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Abstract 

 

 I consider a new model of an infinitely repeated preemption game with random 

matching, termed the recurrent preemption game, wherein each player’s discount factor 

depends on whether she wins the current game. This model describes sequential 

strategic technology adoptions in which a company becomes outdated by failing to 

maintain a position at the forefront of innovation. Assuming incomplete information 

about the presence of a rival, I clarify how the prominence of the innovator’s dilemma 

influences the degree of excessive competition in preemption. I also reveal interesting 

properties demonstrated by the unique symmetric Nash equilibrium of the recurrent 

preemption game. 
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1. Introduction 

 

This study investigates the recurrent preemption game, which is defined as a new 

version of an infinitely repeated game with random matching. The component game is a 

simple form of Bertrand duopoly that I term the preemption game. I assume incomplete 

information in that each player does not know whether her rival is present or absent. 

This game mainly departs from existing repeated games in that the discount factor (or 

the survival rate) of each player is not constant across component games and instead 

depends on the state and the consequence of the current component game, such as 

whether a player’s rival is present and whether she wins the current game. This study 

shows that the recurrent preemption game demonstrates the unique symmetric Nash 

equilibrium, and reveals various important properties of this equilibrium. 

This study situates the recurrent preemption game within the following dynamics 

of sequential strategic technology adoptions. A company attempts to develop and adopt 

a new technology within a limited time interval. If the company successfully adopts the 

technology earlier than its rival, then it earns the corresponding time-dependent 

adoption value as the winner’s payoff; otherwise, it earns nothing. By postponing the 

timing of adoption, the company can further develop the technology and increase this 

adoption value, but the risk of being preempted by its rival increases at the same time. 

 Just after the end of the time interval, the company can enter the next preemption 

game with a positive probability; the rival in the next game is different from the rival in 

the current game due to the randomness of matching. Importantly, only one of the two 

companies in the current game will progress to the next game. Hence, the two 

companies are rivals in two respects: 1) they are rivals in the scramble over the next 

opportunity for technology adoption, and 2) they are rivals in the competition for 

preempting the adoption of the current technology. 

 I specifically focus on the situation in which the likelihood of the winner entering 

the next game is not the same as the likelihood of the loser entering the next game. The 

likeliness of each outcome crucially depends on the relative importance between the 

following winner’s advantage and disadvantage. The case in which the loser is more 

likely to enter the next game than the winner corresponds to the prominence of the 
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winner’s disadvantage and is termed the innovator’s dilemma (Christensen 1997; Igami 

2017): the winner is constrained by the current technology, and therefore tends to be 

ahead of the loser in starting the development of the next technology. Meanwhile, the 

case in which the winner is more likely to enter the next game than the loser 

corresponds to the prominence of the winner’s (i.e., the innovator’s) advantage: the 

winner outweighs the loser in technical and information-gathering skills. This study 

clarifies that the relative importance between the innovator’s dilemma and advantage is 

crucial for understanding strategic behavior. 

To be more concrete, I envision the following scenario behind the recurrent 

preemption game. A commercial company generally wants to ensure its long-term 

survival in emerging industries. To do so, it must constantly ride the tide of innovations 

that create new markets through competition across existing industries. However, the 

presence of a rival company can threaten its ability to remain at the forefront of the next 

innovation. Once a company loses its forefront position, its growth can quickly slow 

and it can become outdated. 

Importantly, the company that wins the current race of technology adoption can 

also succeed in developing talent with the ability to discover and develop the next 

technology. However, the innovator’s dilemma recalls that the winner of the current 

adoption race may not necessarily win the next opportunity—the loser of the current 

adoption race may headhunt the talent developed by the winner. Moreover, the 

company that successfully enters the next opportunity may still have a rival in the form 

of either a new venture or a company that previously worked in a different industry. 

With this scenario in mind, the recurrent preemption game sharply distinguishes 

between the following two conflicts between the rivals in the current technology 

adoption. The first conflict is about meeting the next opportunity for technology 

adoption, which is expressed by the dependence of each player’s discount factor on 

whether she wins the current game. The second conflict is the first-come, first-served 

style of the race for current technology adoption, which is expressed by the current, 

one-shot preemption game. This study is the first theoretical attempt to incorporate this 

first conflict into strategic technology adoption. 

For our purposes, it is important to note that this study is related to existing 

literature on timing games (and specifically preemption games) in which various aspects 
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of incomplete information are incorporated. Notable works here include those by 

Fudenberg and Tirole (1986), Abreu and Brunnermeier (2003), Brunnermeier and 

Morgan (2010), Hopenhayn and Squintani (2011), Bobtcheff and Mariotti (2012), and 

Matsushima (2013; forthcoming). In contrast to this study, these works commonly 

investigate static games. 

