z ′(g∗)(g∗ − gL) +

1

ρσ2
(1− V ∗)(V ∗ − VL)

}
= sign

{(
1− V ∗

1 +B∗

)
{(1− V ∗)(1 +B∗)− (1− VL)}+ (1− V ∗)(V ∗ − VL)

}
= sign

{
(1− V ∗)− VL(1− V ∗) + (1− V ∗)B∗ − (1− VL) +

V ∗(1− VL)

1 +B∗

}
= sign

{
(1− VL)(1− V ∗) + (1− V ∗)B∗ +

(V ∗ − 1)(1− VL)− (1− VL)B
∗

1 +B∗

}
= sign

{
(1− VL)(1− V ∗)B∗

1 +B∗ + (1− V ∗)B∗ − (1− VL)B
∗

1 +B∗

}
= sign

{
(1− V ∗)− (1− VL)V

∗

1 +B∗

}
= sign

{
(1− V ∗)

V ∗ (1 +B∗)− (1− VL)

}
= sign

{
A

σ(ρ+ µ)
1
2

1
σ
(ρ+ µ)

1
2 − µ

− (1− VL)

}
. (Q.21)

The last line uses (20a) and (20b). Note that the first term in the last line of (Q.21) increases
with µ. Since µ > 0, we have

A
σ(ρ+ µ)

1
2

1
σ
(ρ+ µ)

1
2 − µ

− (1− VL) > σ2

(
A− 1− VL

σ2

)
=
ρσ2

VL
> 0. (Q.22)

The second line uses (D.1).
From (Q.19), (Q.21), and (Q.22), we obtain U∗(ωi,0, 0) > U(ai,0, 0).
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R A variety expansion model

In our model, we can interpret capital more broadly. To see this fact, this section modifies
the variety expansion model proposed by Barro and Sala-i-martin (2004). Entrepreneurs can
set up new businesses, including establishments, which is subject to the idiosyncratic shocks.
The number of firms in the economy accumulates through entrepreneurial activities. Main
results obtained in our AK model hold in this variety-expansion model. Thus, in our model,
capital, K, can include not just physical capital but also businesses and innovations.

A general good is produced by using intermediate goods and labor. Labor is supplied
inelastically by workers. Entrepreneurs can create new firms and accumulate their own firms.

Production sector: A competitive general good firm has the following production technol-
ogy:

Yt = ZLαt

∫ nt

0

X1−α
t (j)dj, Z > 0, 0 < α < 1 (R.1)

where nt is the number of varieties, Lt and Xt(j) represent labor and intermediate good j

inputs, respectively. Profit-maximizing yields Xt(j) = [(1− α)Z]
1
α Ltp

X
t (j)

− 1
α , where pXt (j)

denotes the price of intermediate good j. See Appendix R.1 for the derivation of the optimal
behavior of the general and intermediate good firms.

Each intermediate good j is produced by a monopolistically competitive firm. The pro-
duction of one unit of intermediate good requires η > 0 units of general goods. Profits of
each intermediate good is given by πt(j) =

[
pXt (j)− η

]
Xt(j). Appendix R.1 shows that from

the profit maximization problem by firm j, we obtain

πt(j) = α
[
ηα−1(1− α)2−αz

] 1
α L ≡ π (R.2)

where we use the labor market condition Lt = L. Thus, π is constant over time.

Entrepreneurs: Entrepreneurs create new firms using their investment projects given by
dxNi,t = Ii,tdt + σIi,tdWi,t, where dxNi,t denotes the number of newly created firms by en-
trepreneur i. Idiosyncratic shocks include risks of starting a new business. Entrepreneurs
are the owners of intermediated goods firms. Entrepreneur i owns ni,t units of interme-
diate good firms. The market value of an intermediate good firm is vNt . Then, total
assets holdings of entrepreneurs i are given by ωNi,t = vNt ni,t + ptb

n
i,t = aNi,t + bi,t, where

aNi,t ≡ vNt ni,t. Between t + dt, entrepreneur i receives operating profits from intermediates
goods firms πtni,tdt and earns profit income from creating new intermediate goods firms
vNt dx

N
i,t − Ii,tdt = (vNi,t − 1)Ii,tdt + σvNt Ii,tdWi,t. Thus, the budget constraint of entrepreneur

i at t+ dt is as follows:

ci,tdt+ δvNt ni,tdt+ vNt dni,t + ptdb
n
i,t = πni,tdt+ (vNt − 1)Ii,tdt+ σvNt Ii,tdWi,t. (R.3)

where δ ∈ [0, 1] denotes an exogenous destruction rate of an intermediate good firm and π
corresponds to the rental price q of the AK model presented in chapter 2. The detailed
derivation of the evolution of ωNi,t and optimal plans of entrepreneur i is given by Appendix
R.2.

Workers: The population size of workers is L. Each worker inelastically supplies one unit of
labor and earns wage income. For simplicity, we assume that the workers are hand-to-mouth
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consumers, which means they consume their current income entirely. Then, the aggregate
consumption of workers, Cw

t , is given by

Cw
t = wtL (R.4)

where wt denotes the wage rate. The labor market clears as Lt = L.

Equilibrium: Let us define V N
t ≡ 1/vNt and BN

t ≡ ptM/(vNt nt), where B
N
t denotes the value

of bubbles relative to the market value of intermediate goods firms and nt ≡
∫ 1

0
ni,tdi denotes

the aggregate number of intermediated good firms. Then, the aggregate assets holdings is
given by ωNt = vNt nt + ptM , where we use

∫ 1

0
bni,tdi =M . We derive the low of motion of the

number of firms as dnt ≡
∫ 1

0
(dxNi,t)di− δntdt = (It− δnt)dt, where It is given by (R.21). The

growth rate of economy is as follows

gNt =
ṅt
nt

=
It
nt

− δ. (R.5)

The following proposition gives a set of equations that characterizes the bubble and
bubbleless equilibria in the variety expansion model.