The theoretical advantage of this study’s model is that it involves the unique 

symmetric Nash equilibrium. In this respect, this study is closely related to 

Matsushima’s (2013; forthcoming), which assumed incomplete information implying 

that each player expects that her rival is absent (or irrational) with a positive probability, 

and showed the uniqueness of the Nash equilibrium. This study extends this uniqueness 

to the recurrent preemption game by adding the symmetry constraint. 

The unique symmetric Nash equilibrium in the recurrent preemption game makes 

clear that the above-mentioned first conflict has the following significant effects on 

strategic behavior. The prominence of the innovator’s dilemma eases preemptive 

competition and consequently promotes more efficient technology adoption, while the 

prominence of the innovator’s advantage worsens preemptive competition and 

consequently promotes less efficient technology adoption. The players’ degrees of 

competitiveness from the viewpoint of the second conflict depend on the difference 

between the level of the current technology’s adoption value and the average level. 

Importantly, the manner of this dependence substantially differs based on the 

prominences of the innovator’s dilemma and advantage. If the innovator’s dilemma is 

prominent, then player competitiveness in the equilibrium will increase as the level of 

adoption value increases. On the other hand, if the innovator’s advantage is prominent, 

then player competitiveness in the equilibrium will decrease as the level of adoption 

value increases. This difference is due to the fact that the higher the quality of the 

current technology, the less important the first conflict. 

In this respect, the work of Rotemberg and Saloner (1986) is related to this study, 

although it does differ substantially. More specifically, Rotemberg and Saloner studied 

a repeated oligopoly game with business fluctuations and showed that excessive price 

competition (e.g., price war) takes place in a boom because business fluctuations 

influence the relative importance between the instantaneous gains and the punishments 

in future games. In contrast, this study does not consider such future punishments, and 
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instead considers the dependence of a player’s discount factor on whether she wins the 

current component game: the excessive preemption competition takes place with a high 

level of adoption value if and only if the innovator’s dilemma is prominent. 

This study assumes that the rival in the current game is different from the rival in 

the next game. In this respect, this study is related to studies of repeated games such as 

those by Kandori (1992) and Deb, Sugaya, and Wolitzky (forthcoming), wherein 

players are randomly matched across component games. These works investigate 

community enforcements by assuming that a player can obtain information concerning 

the opponent’s past history of play. In contrast, this study does not make this 

assumption: a player cannot even confirm that her rival is really present until the current 

game ends. 

This study assumes that the development and adoption of the next technology do 

not affect the adoption value of the current technology. Accordingly, this study does not 

consider the replacement effect (Arrow 1962) that makes the incumbent hesitant to 

innovate—while the replacement effect may be one cause of the innovator’s dilemma 

(Igami 2017), it is not the only cause (Christensen 1997). We conceptually distinguish 

between the innovator’s dilemma and the replacement effect based on the 

above-mentioned headhunting scenario. 

 The organization of this study is as follows. Section 2 introduces the basic 

formulation of the recurrent preemption game, where I assume that the level of adoption 

value is constant across component games. Section 3 incorporates uncertainty about 

future technologies into the recurrent preemption game. Section 4 generalizes the 

formulation of the winner’s payoffs without substantial changes to the contents outlined 

in Sections 2 and 3. Section 5 concludes the paper. 

 

2. Basic Model 

 

2.1. Formulation 

 

 I investigated a two-player infinitely repeated game with random matching that I 

termed the recurrent preemption game. The component game is given by ( , , )N A u , 
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where {1,2}N  , 1 2A A A  , 1 2( , )u u u , and :iu A R  for each {1, 2}i . Each 

player {1, 2}i  simultaneously selects an action i ia A , and obtains the instantaneous 

payoff ( )iu a , where 1 2( , )a a a . I specify the component game by 

1 2 [0,1]A A  , 

    ( )i iu a a  and ( ) 0ju a   if i ja a , 

and 

    1 2( ) ( )
2

t
u a u a


     if 1 2t a a  , 

where j i  and 0  . I call this the preemption game, and it corresponds to the 

simple Bertrand duopoly. Each player i  wins and obtains the winner’s payoff ia  if 

her action choice ia  is smaller than the rival’s action choice ja . 

 The preemption game involves the unique Nash equilibrium. The unique Nash 

equilibrium incentivizes each player to select 0ia  , which exhausts her potential 

benefit. To calm this inefficiency, I assume incomplete information: each player i N  

does not know if her rival j  is present or absent; she expects that with a positive 

probability 0  , her rival j i  is absent and therefore she automatically wins and 

obtains ia . With this incomplete information, the preemption game demonstrates the 

unique mixed strategy Nash equilibrium. This unique equilibrium incentivizes each 

player to select positive actions with certainty. 

A mixed strategy—or, to it put less formally for my purpose, a strategy—for 

player i  is defined as a cumulative distribution function : [0,1]i iq A  , where ( )iq t  

is non-decreasing and right continuous in [0,1]t . I simply wrote iq t  when player 

i  selects ia t  with certainty. A strategy profile 1 2( , )q q  is said to be symmetric if 

1 2q q . I simply wrote q  instead of 1 2( , )q q  when 1 2q q q  . According to my 

earlier works (2013; forthcoming), the following strategy is the unique Nash 

equilibrium in one-shot preemption games: 

    * * (1 )
( ) ( | ) 1

(1 )

t
q t q t

t





  


 for all [ ,1]t  , 

and 
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    * *( ) ( | ) 0q t q t    for all [0, ]t  . 

 The interpretation of the preemption game is strategic technology adoption. A 

company has an opportunity to develop and adopt a technology within a time interval 

[0,1] . If the company successfully adopts the technology at a time [0,1]t , then it 

earns t , where   expresses the level of adoption value. Meanwhile, if the 

company’s rival adopts the technology before it does, then the company earns nothing. 

While postponing the time of adoption allows a company to further develop its 

technology, it increases the risk that the company’s rival will win the adoption race. 

 I introduce the recurrent structure as follows. Just after terminal time 1, the 

company can enter the next preemption game with a positive probability. I assume that 

the rival in the next game is not the rival in the current game. To be sure, if there is no 

rival in the current game, then the company enters the next game with certainty. 

However, if there is a rival in the current game, then the company enters the next game 

with a probability of [0,1]W   if it wins the current game, and a probability of 

1 [0,1]L W     if it loses the current game. 

 Hence, the recurrent preemption game is a substantial modification of a standard 

infinitely repeated game with random matching in that the discount factor of a player 

depends on whether she wins the current game and also on whether there is a rival in the 

current game. To be more precise, the discount factor equals 1 if the rival is absent in 

the current game, W  if the rival is present and the player wins the current game, and 

1 W  ( L ) if the rival is present and wins the current game. 

 In the context of strategic technology adoption, the innovator (i.e., the winner) is at 

risk of her competitor (i.e., the loser) taking her opportunity to participate in the next 

race for technology adoption. The case that the loser will enter the next game more 

likely than the winner ( 1
2W  ) corresponds to the prominence of the innovator’s 

dilemma that the winner is constrained by the current technology, and therefore tends to 

be ahead of the loser in starting the development of the next technology. Meanwhile, the 

case in which the winner is more likely to enter the next game than the loser ( 1
2W  ) 
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corresponds to the prominence of the innovator’s advantage, that is, that the winner 

obtains better technical and information-gathering skills than the loser. 

I use ( ) ( | , , )WV q V q     to denote the expected payoff for a player in the 

recurrent preemption game when all players commonly follow a strategy q . The 

winner and the loser receive 

( )Wt V q   and (1 ) ( )W V q , 

as their respective payoffs, where t  denotes the winning time. If a player selects 

[0,1]t , then she wins the current game against her rival with a probability of 

( ) lim ( )
1

2
t

q t q






  and therefore receives the expected payoff given by 

     
( ) lim ( )

( , ) (1 ) ( ) 1
2

t
W

q t q
V t q t V q 


   
       
   

 

( ) lim ( )
(1 ) ( )

2
t

W

q t q
V q 


 

 
  


 ( )t V q   , 

that is, 

(1)    
( ) lim ( )

( , ) 1 (1 )
2

t
q t q

V t q t 


  
     

  
 

( ) lim ( )
(1 ) (1 2 ) ( )

2
t

W W

q t q
V q


   

          
    

. 

From (1), I define the expected payoff in the recurrent preemption game as 

    
1

0

( ) ( , ) ( )
t

V q V t q dq t


 
1

0

( ) lim ( )
1 (1 ) ( )

2
t

t

q t q
t dq t


  



     
  

  

1

0

( ) lim ( )
( ) (1 ) (1 2 ) ( )

2
t

W W

t

q t q
V q dq t


   



          
    
 , 

that is, 
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(2)    

1

0

1

0

( ) lim ( )
1 (1 ) ( )

2
( )

( ) lim ( )
1 (1 ) (1 2 ) ( )

2

t

t

t
W W

t

q t q
t dq t

V q
q t q

dq t






 


   









    
  

          
    




. 