Proposition A3 Suppose that σ > 0. Then, the bubble and bubbleless equilibria with It > 0
are characterized by

π =

[
ρ

V N
t

+
1− V N

t

σ2

]
(1 +BN

t ), (R.6)

ḂN
t =

[
µ(1 +BN

t ) + πV N
t − 1− V N

t

σ2
(1 +BN

t )

]
BN
t , (R.7)

where π is given by (R.2).

Proof: See Appendix R.3.

Compare (R.6) and (R.7) with (17a) and (17b), respectively. If we replace A by π in
(17a) and (17b), these two equations become equivalent to (R.6) and (R.7), respectively.
This means that if we substitute π into A, Propositions 3-5 and Corollaries 1 and 2 hold even
in this variety-expansion model. This fact shows that in our benchmark AK model, capital
K include not just physical capital but also businesses and innovations.

R.1 The optimal behavior of production sector

The profits of the general good firm is given by πt = Yt−
∫ nt

0
pXt Xt(j)dj−wtLt. The first-order

conditions are given by

Xt(j) : (1− α)ZLαtX
−α
t (j) = pXt (j), j ∈ [0, nt] (R.8)

Lt : αZLα−1
t

∫ nt

0

X1−α
t (j)dj = wt. (R.9)

From (R.8), we obtain

Xt(j) = [(1− α)Z]
1
α Ltp

X
t (j)

− 1
α , j ∈ [0, nt]. (R.10)
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The profits of intermediate good firm j is πt(j) =
[
pXt (j)− η

]
Xt(j). Intermediate good firm

j maximizes the profits subject to (R.10). We can obtain the following equations

pXt (j) =
η

1− α
≡ pX . (R.11)

Xt(j) =

[
(1− α)2Z

η

] 1
α

L ≡ X, (R.12)

where we use Lt = L. From (R.11), (R.12), and πt(j) =
[
pXt (j)− η

]
Xt(j) we heve (R.2).

R.2 The evolution of ωNi,t and optimal behavior of an entrepreneur in variety
expansion model

We can derive the evolution of ωNi,t using the procedure presented in (9). From ωNi,t = vNt ni,t+
ptb

n
i,t, we obtain dω

N
i,t = (dvNt )ni,t+v

N
i,t(dni,t)+(dpt)b

n
i,t+pt(db

n
i,t). Then, (R.3) can be rearrange

as:

dωNi,t =
[
rNt a

N
i,t + ψtbi,t + (vNt − 1)Ii,t − ci,t

]
dt+ σvNt Ii,tdWi,t, (R.13)

where aNt ≡ vNt ni,t and r
N
t dt ≡ (πdt+ dvNt − δvNt dt)/v

N
t and we use ψ ≡ ṗt/pt.

Entrepreneur i maximizes (3) subject to ωNi,t = vNt ni,t + ptb
n
i,t and (R.13). If we replace

ωi,t, rt and vi,t by ω
N
i,t, r

N
t , and v

N
t in (9), (R.13) are equivalent to (9). By using procedure

presented in Appendix A, we can derive the optimal behavior as follows:

ci,t = ρωNi,t, (R.14)

aNi,t = (1− st)ω
N
i,t, (R.15)

bi,t = st ω
N
i,t, (R.16)

st =

{
1− µ

ψt−rNt
in the bubble economy (pt > 0),

0 in the bubbleless economy (pt = 0),
(R.17)

Ii,t =
vNt − 1

(σvNt )
2
ωNi,t. (R.18)

If vNt > 1, then Ii,t > 0 holds. The transversality condition holds:

lim
t→∞

Et

[
ωNi,t
ci,t

e−ρt

]
= lim

t→∞

1

ρ
e−ρt = 0. (R.19)

R.3 Proof of Proposition A3

From (R.14), (R.15), (R.18), and ωNt = vNt nt + ptM , aggregate consumption and investment
are given by

Ct = ρωNt , (R.20)

It =
vNt − 1

(σvNt )
2
ωNt . (R.21)
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The market clearing condition for general goods is given by

Yt = Ct + Cw
t + It + ηXnt, (R.22)

where we use Xt(j) = X from (R.12). Under a competitive economy, Yt = pXXnt + wtL
holds. Then, (R.22) can be rewritten as

pXXnt + wtL = Ct + Cw
t + It + ηXnt

⇐⇒ (pX − η)Xnt = Ct + It

⇐⇒ πnt = ρωNt +
vNt − 1

(σvNt )
2
ωNt (R.23)

The first line uses Yt = pXXnt + wtL. The second line uses (R.4). The third line uses
π = (pX − η)X, (R.20), and (R.21). Dividing both sides of (R.23) by nt and the after some
rearrangement by using ωNt = vNt nt + ptM , V N

t = 1/vNt and BN
t = ptM/(vNt nt), (R.6) is

derived.
The dynamics of asset bubbles is given by ḂN

t/B
N
t = ṗt/pt− ˙vNt /v

N
t − ṅt/nt, where ṅt/nt

given by (R.5). Using the procedure presented in the derivation of (17b), (R.7) is obtained.
□
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Figure A1 Bubbleless Steady State
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Figure A2 Function Γ(σ)
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Figure A3 Function H(A)
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Figure A4 Relationship between V and σ(ρ+ µ)1/2
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Figure A5 Function Ψ(A)
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