 

Definition 1: A strategy q  is said to be a symmetric Nash equilibrium in the recurrent 

preemption game if 

    ( ) ( , )V q V t q  for all [0,1]t . 

 

2.2. Specification and Uniqueness 

 

 I specify a strategy ˆ ˆ( | , )Wq q     as follows: 

(3)    
(1 )

ˆ( ) 1
(1 ) (1 2 )

W

W W

t
q t

t


   


 

  
 for all ˆ[ ,1]t t , 

and 

    ˆ( ) 0q t   for all ˆ[0, )t t , 

where the critical time ˆ ˆ( , ) (0,1)Wt t     is defined as 

(4)    
(1 )ˆ W

W

t
 




    if 1
1 W

 

 


, 

and 

    ˆ 1t      if 0
1W




 


. 

Note that q̂  is independent of  . The following theorem shows that q̂  is the unique 

symmetric Nash equilibrium irrespective of  . Since a player has an incentive to select 

terminal time 1, I reason that 

     ˆ ˆ ˆ ˆ( ) (1, ) ( ) (1 )(1 ) ( )WV q V q V q V q         , 

that is, 

(5)    ˆ( )
(1 ) W

V q

 




. 

 



10 

 

 

Theorem 1: The strategy q̂  is the unique symmetric Nash equilibrium in the recurrent 

preemption game. 

 

Proof: Consider an arbitrary symmetric Nash equilibrium q , where I assume that ( )q t  

is continuous in [0,1]t , and there exists [0,1)t   such that ( )q t  is increasing in 

[ ,1]t t   and ( ) 0q t  . From (1) and ( ) lim ( )
t

q t q





 , the following first order 

condition is necessary and sufficient for the Nash equilibrium: for every [ ,1]t t  , 

    ( , ) {1 (1 ) ( )}V t q q t
t

 
  


 (1 2 ) ( ) (1 ) ( ) 0Wt V q q t        , 

that is, 

    
(1 ) ( )

1 (1 ) ( ) (1 2 ) ( )W

q t

q t t V q

 
  



   

. 

From (1) 1q  , for every [ ,1)t t  , I can derive 

    
 

(1 )
( ) 1

(1 ) (1 2 ) ( )W

t
q t

t V q


  


 

  
, 

which, along with (3), (4), and (5), implies that 

(1 )
ˆ( ) 1 ( )

(1 ) (1 2 )
W

W W

t
q t q t

t


   


  

  
 for all [ ,1)t t  , 

and 

ˆt t . 

Hence, q̂  is the unique Nash equilibrium that satisfies continuity and increasingness. 

I can prove that if a strategy q  is a symmetric Nash equilibrium, then ( )q t  is 

continuous in [0,1]t , and there exists [0,1)t   such that ( )q t  is increasing in 

[ ,1]t t   and ( ) 0q t  . Meanwhile, if ( )q t  is not continuous, then there exists 0    

such that lim ( ) ( )q q
 

 


 . By selecting a time slightly earlier than   , a player can 

dramatically increase her probability of winning. This implies that she does not select 

  , which is a contradiction. Hence, ( )q t  is continuous. 

From continuity, I can define 

    max [0,1) : ( ) (0)q q     . 
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Meanwhile, if ( )q t  is not increasing in [ ,1] , then, there exist [ ,1]   and 

[ ,1]   such that    , ( ) ( )q q   , and the selection of    is a best response. 

Since a player does not select any   in the open interval ( , )   , it follows from 

continuity that by selecting    instead of   , she can increase the winner’s payoff 

without decreasing her winning probability, which is also a contradiction. Hence, ( )q t  

is increasing in [ ,1]t  , where I can set t   . 

Q.E.D. 

 

2.3. Discussion 

 

 The unique equilibrium strategy q̂  depends on the frequency with which the 

winner enters the next game, W . The following proposition states that the more 

frequently the winner enters the next game (i.e., the greater W ), the more 

competitively the players behave in equilibrium; that is, the less efficiently technologies 

are adopted. Hence, the prominence of the innovator’s dilemma eases preemptive 

competition and consequently promotes more efficient technology adoption. 

 

Proposition 2: For every ( ,1)
1W







, 

ˆ( | , )
0W

W

q t  






 for all ( ,1)t t  , 

ˆ( , )
0W

W

t  






, and 

ˆ( ( | , ))
0W

W

V q  


 



. 

 

Proof: From (3), 

    
2

2

ˆ( | , ) (1 )
0

{(1 ) (1 2 )}
W

W W W

q t t

t

  
    

 
 

   
, 

implying that ˆ( | , )Wq t    is increasing in  . From (4) and (5), both ˆ( , )Wt    and 

ˆ( | , , )WV q     are decreasing in W . 

Q.E.D. 
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 From (3) and (4), in the medium case in which the winner and the loser have the 

same opportunity to enter the next game ( 1
2W  ), the corresponding unique 

equilibrium strategy is given by 

(1 )1ˆ ˆ( ) ( | , ) 12 (1 )

t
q t q t

t





  


 for all [ ,1]t  . 

This is the same as the unique equilibrium strategy in the one-shot preemption game, 

that is, I have *q̂ q  in the medium case. From the specification of ˆ ˆ( | , )Wq q    , I 

have 

    *ˆ( | , ) ( | )Wq t q t    for all ˆ( ,1)t t  if 1
2W  , 

while 

    *ˆ( | , ) ( |, )Wq t q t    for all (0,1)t  if 1
2W  . 

Hence, if 1
2W  , then the introduction of recurrent structure makes players more 

competitive, while if 1
2W  , then the introduction of recurrent structure makes 

players less competitive. 

 The following proposition shows that the greater possibility of the rival being 

absent (i.e., the greater  ) makes technology adoption more efficient. 

 

Proposition 3: For every (0,1)   and ( ,1)
1W







, 

ˆ( | , )
0Wq t  







  for all ˆ( ,1)t t , 

ˆ( , )
0Wt  







, and 
ˆ( ( | , ))

0WV q  


 



. 

 

Proof: From (3), (4), and (5), it is clear that ˆ( | , )Wq t    is decreasing, ˆ( , )Wt    is 

increasing, and ˆ( | , , )WV q     is decreasing in  . 

Q.E.D. 

 



13 

 

 

From the specification of q̂ , I find that 

    
0

ˆlim ( | , ) 1Wq t


 


  for all (0,1]W   and [0,1]t . 

This implies full inefficiency in that the technology is immediately adopted without 

development if a player expects that a rival is (almost) certainly present. From the 

specification of q̂ , 

    
1

ˆlim ( | , ) 0Wq t


 


  for all (0,1]W   and [0,1)t . 

This implies full efficiency in that the technology is adopted after it is fully ripe, if a 

player expects that a rival is (almost) certainly absent. 

 

3. Random Technology 

 

3.1. Formulation 

 

I have assumed that the level of adoption value   is constant across component 

games. This section considers the situation in which   is determined randomly and 

independently across component games according to a cumulative distribution function 

: (0, ) [0,1]p   , where ( )p   is differentiable and increasing in  , 
0

lim ( ) 0p





 , 

and lim ( ) 1p





 . Players are informed of the adoption value of the current technology 

but not informed about the future. 

In the recurrent preemption game with random technology, I define a strategy as 

(0, )( ( | ))r r     , where ( | ) ( | , , ) :[0,1] [0,1]Wr r        denotes a cumulative 

distribution function according to which a player selects a time in any preemption game 

associated with  . I denote by ( ) ( | , )WV r V r    the ex-ante expected payoff in the 

recurrent preemption game with random technology. If the current game is associated 

with   and a player selects [0,1]t , then she obtains the expected payoff given by 

(6)    ( , , )V t r 
( | ) lim ( | )

1 (1 )
2

t
r t r

t 
  

  
     

  
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( | ) lim ( | )
(1 ) (1 2 ) ( )

2
t

W W

r t r
V r

  
   

          
    

. 

Let ( , )V r   denote the expected payoff associated with   when all players 

commonly follow q , which is defined as 

(7)    
1

0

( , ) ( , , ) ( | )
t

V r V t r dr t  


   

1

0

( | ) lim ( | )
1 (1 ) ( | )

2
t

t

r t r
t dr t

  
  



     
  

  

1

0

( | ) lim ( | )
( ) (1 ) (1 2 ) ( | )

2
t

W W

t

r t r
V r dr t

  
    



          
    
 . 

I define the ex-ante expected payoff in the recurrent preemption game with random 

technology as 

(8)    ( ) [ ( , )]V r E V r   

1

0

1

0

( | ) lim ( | )
1 (1 ) ( )

2

( | ) lim ( | )
1 (1 ) (1 2 ) ( )

2

t

t

t
W W

t

r t r
E t dr t

r t r
E dr t







  
 

  
   









       
    

            
      




. 

 

Definition 2: A strategy r  is said to be a symmetric Nash equilibrium in the recurrent 

preemption game with random technology if for every 0  , 

    ( , ) ( , , )V r V t r   for all [0,1]t . 

 

3.2. Specification and Uniqueness 

 

 I specify a strategy (0,1]ˆ ˆ( ( | ))r r     as follows. Let us specify ˆ( ) [0,1]t   , 

ˆ( ) 0V r  , and ˆ 0   according to the following five equations: 

(9)    
ˆ(1 )(1 2 ) ( )ˆ( ) W V r

t
  


 

  , 



15 

 

 

(10)    ˆ
2 ( )

ˆ( )
ˆ(1 ) 1 (1 2 ){1 ( )}W

dp
V r

p


  

  




     

   if 1
2W  , 

(11)    

ˆ

ˆ0
(1 ) ( ) 2 ( )

ˆ( )
ˆ(1 ) 1 (1 2 ){1 ( )}W

dp dp
V r

p




     

  


 


     

 
  if 1

2W  , 

(12)    
ˆ(1 )(2 1) ( )ˆ W V r 


 

      if 1
2W  , 

and 

(13)    ˆ ˆ(1 2 ) ( )W V r         if 1
2W  . 

Based on these specifications, for every ˆ  , let 

(14)    
 

(1 )
ˆ( | ) 1

ˆ(1 ) (1 2 ) ( )W

t
r t

t V r


  


 

  
 for all ˆ( ( ),1]t t  , 

and 

ˆ( | ) 0r t    for all ˆ[0, ( )]t t  . 

For every ˆ(0, ]  , let 

(15)    ˆ( | ) 1r t    for all [0,1]t     if 1
2W  , 

and 

(16)    ˆ( | ) 0r t    for all [0,1)t     if 1
2W  . 

The following theorem shows that it is the unique symmetric Nash equilibrium. 

 

Theorem 4: The specified strategy r̂  uniquely exists, and it is the unique symmetric 

Nash equilibrium in the recurrent preemption game with random technology. 

 

Proof: I show that r̂  uniquely exists. For each ˆ  , ˆ( )t   must satisfy the 

following equation: 

     
ˆ{1 ( )}ˆˆ( ( ) | ) 1 0

ˆ ˆ(1 ) ( ) (1 2 ) ( )W

t
r t

t V r

  
   


  

  
, 

which implies (9). For r̂  to satisfy the Nash equilibrium property, the selection of 

terminal time 1 must be the best response to ˆ( | )r   for each ˆ  . Hence, 
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(17)     ˆ ˆ ˆ( , ) (1, , ) (1 )(1 ) ( )WV r V r V r           . 

Consider 1
2W  . Equation (15) makes clear that for each ˆ(0, ]  , a player 

must have an incentive to select 0, which implies 

    
1

ˆ ˆ ˆ( , ) (0, , ) ( )
2

V r V r V r
  

  . 

Hence, from (17), 

    ˆ ˆ ˆ( ) ( | , ) [ ( , )]WV r V r E V r     

  ˆ

1 ˆ ˆˆ( ) ( ) ( ) (1 )(1 ) 1 ( )
2 Wdp V r p p



       
           , 

which implies (10). Since ˆˆ( ) 0t    and (9), I have (12). From (10) and (12), 

(18)    
ˆ

ˆ ˆ1 (1 2 ){1 ( )} 2(1 2 ) ( ) 0W Wp dp


     


         , 

which determines ̂ . Such ̂  uniquely exists because the left-hand side of (18) is 

continuous in ̂ , increasing in ̂ , negative for ˆ 0  , and positive for sufficient ̂ . 

Hence, as per Equations (9), (10), and (12), ˆ( )t  , ˆ( )V r , and r̂  are all uniquely 

defined. 

Consider 1
2W  . Equation (16) makes clear that for each ˆ(0, )  , no player 

must have an incentive for a time before 1, which implies 

     1
ˆ ˆ ˆ( , ) (1, , ) ( )

2
V r V r V r

  
   . 

Hence, from (A-1), 

 ˆ ˆ ˆ( ) ( | , ) ( , )WV r V r E V r   

ˆ

ˆ0
(1 ) ( ) 2 ( )

ˆ(1 ) 1 (1 2 ){1 ( )}W

dp dp

p




     

  


 


     

 
, 

which implies (11). Since ˆˆ( ) 1t    and (9), I have (13). From (11) and (13), 

(19)     ˆ ˆ(1 ) 1 (1 2 ) 1 ( )W p          

ˆ

ˆ0
(1 2 ) (1 ) ( ) 2 ( ) 0W dp dp




      

         , 
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which determines ̂ . Such ̂  uniquely exists because the left-hand side of (19) is 

continuous in ̂ , increasing in ̂ , negative for ˆ 0  , and positive for sufficient ̂ . 

Hence, as per Equations (9), (11), and (13), ˆ( )t  , ˆ( )V q , and r̂  are all uniquely 

defined. Note that ˆ( | )r t   is continuous in [0,1]t , irrespective of  . 

 The above observations prove that r̂  uniquely exists. 

 Notably, r̂  is the unique symmetric Nash equilibrium. Suppose 1
2W   and 

consider an arbitrary symmetric Nash equilibrium r  that I assume is continuous in 

[0,1)t  and there exists 0   such that 

(0 | ) 1r    for all [0, )   , 

and, moreover, for each    , there exists ( ) [0,1)t    such that ( | )r t   is 

increasing in [ ,1]t t   and ( ( ) | ) 0r t    . Consider    . From Equation (6) and 

( | ) lim ( | )
t

r t r


  


 , the following first order condition is necessary and sufficient for 

the Nash equilibrium: for every [ ( ),1]t t   , 

     ( , , ) 1 (1 ) ( | )V t r r t
t

   
  


 

     (1 2 ) ( ) (1 ) ( | ) 0Wt V r r t        . 

As in the proof for Theorem 1, it follows from the unique specification of r̂  that 

ˆ( ) ( )V r V r , 

for every [ ( ),1)t t   , 

    
 

(1 )
( | ) 1

(1 ) (1 2 ) ( )W

t
r t

t V r


  


 

  
ˆ( | )r t  , 

and ˆ( ) ( )t t  , where, since a player has an incentive to select 1 if and only if ˆ  , 

we have ˆ  . These observations imply that r̂  is the unique symmetric Nash 

equilibrium. 

Suppose 1
2W   and consider an arbitrary symmetric Nash equilibrium r  that 

I assume is continuous in [0,1)t and there exists 0   such that 

( | ) 0r t    for all [0, )    and [0,1)t , 
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and, for each    , there exists ( ) [0,1)t    such that ( | )r t   is increasing in 

[ ,1]t t   and ( ( ) | ) 0r t    . In the same manner as in the case of 1
2W  , 

ˆ( | ) ( | )r r     for all    , 

where, since a player has an incentive to select 1 irrespective of her rival’s strategy if 

and only if ˆ  , we have ˆ  , and ( | ) 0r t    for all 1t   and ˆ  . These 

observations imply that r̂  is the unique symmetric Nash equilibrium. 

 As in the proof for Theorem 1, any symmetric Nash equilibrium satisfies 

continuity and increasingness. Hence, the above work proves Theorem 4. 

Q.E.D. 

 

3.3. Discussion 

 

 The unique equilibrium strategy ˆ( | )r   crucially depends on  . The reason for 

this dependence is that the relative importance of the future expected payoff after 

entering the next game, compared to the winner’s payoff in the current game, decreases 

as the current level of adoption value increases. Importantly, the manner of dependence 

of ˆ( | )r   on   substantially differs between 1
2W   and 1

2W  . This 

subsection will show that if 1
2W  , then the greater the level of adoption value  , 

the less competitive a player will behave; meanwhile, if 1
2W  , then the greater the 

level of adoption value  , the more competitive a player behaves. 

Suppose that the level of adoption value is insufficient, that is, ˆ  . Accordingly, 

Equation (15) suggests that if 1
2W  , then players are so competitive, act 

immediately, and therefore adopt the technology without development. On the other 

hand, Equation (16) suggests that if 1
2W  , then players are so uncompetitive, 

postpone the timing to terminal time 1, and therefore adopt the technology with full 

development. The following proposition shows that this tendency holds even if the level 

of adoption value is sufficient. 
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Proposition 5: Suppose ˆ  . Then, 

1

2W
   

 ˆˆ( | ) 0 ( ) 0r t and t 
 
      

, 

and 

    
1

2W
   

 ˆˆ( | ) 0 ( ) 0r t and t 
 
      

. 

 

Proof: From (14), 

 

2

2

ˆ(1 ) (1 2 ) ( )
ˆ( | )

ˆ(1 ) (1 2 ) ( )
W

W

t V r
r t

t V r

 
   

 


   
, 

which is negative (positive) if 1
2W   ( 1

2W  , respectively). From (9), 

    2

ˆ(1 )(1 2 ) ( )ˆ( ) W V r
t

 
 

 
 


, 

which is positive (negative) if 1
2W   ( 1

2W  , respectively). 

Q.E.D. 

 

Consider the medium case, that is, 1
2W  . Note that ˆ( | )r t   is independent of 

 , and 

    *ˆ( | )r q   for all 0  . 

In other words, the unique equilibrium strategy in the medium case is the same as the 

unique equilibrium strategy in the one-shot game. Hence, the incorporation of random 

technology does not influence the players’ equilibrium behavior in the medium case. 

Moreover, it is helpful to note that 

    *ˆlim ( | , , )Wr t q


  


  for all (0,1)W   and (0,1)  . 

The equilibrium strategy associated with a sufficiently high level   is approximated 

by the equilibrium strategy in the one-shot preemption game. As in Section 2, if 

1
2W  , then the incorporation of recurrent structure makes players more competitive; 



20 

 

 

meanwhile if 1
2W  , then the incorporation of recurrent structure makes players less 

competitive. 

From the specification of r̂  and ˆ( ) 0V r  , the following proposition holds. 

Notably, this proposition implies that the prominence of the innovator’s dilemma 

promotes more efficient technology adoption. I write ˆ ˆ( | ) ( | , , )Wr r      . 

 

Proposition 6: If 1
2W  , then 

    *ˆ( | , , ) ( )Wr t q t     for all (0,1)t  and (0, )   , 

while if 1
2W  , then 

    *ˆ( | , , ) ( )Wq t q t     for all (0,1)t  and (0, )   . 

  

In the same manner as in Subsection 2.3, the positivity of   plays a central role 

in making players delay technology adoption. For every 0   and (0,1]W  , 

    
0

ˆlim ( | , , ) 1Wr t


  


  for all [0,1]t , 

which implies full inefficiency in that the technology is immediately adopted without 

development if a player expects that a rival is (almost) certainly present. For every 

0   and (0,1]W  , 

    
1

ˆlim ( | , , ) 0Wr t


  


  for all [0,1)t , 

which implies full efficiency in that the technology is adopted with full development if 

a player expects that a rival is (almost) certainly absent. 

 

4. Generalization 

 

 I can generalize the winner’s payoffs by replacing t  with ( | )v t   without any 

substantial change, where I assume that ( | )v t   is continuous and increasing in 

[0,1]t  and (0, )   , (0 | ) 0v   , and (1| )v   . In the recurrent preemption 

game without random technology, I specify ( | , , ( | ))q q v       by 
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( | )

ˆ( ) ( )
v t

q t q



   for all [0,1]t . 

As in Theorem 1, q  is the unique symmetric Nash equilibrium, and the 

corresponding expected payoff is the same as ˆ( )V q . In the recurrent preemption game 

with random technology, I specify r  by 

   
( | )

ˆ( | ) ( | )
v t

r t r
 


   for all [0,1]t  and (0, )   . 

As in Theorem 4, r  is the unique symmetric Nash equilibrium, and the corresponding 

expected payoff is the same as ˆ( )V r . 

 

5. Conclusion 

 

 This study introduced and investigated the recurrent preemption game as the 

infinitely repeated game with random matching, wherein each player’s discount factor 

depends on whether her rival is present in the current game and whether she wins the 

current game. Notably, the recurrent preemption game involves the unique symmetric 

Nash equilibrium. This paper clarified the impact of the innovator’s dilemma on 

equilibrium behavior from various viewpoints such as the degree of competitiveness 

and its dependence on the quality of technology. 

 It will be important for future research to generalize this study’s analysis in various 

respects. For instance, the recurrent preemption game can be replaced with a richer 

model that details a company’s internal organization and explains how the company 

addresses the innovator’s dilemma. Moreover, in conversation with previous literature 

on strategic technology adoption, my component game can be replaced with more 

general games that incorporate various aspects of asymmetry, such as the replacement 

effect (Arrow 1962), the informational spillover (Hoppe 2000; Mariotti 1992; Awaya 

and Krishna 2019), the preemption effect (Gilbert and Newbery; 1982), the imitation 

(Katz and Shapiro 1987; Hendricks 1992), and the uncertainty of profitability (Jensen 

1982). To be sure, sound policymaking requires such future studies, and I hope that my 

study of the recurrent preemption game provides a solid basis for such work. 
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